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Motion Compensated Fan-Beam Reconstruction
for Nonrigid Transformation

Katsuyuki Taguchi*, Member, IEEE, and Hiroyuki Kudo, Member, IEEE

Abstract—We develop an approximate fan-beam algorithm to
reconstruct an object with time-dependent nonrigid transforma-
tion such as the heart. The method is in the form of derivative back-
projection filtering with compensation of affine transformations on
a local basis. Computer simulations showed the proposed method
significantly reduces image artifact due to nonrigid motion. There-
fore, with very little motion artifact, the proposed method allowed
us to reconstruct images from projections over about one motion
cycle, resulting in reduced image noise level down to 40% of the
current level.

Index Terms—Computed tomography (CT), motion compensa-
tion.

1. INTRODUCTION

ARDIOVASCULAR disease remains the leading cause
Cof death in the western world, placing an ever-increasing
burden on both private and public health services [1]. The
electrocardiogram-gated cardiac X-ray computed tomography
(CT) imaging is a promising noninvasive technique for early
detection and characterization of various signs of cardiac
diseases such as fatty vulnerable soft plaque (atherosclerosis)
in coronary arteries, perfusion defect in myocardial, etc., [2].
However, there are two major problems with the current cardiac
technique: large radiation dose to patients and insufficient tem-
poral resolution [3]. The typical radiation dose with cardiac CT
is 10-15 mSyv, which is 3-5 times as large as a standard chest
CT scan. The current temporal resolution is merely 80—165 ms
in contrast to the minimum requirement of 10-30 ms to ob-
serve the beating heart motion without motion artifact. The
current technique uses the electrocardiogram signals to select
projection data acquired in a time window that is placed within
a cardiac cycle with relatively slow motion (e.g., middiastole).
Images are then reconstructed by neglecting the cardiac motion
within the time window, resulting in blurring and artifacts in the
reconstructed images. Also, this technique uses only 10%—30%
of the acquired data—within the cardiac time window—and
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throws away the rest of “off-phase” data, resulting in un-
necessary radiation dose to patient if the tube current is not
prospectively modulated. Recently, a method to turn off the
X-ray for off-phase has been proposed [4]. This method will
reduce the dose significantly at the expense of the functional
(motion) information. Our approach has a potential to achieve
the largest dose reduction while substantially improving the
quality of 3-D and 4-D (4-D = 3-D plus time) images.

Therefore, the long-term goal of this research is to develop
time resolved, low-dose cardiac CT imaging [3]. Specifically,
we will develop an iterative algorithm that estimates the time-
dependent motion vector field of the heart from the measured
projection data and integrates it into the image reconstruction
process. The motion will be estimated by maximizing the agree-
ment between the acquired 4-D projection data and the recon-
structed time-resolved 4-D images. The quality of the image will
be significantly improved since the motion is compensated. In
addition, lower tube current could be utilized since all of the
acquired data will be used to reconstruct any cardiac phase of
interest. We estimate the reduction of radiation dose to the pa-
tient will be 50%-75% of the current level [3]. A reduction of
noise or dose may be achieved by using a nonlinear processing
of projection data [5]-[7], which can be combined with the pro-
posed method for further reduction of noise or dose or both.

Toward this long-term goal, one can incorporate a time-de-
pendent motion vector field into a system matrix and solve this
4-D reconstruction problem using a numerical (statistical) al-
gorithm. Gilland et al. developed a method that jointly esti-
mates and compensates for the motion of the object for single
photon emission CT [8], [9]. We aim at developing a similar
iterative joint method; however, we want to replace the numer-
ical reconstruction method by an analytical method as it could
provide a faster convergence in the iteration process due to its
linear nature. In this study, we will develop a method to re-
construct time-resolved 2-D images of dynamic objects from
fan-beam projections assuming the time-dependent 2-D motion
vector field is known. The algorithm will be integrated into the
iterative process later.

Cardiac motion estimation is indeed a very challenging ill-
posed problem. There have been many methods proposed and
tested with clinical cases using optimization methods, optical
flow methods, and continuum theory [10]-[16].

For respiratory motion correction in lung CT, Crawford’s ap-
proximate fan-beam algorithm [17] compensates a global ex-
pansion/translation of the object. The algorithm was a ramp fil-
tering (FBP) with a change of variables to take a global mo-
tion model into account. Roux et al. [18] developed an exact
fan-beam algorithm for a global time-dependent affine transfor-
mation by incorporating transformation into Noo’s derivative
filtered backprojection with Hilbert transform kernel (DFBP)
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algorithm [19]. Recently, Desbat et al. extended Roux’s motion
model; his algorithm allows any deformations that maintain ac-
quisition rays as straight lines [20], [21].

Most of nonrigid transforms such as cardiac or respiratory
motion do not satisfy this restriction—lines become curves with
deformations. For respiratory motion compensation, Ritchie
et al. [22] applied Crawford’s algorithm on a local basis by
changing the motion model for each pixel. Despite its global
nature of the ramp filtering, the reconstructed images were
in good quality demonstrating significantly reduced motion
artifact. This shows the potential of the correction based on
locally accurate motion model, filtering, and backprojection.

