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ON PRIME TWINS IN ARITHMETIC PROGRESSIONS

By

Hiroshi Mikawa

1. Introduction.

Let q and a be coprime positive integers. Put, for a non-zero integer k,

＼(x;q, a, 2k)= 2 A{m)A{n)

o<m,n&xm―n=2k
n=a(mod g)

where A is the von Mangoldt function. It is expected that, provided {a+2k,q.

where

Let

H{x;q, 2k)=R Jj(

plqk＼
P>2

P-1＼ x-＼2k

P-2J' <p{q)

R==2n(1-7^nr)

E(x;q, a, 2k)=
f W-H, if (a+2k, g)=l

W. otherwise.

It is well known that E(x; 1, 1, 2k) is small in an averaged sense over k.

In 1961 A.F. Lavrik [5] showed that, for any A, B>0,

S ＼E(x;q, a, 2k)＼<x2(log x)~A
0<2*s.r

uniformly for {a, q)=l and <7^(log x)B. Recently H. Maier and C. Pommerance

considered the inequality

S max 2 ＼E{x; q, a, 2k)＼<x＼log x)~A,
qsQ (a,g)=l 0<2Asx

which may be regarded as an analogue to the Bombieri-Vinogradov theorem.

They [3] showed that the above is valid for Q^xB with some small ≪5>0,and

applied their formula to a problem concerned with gaps between primes. Later

A. Balog Til generalized this to the case of prime multiplets,and extended the
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range of validity,in the general case, to Q^x1/3(log x)~B with some B = B(A)

>0.

In this paper we make a further improvement, only for the simplest case,

so as to give a close analogue to the Bombieri-Vinogradov theorem.

Theorem. Let A>Q be given. There exists B = B(A)>0 such that

max 2 ＼E(x;q,a,2k)＼ x＼＼ogx)-A
gsx1/2(log x*)-B (a,g) = l 0<2isj;

where the implied constant depends only on A.

Our argument is, of course, based upon the bound for E(x; 1, 1, 2k) and

the Bombieri-Vinogradov theorem. In contrast to [1, 3] we employ a variant

of Ju. V. Linnik's dispersion method. We use a standard notation in number

theory, and, for simplicity, write X ―log x.

I would like to thank Professor S. Uchiyama for encouragement and careful

reading of the original manuscript.

2. Proof of Theorem.

We call a remainder R{x;q, a) "admissible", if for any ^4>0 there exists

B=B(A)>0 such that

S q max ＼R(x; q, a)＼ x3X~A.

An admissible remainder is abbreviated to "A.R." in a formula.

We firstconsider the following quantity:

(2.1) S)(x＼qta)= £ ＼E(x;q,a)＼2
0<|2&ISX

=W-2V+U ,

where

(2.2)

and

V
c

W= 2 ( 2

m―n=2k
n = a(mod g)

s

0< 12k IS

a + ?.k, q)

X

= 1

u-(―

(*-i2*i)n(

p ＼qk＼
P>2

X
=1

A{m)A{n)＼*

) 2 A{m)A{n)

/ tn.nix
m-n=2*
n = a(mod q~>

)■

p-

1

2

(x-＼2k＼fn(

piqk＼
P>2

til
p-2



2 1

0<T2kiX
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In sections 3, 4 and 5. we shall show

(2.3)

(2.4)

and

(2.5)

where

with

(s

<(

W£T+A.R.,

V = T+A.R.,

U = T+A.R.,

T=2
Uq) x

3

379

<p＼q)

*>=n(i+^)n(^3)

Then, because of (2.1), W(x;q, a) is admissible. By Cauchy's inequality, we

max 1] ＼E(x; g, a)＼)

)(S? max
2 |£(*;?, fl)l2)

C xX ･ S q max 3){x; q, a)

for any A>0 and Q£x1/2X-B with some 5 =
J6(^l)>0. Thus, apart from the

verificationof (2.3),(2.4) and (2*5), we get Theorem.

In order to prove (2.3) and (2.4), we appeal to the following Lemmas.

Lemma 1 follows from [4] immediately. Lemma 2 is a minor modification of

the Bombieri-Vinogradov theorem, see ＼2,sect. 281.

Lemma 1. For any .4>0 we have

S T(2k)＼E(x;l,l,2k)＼<x*£-A

0<2kSX

where the implied constant depends only on A.

f.KMMA ?.. Put

E1(x;q,a)= 2 A(n)--^.

nix, w(Q)n=a(.modq) r"

Then, for any A>0, there exists B―B(A)>0 such that
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2] T3(q) max max ＼EM; q, a)＼<xX'A
qSxl/2£-B (a,g) = l t<,x

where the implied constant depends only on A

3. Estimation of W.

In this section we prove (2.3). Expanding the square, we have

W= S 2 S A(m1)A(n1)A(m2)A(n2)
0<l2fcls.rmi,ni,m2,'"'2~x
7711~ni―7n2―7i2~2k
n1=n2^a(q)

