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ON REAL HYPERSURFACES OF TYPE A IN A
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By
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§1. Introduction.

A complex n-dimensional Kahler manifold of constant holomorphic sectional

curvature c is called a complex space form, which is denoted by Mn{c). A com-

plete and simply connected complex space form consists of a complex projective

space PnC, a complex Euclidean space Cn or a complex hyperbolic space HnC,

according as c>0, c=0 or c<0.

Now, let M be a real hypersurface of an n-dimensional complex space form

Mn(c). Then M has an almost contact metric structure {<j>,£,-q,g) induced

from the Kahler metric and the almost complex structure of Mn{c). Okumura

[7] and Montiel and Romero [6] proved the following

Theorem A. Let M be a real hypersurface of PnC, n^2. // it satisfies

(1.1) A$-$A = Q,

then M is locally a tube of radius r over one of the following Kdhler submani-

folds:

(A) a hyperplane Pn~＼C,where Q<r<jr/2,

(A2) a totallygeodesic PkC (l^k^n―2), where Q<r<7r/2,

where A is the shape operator in the direction of the unit normal C on M.

Theorem B. Let M be a real hypersurface of HnC, n^>2. If it satisfies

(1.1), then M is locally one of the following hypersurfaces:

(Ao) a horosphere in HnC, i.e., a Montiel tube,

(Ax) a tube of a totallygeodesic hyperplane Hn_rC,

(/la) a tube of a totallygeodesic HkC (l^k^n―2).

On the other hand, the following theorem is proved by Maeda and Udagawa

[4] under that the structure vector £is principal and then recently by Kimura
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and Maeda [3] and Ki, Kim and Lee [1] without the above assumption.

Theorem C. Let M be a real hypersurface of Mn{c), c^O, n^2. // it

satisfies

(1.2) 7^=0, g(A$,$)*0,

then M is locally of type A, where 7 is the Riemannian connection on M.

The purpose of this articleis to prove the following generalized property

of Theorem C.

Theorem. Let M he a real hypersurface of Mn(c), c^O, n^2. //it satisfies

(1.3) lsA = a(A<f>-<l>A), 2a^-g(A£, $)

for some non-zero constant a, then M is locally of type A.

,The author would like to thank Professors U-H. Ki and H. Nakagawa for

his valuble suggestions and encouragement during the preparation of this paper.

§2. Preliminaries.

First of all,we recall fundamental properties about real hypersurfaces of a

complex space form. Let M be a real hypersurface of a complex n-dimensional

complex space form Mn(c) of constant holomorphic sectional curvature c, and

let C be a unit normal vector fieldon a neighborhood in M. We denote by /

the almost complex structure of Mn{c). For a local vector fieldX on the

neighborhood in M, the images of X and C under the linear transformation /

can be represented as

JX=0X+v(X)C , JC = -£,

where 0 defines a skew-symmetric transformation on the tangent bundle TM

of M, while fj and £ denote a 1-form and a vector fieldon the neighborhood in

M, respectively. Then it is seen that g(!-,X)―rj(X), where g denotes the Rie-

mannian metric tensor on M induced from the metric tensor on Mn(c). The

set of tensors (0, £,rj,g) is called an almost contact metric structure on M.

They satisfy the following properties:

where / denotes the identity transformation. Furthermore, the covariant deriva-

tives of the structure tensors are given by
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(2.1) 1X$=<I>AX, lx<f,{Y)=y)(y)AX-g(AX, Y)$

for any vector fieldsX and Y on M, where 7 is the Riemannian connection on

M and A denotes the shape operator of M in the direction of C.

Since the ambient space is of constant holomorphic sectional curvature c,

the equations of Gauss and Codazzi are respectively obtained:

(2.2) R(X, Y)Z= j {g(Y, Z)X-g{X, Z)Y

+g(0Y, Z)<j>X-g{<i>X,Z)<j>Y-2g{<l>X, Y)<j>Z＼

+g(AY, Z)AX~g(AX, Z)AY ,

(2.3) VxA(Y)-VYA(X)=j{V(X)$Y-v(Y)0X-2g(0X, Y)$,

where R denotes the Riemannian curvature tensor of M and 1XA denotes the

covariant derivative of the shape operator A with respect to X.

