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ON REAL HYPERSURFACES OF TYPE A IN A
COMPLEX SPACE FORM (I)

By

Yong-Soo Pyo

§1. Introduction.

A complex n-dimensional Kéhler manifold of constant holomorphic sectional
curvature ¢ is called a complex space form, which is denoted by My,(c). A com-
plete and simply connected complex space form consists of a complex projective
space P,C, a complex Euclidean space C™ or a complex hyperbolic space H,C,
according as ¢>0, ¢=0 or ¢<0.

Now, let M be a real hypersurface of an n-dimensional complex space form
M,(c). Then M has an almost contact metric structure (¢, & 7, g) induced
from the Kdhler metric and the almost complex structure of M,(¢). Okumura
[77 and Montiel and Romero [6] proved the following

THEOREM A. Let M be a real hypersurface of P,C, n=2. If it satisfies
(1.1) Ap—¢pA=0,

then M is locally a tube of radius r over one of the following Kdhler submani-
folds:

(A) a hyperplane P,_,C, where 0<r<x/2,

(As) a totally geodesic P,C (1=k=<n—2), where 0<r<zn/2,
where A is the shape operator in the direction of the unit normal C on M.

THEOREM B. Let M be a real hypersurface of H,C, n=2. If it satisfies
(1.1), then M is locally one of the following hypersurfaces:

(4, a horosphere in H,C, i.e., a Montiel tube,

(A,)) a tube of a totally geodesic hyperplane H,_.C,

(Ay) a tube of a totally geodesic H,C (1=k<n—2).

On the other hand, the following theorem is proved by Maeda and Udagawa
[4] under that the structure vector & is principal and then recently by Kimura
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and Maeda [3] and Ki, Kim and Lee [1] without the above assumption.

THEOREM C. Let M be a real hypersurface of M,(c), ¢#0, n=2. If it
satisfies

(1.2) VeA=0,  g(A¢ &)=0,

then M 1s locally of type A, where V is the Riemannian connection on M.

The purpose of this article is to prove the following generalized property
of Theorem C.

THEOREM. Let M be a real hypersurface of M,(c), ¢c#0, n=2. If it satisfies

(1.3) VeA=a(Ap—pA), 2a+—g(AE &

for some non-zero constant a, then M is locally of type A.

_The author would like to thank Professors U-H. Ki and H. Nakagawa for
his valuble suggestions and encouragement during the preparation of this paper.

§2. Preliminaries.

First of all, we recall fundamental properties about real hypersurfaces of a
complex space form. Let M be a real hypersurface of a complex n-dimensional
complex space form M,(c) of constant holomorphic sectional curvature ¢, and
let C be a unit normal vector field on a neighborhood in M. We denote by J
the almost complex structure of M,(c). For a local vector field X on the
neighborhood in M, the images of X and C under the linear transformation J
can be represented as

where ¢ defines a skew-symmetric transformation on the tangent bundle TM
of M, while 5 and ¢ denote a 1-form and a vector field on the neighborhood in
M, respectively. Then it is seen that g(§, X)=»(X), where g denotes the Rie-
mannian metric tensor on M induced from the metric tensor on M,(c). The
set of tensors (@, & 7, g) is called an almost contact metric structure on M.
They satisfy the following properties:

¢2:’ [+W®E’ ¢E:Or 77(5):1;

where I denotes the identity transformation. Furthermore, the covariant deriva-
tives of the structure tensors are given by
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(2.1) Teé=0¢AX, Vi )=n)AX—g(AX, V)3

for any vector fields X and ¥ on M, where V is the Riemannian connection on
M and A denotes the shape operator of M in the direction of C.

Since the ambient space is of constant holomorphic sectional curvature c,
the equations of Gauss and Codazzi are respectively obtained:

2.2) RX, V)Z= % gV, 2)X—g(X, 2)Y
+5(Y, Z)pX—g(¢pX, Z)pY —2g(¢X, Y)$Z}
+g(AY, 2)AX—g(AX, Z2)AY ,

(2.3) VxAY)—Vr AX)= % {n(X)gY —n(Y )X —2g(¢ X, Y )&},

where R denotes the Riemannian curvature tensor of M and VyA denotes the
covariant derivative of the shape operator A with respect to X.

