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The notion of quasi-hereditary algebras was introduced by E. Cline, B.
Parshall and L. Scott [3, 4, 8 and 9]. A quasi-hereditary algebra is defined by
a chain of particular idempotent ideals, and induces a sequence of recollements
of their derived categories. In case A is a semiprimary ring, V. Dlab and
C.M. Ringel [5] studied the notion of a quasi-hereditary ring. The notion of
recollement was introduced by A.A. Beilinson, J. Bernstein and P. Deligne [2].
In [7] we studied localization of triangulated categories and derived categories,
and showed that recollement is equivalent to bilocalization.

Recall that an ideal / of a ring A is called idempotent if /=AeA for some
idempotent ¢ of A: in particular, I is a minimal idempotent ideal provided that
¢ is primitive. An ideal J of A is said to be a heredity ideal of A if J*=],
J(Rad A)J=0, and J, is projective. Then, in case of A being a semiprimary
ring, J is a heredity ideal if and only if there exists an idempotent ¢ of A
such that: (1) J=A4eA4; 2) AeRoq.eA=AeA; (3) eAe is a semisimple ring [5,
9]. In this case, E. Cline, B. Parshall and L. Scott showed that {D°(Mod A/ AeA),
D*Mod A), D"(Mod eAe)} is recollement [9]. ‘

In this note, we give necessary and sufficient conditions for {D*(Mod A/AeA),
D'Mod A), D'(Mod eAe)} to be recollement in case of A is left noetherian or
semiprimary. In particular, we study when a minimal idempotent ideal satisfies
recollement conditions. Throughout this note, we assume that all rings have
unity and that all modules are unital. For a ring A4, Mod A (resp. A-Mod) is
the category of right (resp., left) A-modules, and mod A (resp., A-mod) is the
category of finitely presented right (resp., left) A-modules.

The author would like to thank M. Hoshino for helpful suggestions and
discussions.

THEOREM 1. Suppose A is a left noetherian or semiprimary ring. Let e be
an idempotent of A. The following assertions are equivalent:
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1)y {D*Mod A/Aed), D*Mod A), D*Mod eAe))} is recollement,

(2) (i) Torf(A/AeA, AJAeA)=0 for all i>0; (ii) {(a) or (¢)} and {(b) or (d)}.

3y () Exti(A/AeA,, A/AeA)=0 for all i>0; (i) (@) and {(b) or (d)},

4) () Exty(4A/AeA, 4A/AeA)=0 for all i>0; (i) (b) and {(a) or (c)},

) () AeQeaceA=AeA and Tori*“(Ae, eA)=0 for all i>0; (ii) {(a) or (¢)}
and {(b) or (d)},

where (a) pdim A/AeA <co, (b) pdim 4A/AeA< o, (¢) pdim Ae, ,<co, and (d)
pdimMeeA<OO.

ProoF. First, we show that if A is left noetherian or semiprimary, then
we have wdim,A/AeA=pdimsA/AeA and wdim,.eA=pdim...ed. If A is
left noetherian, then ,4e¢A is a finitely generated left A-module. Therefore
we have an epimorphism 4A4e™—, 4eA for some n=N. This implies that e¢A
is a finitely generated left eAe-module. By [1, Theorem 4], we have
wdim A/ AeA=pdim,A/AeA and wdim,,.eA=pdim,,eA. If A is semiprimary,
then we have also same results by [1, Proposition 7]. According to [7, Sec-
tion 2 and 3], it suffices to show that the condition (i) in (2)-(5) hold, in order
to show that (1) implies the other assertions. Conversely, if the functor
D*(Mod A/AeA) — D*(Mod A) is fully faithful, then 0— D*(Mod A/AeA)—
D*(Mod A)— D*(Mod eAe)—0 is exact in the sense of [2]. According to [7,
Section 23, (a) and (b) are equivalent to (c) and (d), respectively. And (ii) of
the other assertions imply that {D*(Mod A/AeA), D*(Mod A), D*(Mod eAe)} is
recollement (see [7, Sections 2, 3 and Proposition 5.9] for details).