Next, we suppose that the structure vector field£is principal with corre-

sponding principal curvature a. Then it is seen in [2] and [5] that a is con-

stant on M and it satisfies

(2.4)
A0A=j0+-a(A0+0A).

§3. Proof of Theorem.

Let M be a real hypersurface of Mn(c), c^O, n^2. In this section, we

shall give a sufficientcondition for the structure vector field $ to be principal.

First, we assume that £is principal,i.e., At-=a$, where a is constant. Then,

by (2.1) and (2.4), we get

(3.1) lxAR=-jtX-±a(At-tA)X,

from which together with (2.3)it follows that

VsA=-±-a(A$-$A).

Taking account of this property and the assumption of Theorems A and B, we

shall assert the following

Proposition 3.1. Let M be a real hypersurface of Mn{c), c^O, n>2. If

ii satisfies

(3.2) ltA = a(A6-6A)
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for some non-zero constant a, then £is principal.

By the assumption (3.2) and (2.3),it turns out to be

!YA(£)=a{A<f>-<f>A)Y-^-<f>Y .

Differentiating this equation with respect to X covariantly and taking account

of (2.1), we get

(3.3) 1X1YA^)=-1YA{<J>AX)

+ a{lxA(<f>Y)+g{Y, S)A*X-g(AX, Y)A%

-g(AY, %)AX+g(AX, AY)W7XA(X)}

-j{g(Y,$)AX-g(AX,Y)$}

for any vector fields X and Y. Since the Ricci formula for the shape operator

A is given by

(3.4) 1 X1YA{Z)-1 X1YA{Z)=R{X, Y)(AZ)-A(R(X, Y)Z),

we obtain by (2.2),(2.3) and (3.3)

(3.5) 1 xA{<f)AY)-lYA((j>AX)+ a{l xA(<j>Y)-lYA((f>X)}

= -{ag(Y, &+g(AY, &}A*X+{ag{X, &+g(AX, &} A*Y

+ {ag(AY, $)+g(AlY, £)}AX-{ag(AX, &+g(A*X, $)}AY

+ jllagOT, &+g(AY, $)}X-{ag(X, $)+g(AX, f)}F]

+ j{g(AfY, WX-8WX, fflY}-±g(#X, YtfAS

for any vector fields X and Y.

Now, in order to prove the proposition, we shall express (3.5) with the

simpler form. The inner product of (3.5)and $, combining with (2.3) and (3.2),

implies

(3.6) ag({A<f>A(f>-<j>A<f>A)X,Y)

+ a*{g(X, $)g(AY, $)-g(Y, $)g(AX, £)}

+ a{g(X, Rg{A*Y, $)-g(Y, &g(A*X, $)}

+2{g(AX, &g(A*Y, $)-g(AY, $)g(A*X, £)}

=0
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for any vector fields X and Y. Since Y is any vector fields,we get

(3.7) a(A0A0-0A0A)X+ {ag(X, $)+2g(AXr £)}A^

+ {a*g(X,$)-2g(A*X,0}AZ

-a{ag(AX,t)+g(A*X,t-)}$

=0

for any vector field X. On the other hand, taking account of (2.1) and the

skew-symmetry of the transformation <j>,we have

g((A<f>A<f>-<f>A<f>A)X,<j>X)=g{X, &g{A<j>AX, $).

Putting Y―$X in (3.6) and applying the above property, we get

(3.8) ag(X, e{g(A0AX, £)+ag(A$X, $)+g(A*$X, $)}

+2{g{AX, £)g(A>0X, R-g(A0X, e)g(A*X, £)}

=0.

Let To be a distributiondefined by the subspace T0(x)= {u^TxM: g(u, ^(^))=0}

of the tangent space TXM of M at any point x, which is called the holomorphic

distribution. For any vector fieldX belonging to To, (3.8) is simplified as

g(AX, $)g(A*<pX, %)-g{A(j>X, $)g(A*X, 0=0.