≫l,ni.m.2,n2&xm1-n1=m2-ra2

The above condition m1 ―ni= Tn2―n2 is equivalent to ni―n2―mx ―m,%. Write

r/―nl―n2:=:ml―m2. Then #|r', since ni = n2(q). The terms with r'= l(2) or

r'=0 contribute

which is admissible trivially. On rewriting r'―2r, we have

0<l2r ＼ix ＼
g!2r

=2 S (

0<2rsi＼
g|2r

2

nltn2;
nl~n2=2r
iip≫2=a (g)

A(nM{nS)( S A{m,)Aijnt))+A.R.

m1~77i2=2r

S A(m)A(n))W(x ; 1, 1, 2r)+A. R.

m ―n=2r
m=n = a(.q)

We now replace W by H. Then the resulting error is

≪ XI ( 2 A(m)A(n))＼E(x;l,l,2r)＼

0<2rsx＼ m,n£x /q!2r m―n=2r

which is admissible, since

by Lemma 1. Hence

S<7- S --£2|E(*;1, 1, 2r)|

xX2 S r(2r)|£(x; 1, 1, 2r)|
0<2r$x

xaX~A

W<,2<5 2 (x-2r)n(
0<2rSx p＼r＼0<2rSx
q!2r P>2

) 2 A(m)A(n)+A.R..

I m, nix
m―n=2r

p-1

p-2

Let ≪! denote the multiplicative completion of <pi(p)=p―2. Then



where

(3.1)

(3.2)
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n(

B>2

a―

G> =

23

0<2rS≪
q＼2r

d

£
xD

(d,2)=l

p-

<p

min (y, x ― n)

<p([2d, qj)

)=
s

d＼r
d,2)=l

s
rsi

A(n)
n<m

A

A(m)
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P-2

Since y>i(/>)^(l/2)(/>-l)for p'^3, we see

Here D=9+A. This contributes to W

0<2rix
gl2r

which is also admissible, since

x*X3-D

.x2X2~D.

By partialsummation, we thereforehave

9>i(

d)

d)

Xl-DT3(r)

q

X2

qsx 0 0<2r<x
g!2r

(r)

r,(r)r(r)

W^2<s[Xa)(x, y;q, a)dy+A.R.,
Jo

We proceed to consider co. Since (d, 2)=1, the condition m―n―2r and d＼r

is equivalent to m=n(2d). Thus,

s

Smin(x, n+y)

The above simultaneous congruences are soluble if and only if n = a ((2d, q)),

which is satisfied. Moreover, ^2(<i)=l and (d, 2)=1 imply (2d/(2d, q),g)=l.

Hence, if (n, 2d/(2d, q))=l, then m is restricted by a reduced residue class to

modulo [2d, q~＼.The terms with (n, 2d/(2d, q))>l contribute negligibly. There-

fore the innermost sum of (3.1)is equal to

+ 0( max ＼Etf-, [2d, q], b)＼)

The contribution of the 0-term is admissible. Actually, Lemma 2 yields that
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2<7

q&Q
(d, 2>=l
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^(
S An)) max | El(t; IZd, q＼,b)＼

x2X S ( 2 l) max ＼Erit;c, b)＼

<x2X S u(c)max.＼El(t＼c,b)＼
CS.2QXD

(b, c)=l

<x*j:-a ,

provided Q£(l/2)x1/2X~cB+D:>with B in Lemma 2. Let <dx denote the remaining

terms. Then we have showed that

(3.3)

(3.4)

Jo
3';q, a)dy+A.R.,

We turn to oh. By (3.1) and (3.2)

(1)
^w s

nix
m=a (3)

A(n)
min {y, x ― n)

= 0-52, say.

By partialsummation, we see

(3-5) S=K dt+O(y max |E^t; q, a)＼)

til

Because of (2d/(2d, a),q)=l and (d, 2)=1

So,

(3.6) <p(q)a=

to([2d, <?])=

S
f*W(d, q))

cd.2)=i <pi(d)<p(d)

$*＼1+(P-2XP-1)

ip{d)ip{q)

<p((d, q)) ■

)-n(i+

/ pz-3p+3 ＼ /

Zk＼(p-2Xp~l)) if*＼

P>Ap(p-2)

= @-J£(<7).

J_＼
6-2/

(p-2)(p-l)
p2-3p+3

p(p2-3p+3

(p-iy
_

)＼

n

pi?

'p- 2)

＼p2-3p+3/
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In conjunctionwith (3.4),(3.5)and (3.6),we have

(p2(q)＼ 2/ V <p(q)
max ＼Ei{t;q, a)＼)

since $iq)< z(q). Combining this with (3.3), we get

M/<2@-@-1 !*(*>-t)^

+ 0(x'T(^max＼E1(f,g, c)|)+A.R.
V <p{q)tsi

= 2
£(<?) x'

･― +o)z+A.R., say,
<p＼q) 3

Since

2 q max |(d2＼ x %X Sr((?) max ＼Ex{t＼g, a)＼
d&Q

(a,q)=l

o)2is admissible by Lemma 2. Hence we conclude

W^T+A.R.,

as required.