We hypothesize that by applying the correction locally,
we can approximately reconstruct cardiac images with an
acceptable level of error. Our approach to cardiac reconstruc-
tion is similar to Ritchie’s with an effort to make filtering
process much more accurate. We incorporate an affine trans-
formation into a derivative backprojection filtering (DBPF)
algorithm [23], [24].

The structure of this paper is as follow. In Section II, we
discuss a rigid motion and derive a basic algorithm, DABPF. In
Section III, we outline DAXBPF, i.e., how to apply DABPF on
a local basis to compensate for nonrigid motion. Sections IV
and V present schemes and results of computer simula-
tions, respectively, followed by discussion and conclusion in
Section V.

II. RIGID MOTION

In this section, we will derive an exact algorithm, DABPF,
from DBPF algorithm to reconstruct a dynamic object with
globally defined time-dependent affine transformation.

A. Notations

We use the right hand coordinate system with z = (z,y).
The time-dependent 2-D deforming object is defined by fo(z),
x, € R?, at the reference time ¢ = tg, and f:(z,), z, € R?, at
time ¢. The time-dependent affine operation I'; projects a point
x, at time ¢ to a point x, at time #g

Ti(z,) = Az, + B, = 29 (1)

where

an(t)

A= [a2l(t)

] mie=[R0] e

We suppose that this affine deformation is invertible, that is, V ¢,
det A; # 0, where det A; is the determinant of matrix A;. The
object can thus be written as

fe(@e) = fo (Ui (2)) = fo (o) - 3)
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Object at t Object at t,

True source trajectory

Virtual source trajectory

Fig. 1. Example of true and virtual source trajectories with rigid motion.
Straight lines remained as lines after being transformed from time # to #.

The true circular source trajectory s,(A) and fan-beam projec-
tions g¢(\, ;) can be noted as

$; (A) = (—Rscos A, —R; sin )\)T 4)
9t (A o) = / fe(s; (N) +lay) dl (5)
J0

where A € R is a parameter of the source trajectory, ¢, is a unit
vector along a ray from s,(\), and R; is the distance from the
source to the rotation axis. Note A is monotonically increasing
function of time, e.g.,

A = wt. (6)

B. DABPF Algorithm

Let a 2-D function b g(z,) be a Hilbert transformed 2-D
image fo(z,) at the reference time ¢, where @ is a unit vector
that defines the direction of 1-D finite inverse Hilbert transform
[23] (see also Appendix). We want to first obtain b ¢ () from
measured projections g; (A, ;). We transform a circular source
orbit s,(A) around the object f; into a virtual source trajectory
$o(A) around the object fy at to (Fig. 1)

§0(/\) = Ft(§t()‘))' @)

The projection data with the virtual path can then be obtained
by

go (A, ) = | Apey | g+ (A, o) ®)
where
Atat
o= =t _. 9
(| Ara |l
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Proof: Using (3) inside the integral of the right-hand side
of (5) and the linearity, the object f at time ¢ can be noted by

(10)

Inserting (10) into (5) and changing a variable, | = {/||A.q,],
we get

5 Oa) = [ o (s0 () + LAra) dl

a1y (0004 @
[Arall Jo ’ [[Aral
1

0
= X A) +lag ) di
||Atgt|| /0 fO (§0( ) g0)
1

Ayl

X go (A, ag) 1D

where o is given by (9).
The derivative of the virtual projection data, (8), can then be
calculated by using product rule and (6)

0
(A ap) = I\ | Azl g¢ (N, )

ﬁgo
0
+ [|Avayl ﬁ!]t (A )
1||0A
:; a—ttgt gt(/\»gt)
0
Al oo ha) (2
where
9 . g(AN e o) —gi(A a
oxd(\ a) = lim ! {2 o) )

The following procedures are the same as DBPF algorithms (see
[23] and Appendix). From here, we drop the argument A\ from
vectors S, s,’, and n for more readability. The differentiated
projections are backprojected from the virtual source trajectory

S0

bolzs) = /-)\2 w(sg - g, Ng) 'Sgn(Q'ﬂo)%go(x\7g0)d)\
Zy I llzo — sl ad)
where
g =sp — [ayg - 0] - (15)
= Zo—50) 16)
||£0 - §0||

A1, A2 are both ends of the backprojection range, and w for A;
is a normalized redundancy weight defined as

w(sg - ng,ng) = 1. 17)
1=0
Finally, we obtain fo(z)
1
folzg) = =5 —H™" (bo(o)) (18)

Fig. 2. Two examples of the set of parallel Hilbert filtering lines. Left case does
not need step-4 since 6 = 0.

where H~!(-) is the 1-D finite inverse Hilbert transform along ¢
direction [23]. We call this method DABPF algorithm. Note that
globally defined affine transformations preserve straight lines as
straight lines (see Fig. 1); thus, DABPF is exact and mathemat-
ically the same as Roux’s DAFBP.

DABPF algorithm starts with measured projections and
a known time-dependent globally defined affine transform.
We summarize DABPF algorithm by the following four steps
that are similar to DBPF algorithm [23], [24]. Consider a
(u,v) coordinate system (Fig. 2), rotated by angle ¢ from the
(z,y)-axes. Two coordinate systems are related by u(z,y) and
v(z,y).