Furthermore, this equation holds for any vector fieldX. By polarization, we

have

g{AX, &g(A^Y, &-g{A<j>X, £)g{AW, 6)

+g(AY, {-)g{A*<j>X,&-g(AjY, $)g(A*X, c

=0

for any vector fieldsX and Y. Hence we have

(3.9) g(AX, StyA^+giAfX, &A2t

-g(A*$X, &A£-g(A*X, W>M

=0.

Now, suppose that the structure vector field$ is not principal. Then we

can put At-=a£+f}U, where U is a unit vector fieldin the holomorphic distri-

bution To, and a and /3are smooth functions on M. So we may consider that

the function /3 does not vanish identically on M. Let Mo be the non-empty

open subset of M consisting of points x at which 8(x)^0. And we put AU=
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fii-+yU+dV, where U and V are orthonormal vector fieldsin the holomorphic

distributionTo, and j and d are smooth functionson Mo.

First,we shallassertthe following

Lemma 3.2

(3.10) AU=B$+rU on Mo

Proof. By the forms A£=a£+BU and AU=B%+rU+dV, it turns out to

be

A2$=(a2+p*)£+p(a+r)U+p5V .

Thus we can rewrite (3.9) as

(3.11) {ag(A*fX, R-(fiL%+F)g{Aif>X, SM

+ P{g{A*$X, &-(a-r)g(A$X, &}U-pdg(AtX, $)V

+P{g(A*X, $-(a+r)g(AX, $)}<f>U-pdg(AXf ^V

=0

for any vector fieldX. The inner product of (3.11) and <j>Uimplies

g(A*X, $-(a+r)g(AX, $)-dg(A$X, $)g(V, <pU)=0.

Putting X=V in this equation and calculating directly,we have

8{i+g(v, $uy＼=o.

Accordingly it turns out to be 5=0. This completes the proof. D

Furthermore, by the above proof, we also get

(3.12) A^=(a+r)A$, p2=aT.

By polarization in (3.8), we have

ag{X, $){g(A$AY, %)+ag(A<f>Y, Z)+g(A*0Y, $)}

+ ag(Y, R{g{A<f>AX, $)+ag(A<f>X, $)+g(A*0X, 0}

+2{g(AX, $)g(A*<pY, Q-giAfX, $)g(A*Y, $)}

+2{g(AY, &g{AyX, £)~g(A<f>Y,$)g(A2X, $)}

Putting Y=£, we see
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a{g(A0AX, e+ag(A0X, $)+g(A^X, £)}

+2 {g(A$, &g{A*$X, $)-g(A0X, $)g(A% £)}

=0

for any vector fildX because A$Ag is orthogonal to £. Consequently

aA<{>A£+(a+2a)0A2$+(a2-2a2-2p2)<pA%=Q.

By (3.12), we get

(3.13) A$U+X$U=0, X=a+a+r
■

We remark here that the property a^O is essential to derive the above first

equation.

Next, we give the following

Lemma 3.3. Assume that Azg-＼-kA£=R, where k is constant. Then it satisfies

(3.14) aX2+(iar-2kr+jy-a2r-j(2k+2a+r)=0 on Mo

Proof. Differentiating our assumption Az%+kA^=Q with resect to X and

taking account of (2.1),(2.3) and (3.2), we get

lxA(A£)+aA(A<jt-$A)X+ak(A$-<l>A)X

+ A20AX+kA0AX-^-A0X-~ktpx

=0

for any vector fieldX. The inner product of this equation with any vector

fieldY implies

g{lxA{Y), A$)+ag(A(A0-0A)X, Y) + akg((A0-0A)X, Y)

+g(A*0AX, Y)+kg(A0AX, Y)=jg(A$X, Y)-jkg(0X, Y)

=0.

Exchanging X and Y in the above equation and substituting the second one

from the firstone, we have

g(lxA{Y)-lYA{X), A£)+ag((Az0-2A<f>A+0A*)X, Y)

+g{(A*<j>A+A<j>Ai)X, Y)+2kg(A<!>AX, Y)

-jg((A0+<f>A)X,Y)-jkg(<?>X,Y)

=0
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for any vector fieldsX and Y. Putting X=U and Y=$U in this equation and

taking account of (3.10), (3.12) and (3.13), we can easily show the equation

(3.14). □

Now, we are in position to prove Proposition 3.1.