Next, we suppose that the structure vector field £ is principal with corre-
sponding principal curvature . Then it is seen in [2] and [5] that « is con-
stant on M and it satisfies

@2.4) /1¢A=%¢+%a(/l¢+¢/l).

§3. Proof of Theorem.

Let M be a real hypersurface of M,(c), ¢#0, n=2. In this section, we
shall give a sufficient condition for the structure vector field & to be principal.
First, we assume that & is principal, i.e., Aé=aé, where « is constant. Then,
by (2.1) and (2.4), we get

1
3.1 VrA@)=— L $X—5a(Ap—g X,
from which together with (2.3) it follows that
VeA = —%a(AqS—qS/l).

Taking account of this property and the assumption of Theorems A and B, we
shall assert the following

PROPOSITION 3.1. Let M be a real hypersurface of M,(c), c#0, n=2. If
il satisfies

(3.2) V:A=a(A¢—gA)
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for some non-zero constant a, then & is principal.
By the assumption (3.2) and (2.3), it turns out to be
Ty A@=a(Ag—$AY — 4V .
Differentiating this equation with respect to X covariantly and taking account
of (2.1), we get
3.3) VxVrA§)=—VrA(pAX)
+a{VxA@Y)+gY, HA’X—g(AX, Y)AE

—g(AY, ) AX+g(AX, AY)E—gVx A(Y)}

4

7 18, HAX—g(AX, Y)E}

for any vector fields X and Y. Since the Ricci formula for the shape operator
A is given by

(3.4) Vv A(Z)—V Ny A(Z)=R(X, YAZ)—AR(X, Y)Z),

we obtain by (2.2), (2.3) and (3.3)

(3.5) Vx APAY )=y AP AX)+a {(Vx A(gY)—Vy A9 X))
=—{ag¥, §)+g(AY, O A’X+{ag(X, H+g(AX, HI AY
+{ag(AY, §)+g(A%Y, H AX—{ag(AX, §)+g(A’X, H} AY

+%[{ag(Y, &+g(AY, O X—{ag(X, §+g(AX, §}Y]

+ Ag(AGY, O9X —g(AGX, Y} — 58X, Y)gAE

for any vector fields X and Y.

Now, in order to prove the proposition, we shall express (3.5) with the
simpler form. The inner product of (3.5) and &, combining with (2.3) and (3.2),
implies
3.6) ag(ApAg—pAG AKX, ¥)

+a*{g(X, §g(AY, §—g(Y, §g(AX, &)}

+a{gX, £)glA%, §—g’, §g(A*X, &)}

+2{g(AX, &)g(A%Y, &§)—g(AY, §)g(A’X, &)}
=0
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for any vector fields X and Y. Since ¥ is any vector fields, we get
3.7 a(APAP—PpAPAIX+{ag(X, £)+2g(AX, &)} A%
+{a"g(X, §—2g(AX, &)} Aé
—alag(AX, §)+g(A%X, &)}
=0

for any vector field X. On the other hand, taking account of (2.1) and the
skew-symmetry of the transformation ¢, we have

g(ApAp—9 AP A)X, X)=g(X, £)g(APAX, §).
Putting ' =¢X in (3.6) and applying the above property, we get

3.8) ag(X, §){g(APAX, &)+ag(AgX, §)+g(A%*X, &)}
+2{g(AX, §)g(A’PX, §)—g(AdX, &)g(A%X, &)}
=0.
Let T, be a distribution defined by the subspace To(x)={ucT.M: g(u, &x))=0}
of the tangent space T.M of M at any point x, which is called the holomorphic
distribution. For any vector field X belonging to T,, (3.8) is simplified as
g(AX, §)g(A* X, &)—g(AgX, £)g(A*X, £)=0.