Step 1) Define a region-of-interest (ROI) and a set of the
Hilbert lines L(v) such that

a) every point x = (z,y) inside the ROI lies on
only one Hilbert line L(v(z,y));

b) all line integral projection data passing through
any object point on each Hilbert line are
measured.

In Fig. 2, we show two examples on how to choose
the set of the Hilbert lines.

Step 2) Along each Hilbert line L(v(z,y)), we compute the
derivative backprojection by (12)—(14) to obtain the
bo(u, v), 1-D Hilbert transformed image of f along
6.

Step 3) Along each Hilbert line L(v(z,y)), we invert the
Hilbert transform by using the inversion formula of
finite Hilbert transform ([23] and (18)) to obtain a
function (u,v), which is the same as f(z,y) but is
represented on the (u, v) coordinates.

Step 4) From the relation f(z,y) = f(u(x,y)m(a;y)), we
obtain f(x,y). This step is not necessary if § = 0.

C. Data Sufficiency Condition

The data sufficiency condition for DABPF is, as a combina-
tion of those for DAFBP method [18], [19] and DBPF method
[23]: a point x, at the reference time to can be accurately recon-
structed from fan-beam projections acquired during a time-de-
pendent affine deformation, provided every line passing through
any object point on the filtering line of the point x has an in-
tersection with the virtual source trajectory. Fig. 4 provides a
graphical description of the condition.

III. NONRIGID MOTION

In this section, we first approximate a nonrigid motion by a
spatially varying affine transformation. We will then propose an
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Fig. 3. Example of true and virtual source trajectories with nonrigid motion. Straight line at ¢ corresponds to a curve at ¢,. Proposed DAxBPF applies DABPF on
a local basis to approximate the curve by its tangent, corresponding s, (), and locally fitted affine transform for each z,.

filtering line

L
(7)) reconstructed point 4 ¥

filtering line
L(x,3)

reconstructed point y
X,

bject a

Jo

virtual source trajectory
s virtual source trajectory
=0
S,
data sufficiency
condition satisfied

data sufficiency
condition violated

Fig. 4. Point , and a virtual source trajectory which satisfy the data suffi-
ciency conditions described in Sections II-C and ITI-C (left) and those do not
(right).

approximate algorithm, DAXBPF, to reduce the effect of the spa-
tially varying time-dependent affine transformation by applying
DABPF on a local basis (see Fig. 3).

A. Spatially Varying Affine Transform

We consider two scenarios how a nonrigid transformation of
the object is given: sparsely defined time-dependent affine trans-
formations; or a time-dependent motion vector field.

The first scenario starts with a finite sets of time-dependent
affine transformations 'y, (z; ,,,) given only for discrete spatial
locations zg ,,,’s, m = 1,..., M, and temporal samples ¢;’s,
k = 1,...,K. We then spatially and temporally interpolate
each element of matrix and vector of affine transform [see (2)]
by, e.g., a cubic spline interpolation, to obtain an affine trans-
formation for each small region-of-interest (ROI) at time ¢ (that
corresponds to each projection data). An example is shown in
Fig. 5. We focus on this scenario in this paper.

The second scenario starts with a time dependent motion
vector field. The time dependent deformation M, (z,), defined
by a time-dependent motion vector for each location, projects
a point z, at time ¢ to a point z, at time ¢o. The deformation
M, (z,) has to be bijective (one-to-one and onto) to be invert-
ible. For a small ROI centering z,, a vector field within the
ROI can then be approximated by an affine transformation.
Applying it for each z, will generate spatially varying affine

Detector channel

3

4m

57

67

7n

87
a. v L (view) C. t= TRR/2

Fig. 5. a: Sinogram of 5-ball phantom with 63 bpm. b—c: Two affine transforms
are defined: one for the north ball (dotted circle) and the other for inside solid
yellow balls and outside the dashed circle. Elements for affine transform for the
rest of the area were interpolated, which are shown in a gray scale from those
for the north ball (white) to those for the other parts (black).

transformation. We shall leave the detail of this second scenario
to future studies.

B. DAxBPF Algorithm

We apply DABPF algorithm to compensate for the space-
and time-dependent affine transform I'; ,,, on a local basis (see
Fig. 3). Theoretically, each image pixel z, could have different
affine transformation Ty ,,,(z,), m = 1,..., N2, where N, is
the number of pixels along (x, y)-axes. As a pixel-specific com-
pensation is computationally too expensive, we propose the fol-
lowing approach called DAxBPF.

DAXBPF first reconstructs a finite set of images fo.m(zg),
m = 1,...,M(K N,), at the reference time ¢y by using

’

DABPF (steps 14 in Section II-B) to compensate for I'; ,,.
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And as Step 5, a weighted summation is then applied to images
.fO,m (go) with

M
> WO,m@o)fO,m@o)
folzo) = ot M
2 Wom(zo)

m=1

19)

where W ., is a spatially varying weight which corresponds
to spatially changing elements of affine transformation (Fig. 5).
Note that the filtering direction can be independently defined for
each ROIL.