1H=(2): D*Mod A/AeA)y— D*(Mod A) has a left adjoint, say G. Then G=
L*(—®4A/AeA) (see [7, Section 3] or [8, Proof of (2.1) Theorem]). There-
fore we have the following isomorphism in D*(Mod A/AecA):

A/Ae A= L (—®,A/AeAYA/AeA).
[n particular, we have
Tor4(A/AeA, A/AeA)=0 for all />0.

(2)=(1): According to [7, Proposition 5.3] or [8, Proof of (2.1) Theorem],
we have a fully faithful functor

D*(Mod A/ AeA) —> D*(Mod A).

e5): See [8, (2.1) Theorem] and [9, Theorem 2.1].
(I)>(3): This is trivial by the following isomorphisms:
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EXtﬁ(A/AeAA, AA/AZC/lA)EHOH]Db(MOd A)(A/AQAA, A/fleAA[l])
22Hompovmod araear(A/ AeAs, A/ AeAxli])
=0 for all 7>0.

(3)=(1): By Rickard’s results there exists a fully faithful functor
D-Mod A/AeA) - D~Mod A), in particular, a fully faithful functor
D*(Mod A/ AeA)— D*(Mod A) (see [6], [10] and [11]).

4)=(2): Considering (3)=>(1) in case of the left module categories (we need
not assume that A is right noetherian), {D°(A/AeA-Mod), D*(A-Mod), D*(eAe-
Mod)} is recollement. As well as (1)=(2), we get Tor#(A/AeA, A/AeA)=0 for
all 7>0.

(2)=4): Since the condition (2) is symmetric, {D*(A/AeA-Mod), P'(A-Mod),
D'(eAe-Mod)} is recollement (we need not assume that A is right noetherian).
well as (1)=(3), we get Exti(,A/AeA, 4A/AeA)=0 for all i>0.

REMARK. (2)-(5) in the above theorem are also equivalent for right noeth-
erian rings.

Recall that a ring A is called a noetherian algebra if its center Z(A) is a
noetherian ring, and A is a finitely generated Z(A)-module.

PROPOSITION 2. Let A be a noetherian algebra, and e an idempotent. The
following assertions are equivalent:

(1) {D’(mod A/AeA), D*(mod A), D(mod eAe) is recollement,

(2) {D*Mod A/AeA), D?Mod A), D°(Mod eAe)} is recollement.

PrROOF. In general, if R is a right coherent ring, then we have
D’ oa xMod R)= D*(mod R). Also, for a given Xemod R, if Ext 4(X, ¥V)=0 for
all 7>n and Y <mod R, then pdim Xz<n.

()=(2): Let Fand G be right and left adjoint functors of D’(mod A/AeA)
— D*(mod A), respectively. Since A is noetherian and A/AeA is a finitely
generated A-module, we have G=L(—R4A/AeA), and Tor$(A/AeA, A/AcA)
=0 for all />0 as well as (1)=(2) in the proof of theorem 1. Moreover
Tor4(mod A, A/AeA)=0 implies Tor4(Mod 4, A/AeA)=0 for all 7, in particular,
pdim 4A4/AeA< . For given Xemod A, we have the following isomorphisms :

Exti(A/AeA, X)=Hompomod 45(G(A/AeA), X[1])
=HoMpsmod 4/4ea>(A/ Ae A, FX[i])
=HYFX[7]) for all 7.
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Since FX[7] is contained in D°(mod A), we get pdim A/AeA < oo. Hence
{D*(Mod A/AeA), D’Mod A), D*(Mod eAe)} is recollement by Theorem 1.

(2)=(1): Let E and H be right and left adjoint functors of D*(Mod A/AeA)
—D’(Mod A), respectively. It is clear that D°(mod A/AeA)— D°(mod A) has a
left adjoint. Since A is a noetherian algebra, and A/AeA is finitely generated,
Exti(A/AeA, X) is a finitely generated A/AeA-module for all Xemod A. Then
it is easy to see that Im H|psumoq > iS contained in D04 4«(Mod A). By the
above equivalence, D’(mod A/AeA)— D’(mod A) has a right adjoint. We are
done by Theorem 1.