Furthermore, this equation holds for any vector field X. By polarization, we
have
g(AX, §g(A’Y, §)—g(AgX, &)g(A%Y, &)

+a(AY, £)g(ApX, §)—g(AY, §)g(A’X, §)
=0
for any vector fields X and Y. Hence we have
3.9 8(AX, HP A+ g(AgX, §)A%
—g(A’¢X, HAE—g(A'X, E)p A
=0.

Now, suppose that the structure vector field & is not principal. Then we
can put Aé=aé+BU, where U is a unit vector field in the holomorphic distri-
bution T, and a and 8 are smooth functions on M. So we may consider that
the function B does not vanish identically on M. Let M, be the non-empty
open subset of M consisting of points x at which B(x)#0. And we put AU=
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BE+7U+48V, where U and V are orthonormal vector fields in the holomorphic
distribution 7T, and 7 and 6 are smooth functions on M,.

First, we shall assert the following

LEMMA 3.2.
(3.10) AU=B&+rU on M, .

PrROOF. By the forms Aé=aé+BU and AU=BE4-yU+0V, it turns out to
be

A% =(a*+ B¢+ Bla+U+BoV .
Thus we can rewrite (3.9) as
(3.11) {ag(AX, §)—(a’+p1g(APX, &)} E
+B{g(A%X, &)—(a—1)g(AdX, O U—Bog(ApX, )V
+B{g(A%X, & —(a+1)g(AX, &)} pU—Bog(AX, E)¢V
=0
for any vector field X. The inner product of (3.11) and ¢U implies
g(AX, &)—(a+7)g(AX, §)—dg(AgX, §g(V, $U)=0.
Putting X=V in this equation and calculating directly, we have
§{1+g(V, pUY*=0.

Accordingly it turns out to be 6=0. This completes the proof. []

Furthermore, by the above proof, we also get

(3.12) Ag=(a+7)AE, f=ar.

By polarization in (3.8), we have

agX, O){g(APAY, §)+ag(AgY, £)+g(A’Y, &)}
+ag(Y, §){g(ApAX, &)+ag(AdX, §)+g(A’¢X, &)}
+2{g(AX, §)g(A’Y, §)—g(AdX, £)g(A%Y, &)}
+2{g(AY, &)g(A*$X, &)—g(AdY, £)g(A’X, &)
=0.

Putting Y =&, we see
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a{g(AgAX, H)+ag(AgX, §)+g(A%X, &)}
+2{g(A¢, £g(A’PX, §)—g(ApX, &)g(A%, &)}
=0
for any vector fild X because A¢A¢ is orthogonal to & Consequently
a AP A&+ (a+2a)p A6+ (a*—2a° —2BH)P AE=0 .
By (3.12), we get
(3.13) ApU+29U=0, A=a+ta+y.
We remark here that the property a+0 is essential to derive the above first
equation.
Next, we give the following
LEMMA 3.3. Assume that A*6+kAE=0, where k is constant. Then it satisfies

c

(3.14) a22+(4ay—2kr+ 1

)Z—-a27~%(2k+2a+7’)=0 on M,.

Proor. Differentiating our assumption A26+kA&=0 with resect to X and
taking account of (2.1), (2.3) and (3.2), we get

Ty A(AE)+aA(Ag—d )X+ ak(Ag—p A)X
+APAX+RAGAX— %AgﬁX— —2 kg X
=0

for any vector field X. The inner product of this equation with any vector
field Y implies

g(VxAY), Af)+ag(A(Ag—gA)X, Y)+akg(Ap—¢A)X, Y)

+AGAX, V) +hg(APAX, V=T g(A$X, V)~ kg(@X, )
=0.

Exchanging X and Y in the above equation and substituting the second one
from the first one, we have

gV x AY)—VyAX), A§)+ag((A*p—2A¢A+¢ANX,Y)
+g(A*pA+AGADX, Y)+2kg(APAX, Y)

[4

> kg@X, Y)

— S 8(Ad+pAX, V)~
=0
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for any vector fields X and Y. Putting X=U and Y=¢U in this equation and
taking account of (3.10), (3.12) and (3.13), we can easily show the equation
(3.14). O

Now, we are in position to prove Proposition 3.1.