C. Data Sufficiency Condition

Similar to DABPF algorithm, and as Pack et al., empirically
stated in [25], the data sufficiency condition for DAXBPF is as
follows: a point xy at the reference time ty can be reconstructed
from fan-beam projections acquired during a time-dependent
nonrigid deformation with better guality, provided every line
passing through any object point on the filtering line of the point
T has an intersection with the virtual source trajectory. The
reconstructed point z, is with better quality than if the condi-
tion is not satisfied. Unfortunately, satisfying the condition in
itself does not guarantee that the resulting quality of the image
is sufficient.

IV. EVALUATION METHODS

Computer simulations were performed to assess the perfor-
mance of the proposed algorithms in terms of the following
aspects with nonrigid motion: 1) overall motion artifact, 2)
spatial resolution, 3) nonperiodic motion pattern, 4) the effect
of feathering in reconstruction, 5) image noise, 6) tradeoff
between image noise and spatial resolution, and 7) off-synchro-
nized motion.

A. General Methods

We used a 5-ball phantom defined in Table 1. Unless other-
wise mentioned, the motion of the phantom was as follows: one
motion cycle period governed all of balls; the ball #2 in the north
rotated over 60° about the origin while the others over 30°; all
balls contract to 2:1; all balls translate over (40 mm, 20 mm).
Specifically, elements of affine transformation in (2) are defined
as

At = CtROt (ng) (20)
27t
Ci =co + ¢1 cos <m>
Co = 157 c1 = —0.5 (21)
27t
Yt = o + p1cos (T—> (22)
RR
27t
Bi_ :Bi sin | —— ) ’L'Zo,l
e=Basin (7
B(]yl = — 20, Bl,l =-10 (23)

where Rot(¢p) is a rotation matrix for an angle of ¢, Trp is a
time period for one motion cycle, (¢g, 1) for the north ball

TABLE I
DEFINITION OF 5-BALL PHANTOM. NUMBERS ARE IN MM FOR THE CENTERS
AND SIZES AND IN cm ~! FOR LINEAR ATTENUATION COEFFICIENTS £t

Index Center Size p  Note
1 (0,0) 200 0.182 muscle
2 (50,0) 40 0.276 spine (north)
3 (0,50) 40 0.217 iodine-blood
4  (-50,0) 40 0.175 fat
5 (0,-50) 5 0.217 iodine-blood

and for the others were (30°, —30°) and (15°, —15°), respec-
tively. Three Trr’s that correspond to 60, 63, and 67 cycles-per-
minute (bpm) were used; their projection ranges were 6 /Trrg,
5.717/TrR, 5.377 /TrR, respectively, with a gantry rotation
time of 1/3s/(27) ~ 333.3 ms/rev. At 60 bpm, the object mo-
tion cycle and projection rotation cycle are in full-sync: Trpr
corresponds to 67r. 72 bpm and 90 bpm are next fully-synchro-
nized conditions, Trr to 57 and 47, respectively. Taguchi et al.
showed that the effect of object motion simply depends on the
extent of such synchronization [26]. Thus, studying the motion
cycles of 60, 63, and 67 bpm will be sufficient to see the effect
of synchronization from a full-sync to a severe off-sync. Among
them, we used the motion with 63 bpm intensively.

As the affine elements for the north ball were different from
those for the others, we employed the method described in
Section ITI-A and obtained smoothly changing affine transfor-
mations (Fig. 5). DABPF used the affine transformation defined
for balls #1, #3, #4, and #5.

Fan-beam projection data were generated over 8w with
1/3s/(2m) =~ 333.3 ms/rev and monochromatic X-ray at
80 keV. The other scan conditions were similar to a clinical
X-ray CT scanner: Equiangular 672 samples over 52.14°; 1160
projections per 27; the source-to-isocenter distance of 570 mm.
An example of generated projection data is shown in Fig. 5.

Circular images were reconstructed with a matrix of 5122
over a diameter of 500-mm range. During the image reconstruc-
tion with DABPF and DAxXBPF methods, when the range of
backprojection for an z was nxm, ny € N*, arectangular weight
with a height of 1/n was used for the normalized redundancy
weight w. When the backprojection range was a fraction of 7,
(nx 4+ B)m, 0 < 8 < 1, a trapezoidal weight was used whose
height was 1/n in the middle region and linearly reduced over
37 /2 to zero at both edges. For H~1(-), § was fixed at (1,0), hor-
izontally from left to right; and known pixel value fo(z,) = 0
for ||zol| > 220 mm was used to obtain the offset value (see
(17) of [23]). A Shepp—Logan filter [27] and Parker weight [28]
was used for FBP method.

The “true images” were obtained as follows. At each time ¢,
projection data over 87 was obtained without phantom motion;
and an image was reconstructed by FBP with a 1/8 weight.

B. Overall Motion Artifact and Spatial Resolution

The 5-cylinder phantom with a 63 bpm motion was used. Im-
agesatt = 0, Trr/4, Trr/2, and 3TgrR /4, were reconstructed
by FBP, DABPF, and DAxBPF, respectively.