Let A be a left (or right) noetherian or semiprimary ring. An ideal I of
A is called a recollement ideal of A if /I=AeA with some idempotent ¢ of A
which satisfies the equivalent conditions (2)-(5) of Theorem 1. The next pro-
position is useful to exhibiting examples of recollement ideals.

PROPOSITION 3. Let R be a commutative ring, and A and B R-algebras.
Suppose A is a left or right noetherian ring and B is a finitely generated pro-
jective R-module. If 1 is a recollement ideal of A, then IQrB is a recollement
wdeal of ARgrB.

PrROOF. First, AQrB is a left or right noetherian ring, because B is a
finitely generated R-module. Since B is R-projective, we have pdim />
pdim I@®rBaegrs and pdim p/=pdimue,s/@QrB. And let P- be a projective re-
solution of A/I. Then we have

Tor{®r*(A/IQrB, A/IQrB)=H(P - Q@rBQasrsA/IQrB)
=H,(P-®4A/ Q=B
=Tor{(A/I, A/I)QrB
=0  for all 7>0.

LEMMA 4. If A is a local semiprimary ring, then pdim M is 0 or oo, for
all modules M.

PROPOSITION 5. Suppose A is a semuprimary ring. Let [ be a minimal
idempotent ideal of A. Then I is a recollement ideal of A if and only if I s
projective as both a left and right A-module.

ProoF. If I=AeA is projective as both a left and right A-module, then
it is easy to see that A/AeA satisfies the condition (2) of Theorem 1. Con-
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versely, if /=Ae¢A is a recollement ideal, then AeA has finite projective dimen-
sion. Let P- be a projective resolution of Ae as right eAe-modules. Then
given any left A-module X, we get

Torf(AeA, X)=Tor{(Ae®.aceA, X)ZH (P Resee AR 4X)
=Toré¢%(Ae, eX).

For every left eAe-module Y, there exists a left A-module X such that Y is
isomorphic to ¢eX. Then Ae has finite projective dimension in Mod eAe. Since
I is a minimal idempotent ideal of A, eAe is a local semiprimary ring. There-
fore Ae is a projective right eAe-module by Lemma 4. Hence AeA is a projec-
tive right A-module by the above isomorphisms. Similarly, AeA is also a pro-
jective left A-module.

According to the above proposition, it suffices to find idempotent ideals
which are two-sided projective, when we want to find minimal recollement
ideals. But the following proposition implies that heredity ideals are best pos-
sible in case of rings of finite global dimension.

PROPOSITION .6 Suppose A is a semiprimary ring of finite global dimension.
Let I be a minimal z'demj)otenz‘ ideal. Then I is a recollement ideal if and only
if I 1s a heredity ideal.

ProoF. Let I be AeA with some idempotent ¢ of A, P- a projective re-
solution of eAe/eje as right eAe-modules. The P-®.s.cA is a projective re-
solution of eA/eJeA as right A-modules, where J is the radical of A. There-
fore, we get

Toré4(eAe/e]e, eX)=H (P -Renee AR X)

=Tord(eA/eJeA, X)

According to assumption, pdim eA/efeA<oo, and pdim eAe/eJe<<co. Since ede
is a local semiprimary ring, eAe/eje is a projective eAe-module by Lemma 4.
Hence e¢fe=0.

ExaAMPLES. (a) Let A be a finite dimensional algebra over a field % which
has a quiver with relations:
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with a’=e*=7B8=0. Then Ae,A is projective as both sides. Moreover, e¢,Ae,
is isomorphic to £[x]/(x?) as a ring, and A/Ae;A has the following quiver
with relations:

g
7 5£)
2 3 4,

with ¢?=0. Hence we have pdim A=gldim ¢, Ae,=gldim A/Ae;A=oo. .
(b) Let A be a finite dimensional algebra over a field £ which has a quiver
with relations:

B 0
GS?TS)
1 2 3,

with Ba=0r=p*=0°=0. Then A(e,+e,)A is a recollement ideal. But Ae,A is
not a recollement ideal because of pdim Ae,A =co.
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