PROOF OF PROPOSITION 3.1. By the form Aé=a&+BU and (2.1), we have
VeA®)=da(@)é+aBpU~+dBEU—BASU+BVU .
This, combining with the assumption (3.2), implies
da(@)E+dpEU+Bla+a)pU—BASU+BVU=0.

From the inner product of & and U respectively, we get da(&§)=0 and dB(§)=0,
where we have used that g(V.U, §)=0, g(4¢U, £)=0 and g(Ag¢U, U)=0. Hence

(3.15) (a+a)pU—AdU+NU=0.

By (3.13) and the above equation, we find
VeU=—Q2a+2a+7)9U ,

{ da(®)=0, dp&)=0.

On the other hand, by making use of (3.2) and (3.10), y=g(AU, U) gives
us to

(3.17) dy(é)=0.

Furthermore, from (3.13) and (3.16), we get dA(§)=0. Differentiating (3.13)
with respect to & covariantly and taking account of (2.1) and the above pro-

(3.16)

perty, we get
T AGU)—g(AU, OAE+AGTU)+2{—g(AU, HE+$TU} =0.

By (3.2), (3.12), (3.13) and the first equation of (3.16), the above equation gives
the following

(3.18) a+a+r=0 or a+2a+2r=0.

Since @#0, a+7r=+0 by the above equation.
Now, we consider the first case a+a+y=0 of (3.18). By (3.13) and (3,15),
we get

(3.19) APU=0, VU=rgU .

By (2.1), we have Vyé=¢pAU=ygpU. This implies [§, U]=0 by the second eque-
tion of (3.19). On the other hand, by (2.1), (3.10) and (3.17), we get
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VuVef=dBU)gU—Bré+ oVl ,
VeVpé=—Bré—rU .

Accordingly, by the Riemannian curvature tensor R(¢, U)é and (2.2), we have
(57 )U—dBWIU—BgTaU=0,

where we have used (3.12). The nner product of the above equation and ¢U
yields df(U)=0. Thus

c —
(Z —rz)U— BT, U=0,
from which we get
(3.20) ,BVUU:(72~%)¢U, dBU)=0.

Differentiating Aé=a&-+pU with respect to any vector field X covariantly
and taking account of (3.2), we get

a(Ap—g A)X— —Z-in—i—A;bAX—da(X){:—aqSAX—-d,B(X)U—ﬂVXUzo.
By taking the inner product of this equation with & and U respectively, we get

(3.21) da(X)=afBg(¢X, U),
(3.22) dpx) =(ar—)e@X, U),

where we have used (3.10) and the first equation of (3'19). Because of B*=ay,
it is easily seen that

2pdBX)=rda(X)+adrX),

from which together with (3.21) and (3.22) it turns out to be
C 7
2 ar—5)e@X, U)=ar—a)g@X, U)

for any vector field X. This implies 2a*+c¢=0. Hence, by (3.14), we get y=0,
where we have used that A=a-+a+47y=0 and k=a. Thus we have =0 by
(3.12), a contradiction.

Lastly, we suppose that a-+2a-+2r=0.

On the other hand, putting X=¢& and Y=U in (3.5) and from the inner
product of & and U respectively, we obtain

{ Bg@ToU, U)=(a+1e+a+7)+ra+a)+,
Bla+a+2ng@WU, U)=ala+2(a+a+1)+1a+a)— 5 (a+a),
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where we have used (3.2), (3.10), (3.12), (3.13), (3.16) and (3.17). Combining of
the above two equations, we get

(a+a+r)(aa+2¢z7’+2ar+2r2+ %):0 .

By our assumption, we have a*=c¢. Therefore, by (3.14), we obtain a=0,
where we have used that e¢+2a+2y=0 and k=4A=a/2. Hence =0, a contra-
dition.

These mean that the subset M, is empty and hence the structure vector
field & is principal. O

REMARK. The equation (3.2) is equivalent to
Leh+ag)=0,

where L, is the Lie derivative with respect to & and h(X, Y)=g(4X,Y) for
any vector fields X and Y.

The main theorem is proved by Proposition 3.1, the remark stated first in
this section and Theorems A and B.
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