The profiles of the images at ¢ = 0 and Trp /2 were obtained
to assess the accuracy of pixel values and the spatial resolution.
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C. Backprojection Range and Feathering

The projection data with 63 bpm was used. In order to eval-
uate the effect of a nonperiodic object motion, three images were
reconstructed by DAxBPF from projections over 27, 47, and 67
(corresponding to 0.35, 0.70, and 1.05 cycles). A rectangular re-
dundancy weight was applied in each case.

At the presence of the object motion, a feathering weight is
often applied to reduce the effect of inconsistency in projec-
tion data [29]-[31]. We assessed the ability of such feathering
weights to reduce the motion artifacts. We used a trapezoidal
weight and reconstructed images from projections over 2.2,
4.2m, and 6.2, respectively, and compared images with a rect-
angular weight.

D. Image Noise

The projection (line integral) data with 63 bpm was converted
to the transmitted X-ray intensity with the incident flux of 5000
photons per ray. Poisson noise was then added and the noisy
intensity data were then log-converted back to line integrals.
Image reconstruction was employed by FBP and DAXBPF with
projections over 2.2w, 4.2m, and 6, respectively.

E. Noise-Resolution Tradeoff

We evaluated the tradeoff between the image noise and spa-
tial resolution at the expanded and contracted phases with and
without motion compensation.

We used three projection data under three motion conditions:
a) the heart was beating; the heart was stationary either at b)
t = 0 (the expanded phase) or at ¢) ¢ = T/2 (the contracted
phase). One image each at ¢ = 0 and T'/2 was reconstructed
using DAXBPF algorithm. DAXBPF reduces to DBPF without
motion correction. An index of the spatial resolution was then
obtained as follows. A horizontal profile near the north ball was
obtained in each image (Fig. 6, arrows); the inverse of the max-
imum gradient of the profile was obtained and normalized by
that of the stationary expanded object (¢ = 0).

Poisson noise was added to projection data using the same
procedure as Section IV-D. For each of the three projection sets,
we generated 20 realizations of noisy projection data (60 data
sets in total). One noisy image each at the expanded and con-
tracted phases was reconstructed from each of noisy data from
motion condition a); one noisy image each was reconstructed
from each of conditions b) and ¢). An index of the image noise
was then obtained as follows. The standard deviation for each
pixel was computed over the 20 noise realizations. These stan-
dard deviations were then averaged over the square region of
110 mm x 110 mm (see Fig. 6) and normalized by the average
standard deviation obtained from the stationary expanded ob-
ject (condition-b). We also computed the standard deviation of
standard deviation values over the entire image.

We obtained a tradeoff curve of spatial resolution and noise
with Gaussian filter strength as the parameter along the curve:
To each image, we applied a 21 x 21 Gaussian filter with var-
ious strength and measured the above two indexes for noise and
spatial resolution.
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Phantom
Truth FBP DABPF DAxBPF
t=0
t=Trrld
= Tonl2

Fig. 6. Images of 5-ball phantom with 63 bpm reconstructed from projec-
tions over 1.297 (FBP) or 67 (DABPF and DAXBPF). Window width/level
(W/L) = 0.054/0.18 corresponding to 300 H.U./0 H.U.

F. Off-Synchronized Motion

We assessed the effect of two kinds of off-synchronizations,
inter-off-sync and intra-off-sync, both of which induces an
inconsistency between projections at the beginning and the
end of backprojection range. In the first experiment, the object
motion cycle and the scanner’s projection angle were off-sync
(inter-off-sync). The cycle of the entire object motion was
chosen as 60, 63, and 67 bpm corresponding to a scanner’s
rotation of 67 /cycle (fully synced), 5.717 /cycle, 5.377 /cycle,
respectively. Images were reconstructed from projections over
67 using DAxBPF.

In the second experiment, the north ball and the other balls
were off-sync (intra-off-sync). The north ball followed 60 and
67 bpm while the others did 63 bpm. Images were reconstructed
by DAxBPF from data over 67 and 6.27.

V. EVALUATION RESULTS

A. Overall Motion Artifact and Spatial Resolution

Fig. 6 shows images reconstructed by FBP, DABPF, and
DAXBPF together with the true phantom images with a narrow
window width (0.054 cm™! or 300 H.U.) to enhance the
artifact.

Images of FBP exhibited strong shading/whitening artifact
and distorted shape of balls. Images of DABPF showed almost
no artifact except for severely smeared north ball. The artifact
did not spread out to large area as FBP. Images of DAXxBPF
presented no visible artifacts in all motion phases.

Horizontal profiles at ¢ = 0 and Tgrg/2 shown in Fig. 7
confirmed the above observations: FBP provided shifted or dis-
torted profiles; DABPF also showed distorted profiles; the edge
of DAXBPF was slightly blurred at ¢ = 0 but values in flat re-
gions were accurate.