Proof of Proposition 3.1. By the form A$=a^-＼-^U and (2.1), we have

VsAG)=da($)$+afflU+dp(&U-pA#U+F7eU.

This, combining with the assumption (3.2),implies

da(£)S+dp($)U+P(a+a)$U-pA$U+F7eU=0.

From the inner product of £and U respectively, we get da(!~)=0and <i/3(£)=0,

where we have used that g(7f[/,£)=0, g(A$U, £)=0 and g(A<f>U,£/)=0. Hence

(3.15) (a+a)$U-A$U+^U=0.

By (3.13) and the above equation, we find

(3.16)
I da($)=G, dj8(£)=0.

On the other hand, by making use of (3.2) and (3.10), y=g{AU, U) gives

us to

(3.17) dr($)=Q ･

Furthermore, from (3.13) and (3.16), we get d/L(£)=O. Differentiating (3.13)

with respect to £ covariantly and taking account of (2.1) and the above pro-

perty, we get

VeA($U)-g(AU, &Ae+A$(yeU)+X{-g(AU, £)£+0Ve£/}=0.

By (3.2),(3.12),(3.13) and the firstequation of (3.16), the above equation gives

the following

(3.18) a+a+r=R or a+2a+2r=0.

Since a^O, a+y^Q by the above equation.

Now, we consider the firstcase a+a+r=0 of (3.18). By (3.13) and (3,15),

we get

(3.19) A$U=0, lsU=j<f>U.

By (2.1), we have Vul;=<f>AU=Y$U. This implies [£,£/]=0 by the second equ?-

tion of (3.19). On the other hand, by (2.1),(3.10) and (3.17), we get
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Accordingly, by the Riemannian curvature tensor /?(£,U)t- and (2.2), we have

(j -f }u-dp(U)$U-0^11=0 ,

where we have used (3.12). The inner product of the above equation and <f>U

yields dB(U)=Q. Thus

from which we get

(3.20) F7aU=(r'―jyU, dj8(i/)=0.

Differentiating A$=a$-h^U with respect to any vector field X covariantly

and taking account of (3.2), we get

a(A0-0A)X-j0X+A<l>AX-da(X)$-a$AX--dp(X)U--pr7xU=O.

By taking the inner product of this equation with £ and U respectively, we get

(3.21)

(3.22)

da(X)=aBg(6X, U),

dftX)=(ar-j)gWX,U)

where we have used (3.10) and the firstequation of (319). Because of /32―ay

it is easily seen that

2fidp(X)=yda(X)+ady(X),

from which together with (3.21) and (3.22) it turns out to be

2(ar-j)gyX, U) = air-a)g{4>X, U)

for any vector fieldX. This implies 2a2+c―0. Hence, by (3.14), we get y=0,

where we have used that X=a+a+y=0 and k ―a. Thus we have fi=0 by

(3.12), a contradiction.

Lastly, we suppose that a+2a+2p=0.

On the other hand, putting X=$ and Y = U in (3.5) and from the inner

product of f and U respectively, we obtain

J PgtyVuU, U)=(a+r)(a+a+r)+T(a+a)+j,

1
P(a+a+2r)g(0VuU, U)=:a(a+2r)(a+a+r)+72(a+a)-j(a+a),
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where we have used (3.2),(3.10),(3.12),(3.13),(3.16) and (3.17). Combining of

the above two equations, we get

(a+≪+r)(a≪+2ar+2ar+2r2+|-)=0

By our assumption, we have a2=c. Therefore, by (3.14), we obtain a = 0,

where we have used that a+2a+2y=0 and k―l―a/2. Hence j8=0, a contra-

dition.

These mean that the subset Mo is empty and hence the structure vector

field£is principal. □

Remark. The equation (3.2)is equivalent to

Xs(h + ag)=0,

where X$ is the Lie derivative with respect to £ and

any vector fieldsX and Y.

h(X, Y)=g(AX, Y) for

The main theorem is proved by Proposition 3.1, the remark stated firstin

this section and Theorems A and B.
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