We made two observations on edge profiles of DAxBPF.
First, they were more blurred than that of FBP in general; and
second, the sharpness of edges was phase dependent. DAXxBPF
provided sharper edge profiles att = Tgpr/2 (contracted phase)
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Fig. 7. Horizontal profiles of Fig. 6 indicated at dashed lines at ¢ = 0 (top)
and Tk r/2 (bottom); the entire range (left) and the limited range (right) near
the edges indicated by arrows.

than those at £ = 0 (expanded phase)—in fact, the profiles at
t = Trgr/2 are very close to the “truth,” FBP without object
motion.

We believe common causes of the two phenomena must be
the derivative process with respect to A and the motion compen-
sation process. When derivative is calculated by differentiating
adjacent samples as in (13) and if those samples are spatially
separated in a larger distance than adjacent rays used in the ramp
filtering of FBP, the derivative process reduces the spatial reso-
lution. This is a common problem with other methods that use
a differentiating step [32]-[34].

The interval of samples is transformed as ng = An;
during the motion compensation process. The intrinsic Nyquist
frequency fx, defined by the sampling intervals along n; at
t is then converted to fn,/||Aine|| at the reference time to.
The image at the expanded phase ¢ = 0 is reconstructed with
|[Aine|| > 1 for almost all projections, which results in the
reduced Nyquist frequency, so as the spatial resolution of im-
ages. In contrast, the image at the contracted phase ¢t = Trpr/2
is reconstructed with [|Asn|| < 1, thus, shows the improved
spatial resolution. If the scale of the object is not isotropic (i.e.,
scales along x- and y axes are different from each other), it may
cause a phase-dependent asymmetric point spread function.

B. Backprojection Range and Feathering

Fig. 8(a)—(c) shows images reconstructed by DAXBPF from
27, 47, and 67, respectively. The effect of nonperiodic motion
patterns during the backprojection range was seen as shadings
(arrow) and white cloud (curved arrow) in Fig. 8(a) (27) and
7b (47). Notice, however, a very narrow window width is used
to enhance the shading, which is merely 0.002 cm~! or a 3.2%
of the difference between the north ball and ball #1 (on center).
The relative rotating motion between the north ball and the rest
of the phantom over 27 was 21°, which was twice as large as
the rotating motion over 7(10.5°). Comparing Fig. 8(a) with the

Fig. 8. Images reconstructed with various angular ranges. W/L =
0.018/0.18 corresponding to 100 H.U./0 H.U.; the narrow window is

used to visualize the artifact. Smaller ranges show stronger artifacts (a-b),
which are reduced by using a trapezoidal feathering weight (d—e).

Fig. 9. Images reconstructed from noisy projections. W/L = 0.054/0.18.
Image noise decreases as increasing the projection angular range (b — ¢ — d).

FBP in Fig. 6, we found the proposed local correction worked
noticeably well to reduce the effect of nonrigid motion.

The visibility of the shading artifact was significantly reduced
by using a slight overlap (0.27) with a trapezoidal feathering
weight [Fig. 8(d)—(f)]—although the reduced pixel value re-
mained.

C. Image Noise

Fig. 9 shows reconstructed noisy images at £ = 0. In order
to compare image noise with the same point spread function, a
7 x 7 Gaussian filter was applied to the image reconstructed by
FBP to produce Fig. 9(a). A square ROI was used at the iso-
center to measure the standard deviation of pixel values, which
was normalized against that of filtered FBP image. The nor-
malized standard deviation value of DAXBPF method decreased
with increasing backprojection range: 0.85 with 2.27, 0.46 with
4.27, and 0.40 with 67, respectively. These results generally
agree with a simple theoretical prediction by the amount of
effective photons contributed to images: (7/27)Y/? = 0.71,
(m/4m)/? = 0.50, and (7/67)'/? = 0.41.

D. Noise-Resolution Tradeoff

Fig. 10(b) shows standard deviation values computed over
20 noise realizations at ¢ = 0 with the beating phantom. The
standard deviation reduced to 1.7:1 with all of four cases with
increasing a distance from the center from O to 100 mm. There
was no angular dependency.

Fig. 10(a) shows four tradeoff curves. Four observations
were made: 1) when the object was stationary, images at the
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Fig. 10. a: Noise-resolution tradeoff curves. b: Standard deviation map ob-
tained from the beating heart at # = 0. Motion compensation process of the
beating object introduces the motion phase-dependent spatial resolution.

two phases had different noise level at the same spatial resolu-
tion; 2) when the object was beating, images at the two phases
had different spatial resolutions; 3) at the expanded phase, the
tradeoff curve for the beating phantom is inferior to that for the
stationary phantom; and 4) at the contracted phase, the tradeoff
curve for the beating phantom indicates a better performance
than for the stationary phantom.

The first observation is attributed to the difference in phantom
size. Larger objects attenuate X-ray photons more, and produce
noisier projection data (and reconstructed images) for a given
incident X-ray photon flux. And discussion in Section V-A ex-
plains the mechanism of the second observation.

A further study is required to understand the nature of the
tradeoffs, observations 3 and 4, in detail. However, we think the
logarithm conversion process may be the major cause. Photon
noise in acquired X-ray intensity data is Poisson distributed
in this study (it will be compound Poisson with additive elec-
tronic noise in actual data), which is log-converted for line inte-
grals and then scaled during the motion compensation process
of DAxBPF. This nonlinear process may introduce a favorable
tradeoff for DAxBPF when images at the contracted phase were
reconstructed. Since the gain/loss of tradeoff curves must de-
pend on the shape and the motion of the object, we cannot defini-
tively conclude that this property is or is not an advantage of
DAxBPF when applied to clinical patient data.

E. Off-Synchronized Motion

Fig. 11 shows difference images with and without inter-syn-
chronization from the image of FBP with a stationary object at
t = 0. The motion cycle of the entire object and the rotation
cycle of the scanner were in full-sync (a: 60 bpm), moderately
off-sync (b: 63 bpm), and largely off-sync (c: 67 bpm). Both im-
ages with out-of-sync were almost identical to a fully-synchro-
nized case (60 bpm), demonstrating the robustness of DAXBPF
algorithm.

Fig. 12 presents difference images with intra-off-sync from
the image of FBP with the stationary object. A negligible level
of derivation of pixel values (£0.0002 cm~!, 1 H.U., £0.1%)
was observed (arrows), which was in fact reduced by applying
the feathering.
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a. 60 bpm, 6n b. 63 bpm, 67 c. 67 bpm, 6n

Fig. 11. Difference images of inter-off-synchronization from the image
FBP with a stationary object at ¢ = 0. W/L = 0.0054/0 corresponding
to 30 H.U./0 H.U. An extremely narrow window is used to demonstrate the

differences are very small.

a. 60 bpm, 6n b. 67 bpm, 61

c. 60 bpm, 6.2n

d. 67 bpm, 6.2z

Fig. 12. Difference images of intra-off-synchronization from the image of
FBP with a stationary object at t = 0. W/L = 0.054/0 corresponding to
30 H.U./0 H.U. An extremely narrow window is used to visualize artifacts
(a—b, arrows) which are reduced by a feathering (c—d).

VI. DISCUSSION AND CONCLUSION

We developed an exact DABPF algorithm that compensates
for a time-dependent affine transformation of the object. We also
developed an approximate algorithm, DAxBPF, to reduce the
effect of norigid motion of the object. The results showed that
an approximate DAXBPF algorithm, which applies DABPF on
a local basis, reconstructs images with good quality. DAXBPF
significantly reduces the motion artifact compared with the cur-
rent cardiac algorithm (FBP with Parker weight). The proposed
DAXBPF also reduces the image noise when it uses projections
over a larger range than Parker weight does. A 60% noise re-
duction from the current level, if directly converted, implicates
an 83% dose reduction from the current level (from 10-15 mSv
to 1.7-2.6 mSv) to obtain images with the current noise level.
This could have a substantial impact on the public health.

Our results show that the reconstruction from projections over
2 is likely to be acceptable; yet images over 67 or quasi-one
cycle is better in terms of the intensity of artifacts and image
noise. The use of data over one heart cycle is practically possible
in clinical settings. The current cardiac CT protocols choose a
helical pitch between 0.2-0.33 (corresponding to 67—107 for
each point ) depending on the patient heart rate, such that each
point z is covered at least over one heart cycle.

The affine motion model does not preserve the mass of the
object as it deforms. It proportionally changes the mass with
the scale. This motion model may not be a right one for various
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motions of human body. However, as the heart expands and con-
tracts, iodine-mixed blood comes into and goes out of chambers
(e.g., left ventricle), which drastically increases and decreases
the total mass. Thus, in fact, affine transform is a better model
for cardiac imaging than those which preserve the mass.

A natural question one may ask is, “Why does DAXBPF work
well for nonrigid motion?” Unfortunately, we have been unsuc-
cessful in providing a mathematical explanation. Intuitive rea-
soning is a slow and quasi-periodic object motion relative to the
projection angle. Let us consider an object which consists of a
finite set of delta functions and assume a nonrigid motion simply
moves their locations, f(z) = X,,6(z,,,), where m is an index
for delta functions. The filtered parallel projection data can then
be decomposed into a finite set of sinograms. With nonrigid mo-
tion, the backprojection (integration) process introduces an error
at a point x as each sinogram is radially shifted due to the mo-
tion of the delta function at z,,, ,, for each time ¢. The effect of
such shift introduces inaccurate values, weights and integration
range. If the motion within the integration range is drastic, the
effect is significant. However, if the motion is slow and smooth
within the angular range, the error remains small. A quasi-pe-
riodic motion over the angular range also reduces the inconsis-
tency between the beginning and the end of angular range, thus,
reduces the artifact. We tested phantoms with various off-sync
and nonperiodic motions reasonable in cardiac imaging (Figs. 6,
8, and 9) and obtained good results.

The above intuitive explanation seems applicable to other
analytical reconstruction algorithms with different filtering ker-
nels. For example, applying the local compensation approach to
Roux’s and Desbat’s DAFBP algorithms [18], [20], [21] would
yield DAXFBP algorithm. It would be interesting to study
whether such DAXFBP provides as good images as DAXBPF.
We plan to implement DAXFBP and evaluate its performance.

The proposed DAXBPF will provide good images even at the
presence of transverse truncation as DBPF does [23], [24]. As
DAXxBPF do not require projection data outside of the region-of-
interest and its filtering lines, it also has a potential to reduce
necessary radiation dose to the patient in cardiac scan.

The disadvantage of DAXBPF is a computational expense.
The current FBP requires O(N?3) calculations for the ramp
filtering process and O(N?3) calculations for backprojection
process. If M sets of motion models are used along each
filtering line, DAXBPF will first reconstruct M images, and
then apply a weighted summation. Thus, DAXBPF requires
O(M N3) for finite inverse Hilbert transform and O(M N3) for
backprojection process. An acceleration process such as fast
Fourier transform is not applicable for finite inverse Hilbert
transform. Therefore, DAXBPF algorithm will be approxi-
mately M times computationally demanding than the current
FBP methods. The appropriate number of motion models in one
dimension, M, depends on the complexity of the motion, thus,
is of interest in future works. From literatures for modeling
and estimation of cardiac motion [10]-[16], we assume 10-30
would be sufficient to cover the human heart (100 mm) with
which the nonrigid motion over 3—-10 mm range is approxi-
mated by one affine motion model.

Future works are as follows. The image quality with different
nonrigid motion patterns needs to be further evaluated. The

! source trajectory

Fig. 13. Line U passes through a point x and sources at s(A,) and s(s).

phantom we used in this study was not too simple; however,
as the algorithm remains approximate, one has to carefully ex-
amine the performance of DAXxBPF method with more complex
motions, such as 4-D NCAT phantom or clinical cardiac data.

The spatial resolution of image needs to be improved. We
believe, as discussed in Section V-A, one of its major causes
is the derivative (or differentiation) step with respect to A. One
can use a new scheme recently proposed by Noo ez al. [35] with
a chain rule: it does not require a significant change from the
current formulae. Another solution is to use integration by parts
as Zou et al. did in [36], which, however, requires a significant
change of reconstruction formulae. Moreover, there is a concern
as we expect an increased spatial variation of image noise as
lzg — 5o(N)|| =2 weight will replace ||z, — s,(\)||~* weight.

The extension of the proposed fan-beam DAxBPF method
to cone-beam reconstruction is relatively straightforward. The
derivative of cone-beam projections is taken with respect to the
source parameter, \, followed by a weighted cone-beam back-
projection and a 1-D finite inverse Hilbert transform. The op-
timal filtering direction of 1-D Hilbert transform is an interest
of the research. Candidates include an actual PI-line formed by
virtual trajectory and a virtual PI-line [37] that does not connect
two source points in either virtual or actual trajectories.

In conclusion, we have developed fan-beam reconstruction
algorithms using derivative backprojection filtering approach to
compensate for a time-dependent deformation. DABPF method
for a global affine transformation is exact. DAXBPF for a non-
rigid transformation are approximate, which showed promising
results with computer simulations.

APPENDIX

For the sake of completeness, we rederive with consistent no-
tations fan-beam DBPF algorithm for an arbitrary orbit.

In the reference time or for the stationary object, parallel-
beam projection can be expressed as

p(ry¢) = /00 f (r@ + r’@l) dr’ (24)

— 00

where n = (cos¢,sin¢), and nt = (—sin¢,cos¢) (see

Fig. 13).
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DBPF algorithm for a parallel beam projections [23] can be
written as

p(r+e,¢) —p(r, @)

p(r.¢) = lim ’ (25)
b2

b(z) = / w(r, $)sgu(@ - n)p'(r, §)dg  (26)

f(2) = — = H(b(x)) @7)

2T

where H~1(-) is the 1-D finite inverse Hilbert transform along
@ direction [23] and w is a normalized redundancy weight that
satisfies

i[w (rmpx2im)+w(—r,¢£(2i+1)m)]=1. (28)

Parallel- and fan-beam projections are related by

p(?", ¢) = g()‘ Q)|§(A)-Q=r,g-ﬂ=0- (29)

Taking a derivative with respect to X of both sides of (29) yields

/ _ g/()\ag)
p (r7¢) - §/(/\) -n

—1s(A) n=r,a:-n=0

(30)

For simplicity, we use a prime sign to indicate the derivative
with respect to A (e.g., ¢ = 9g/0)). This rebinning formula
(30) can only hold for nonzero s’(\) - n, thus, the tangent vector
s'(A\) must not be orthogonal to n. Any source points s(\,) and
$(Ap) on the line U can be parameterized by a distance ¢

€29

where |q| = ||z — s(\)||. Differentiating each side of (31) with
respect to A yields

dg | dg

L tange =), (32)
Thus
/ _d¢ o dp _ s'(A)-n

Inserting (30) into (25) and (33) into (26) yields a fan-beam BPF
formulae for an arbitrary source orbit

g()\+57g) _g(/\7g>

gl()‘aa) = hH%] c (34)
by(z) = / e en@ n)g(0) gy (35
DR W lz — sl
where
n=s—[a-s] a (36)
a= (|£ — §) (37)

and the sum of the redundancy weights to rays from J\; that
belong to the same line passing through a point z is 1

w(s-n,n) = 1. (38)
i=0
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