4. Evaluation of V.

By the argument similarto thatin the previous section,we have

where

(4.1)

X
v{x, y ; q, a)dy-＼-A. R. ,

0

v=
2-i 2-i

n＼d)

S A(m)A(n)
0<|2*lS2/ d＼qk (Pi(d)m,n£x(d,2)=lr v ' m-n=2k

Here D = A+7. We approximate o by

Let v2(x,y; q, a) denote the resulting remainder. We then have

(4.2)

=2
Ug) x3
―+y3+A.R., say.

9＼q) 3

max |v2(x, y ; q, a)＼)+A. R.
ysx /
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If v3 is admissible, then (2.4) follows.

We proceed to consider v defined by (4.1). If u2(d)^0, then the congruence
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qk=O (d) reduces to k=0 (d/(d, q)). Since (d, 2)=1,

and k=0 (d/(d, a)) is equivalent to m=n (2d/(d, q)).

(4.3)

v=

d

(d

Jin

S A(m)A(n)

s

nix
n = a(.q)

(n.2d/((Z,g)) = l

the conditionm―n=2k

Thus, we have

A{n) 2 A(m)+O(xb + -X3)

n<mimin<.x,n+y) ＼ Q /or max(0, n ―yXmsra
m = n(2d/(d,o))

We replace the innermost sum by

Vo

Then the resulting error is

(4.4)

min(n, y)+min(y, x ―ri)

<p(2d/(d,q))

≪ 2
^r~

max ＼El(u;2d/{d, q), b)＼

T2
≪-
q
X-Z-A

by the Siegel-Walfisz theorem [2, sect. 22]. The contribution of v0 is equal to

(4.5) ( S

(d,2)-

ft＼d)

■DyAdtyVdKd, q))

)
S A(n)(mm(n, y)-＼-mui{y, x-n))+O(xXz)

/ nixm = a(o)

=<y-H+O(xj;3)

By partial summation,

(4.6) s

say.

2(xj/-y72)
<p(v)

+ 0(x max＼Eiiu ; q, a)＼)

n＼d)=l and (d, 2)=1 imply w(2d/(d, q))=(p(d)/<p((d,q)). Hence,

(4.7)

cd,2)=i (p^dtyid) ＼d>xD d2 /

= R-%)+OU'JT1(?))

In conjunction with (4.3)-(4.7),we get

o= {c"%)+ O(Xs-DT3(q))}＼2(xy
yy2)
+ 0{x max|Et(u ; q, a)＼)}

i <p{q) usx i

+ 0(xX3)+0(-X~A-3)
＼q I



= <5
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m(q) ＼ ' 2/ V ip{q)J

+ O(xT(q)max＼E1(u;q, a)＼)+o(-X'A-3)

=vl + O(x'X-A-3Tz(q)q-1 + XT(q)msix＼E1(u; q, a)＼)

Combining this with (4.2) we see

S<? max |v3| <x S -~~ max |v―Vi
esQ (a.g)=l qsQ(p(q) (0.5)=!

<x3X-A + x2X^r(q)max {E^u; q, d)＼
QSQ

(a,g)=l

Hence Lemma 2 yields that u3 is admissible, as required.

5. Calculation of U.

It remains to show (2.5). By the definition(2.2) of U

Now

u =
4^ s (*-2≪-n (!=!)"

(0 (tf) 0<2Jii p＼qk＼p
―Z/

" w (a+2fe,g)=l p>2
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where <p2is the multiplicative completion of (p2(p)=(p―2)2/(2p―3). Since <p2(p)

>(p-iy/(2p3) for p^3, we see

<p2(d) n a ＼<p(dy

or

(5.1) U =

s

d＼qk

P?(d)

X S
rid)
^X^Tsigk)

say,

t<p2(d)
WD d

Here D is a constant. By partial summation, we then have

―
(V a a

^

(P2(o)j0 ＼0<2kix-y d＼qk <p2(d)

d<,lD

=s>≫<*.>^+°(^"-B?$)

We proceed to u. We treat the condition (a -＼-2k,q)―l by the Moebius

function and interchange the order of summation, getting
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u = s Ad)
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S u(e)#＼o<2k^x-y
e＼1 I

qk = O (d) |

a+2k=Q (e)J

The above congruence qk=Q (d) is equivalent to £=0 (d/(d, q)),because of

[j.2{d)―l. Since {a, q)=l and e＼q,the congruence a+2k=Q (e) is soluble if and

only if (e, 2)=1, and reduces to k = ―a2(e). Moreover, pi＼d)=＼and e＼qimply

(d/(d, q),e)=l. Hence k is determined by some congruence to modulo de/(d,q).

Wp fhprpfnrp hnvp

u
s

diX
(.d,Z)

Ad)

D W2(d)
S ,<.)fc>/2+0(1)1

/ (i＼d)(d,q)＼/ M＼jLn((＼r＼

/ p＼dXd, q)

V(d,2)=i
<p2(d)d

+ O(X*-DT3(q)))( S
^

/＼ el?
e

(e, 2)=1

) + 0{t{q)X)

Jo ＼ <P＼Q)'

Thus,

y n-x3 rz~D T^
?sQ <p＼q)

U=2
Uq) x3

x3j:'-d

･^r+A.R.,<p＼q) 3

2"

x ― y

c
2$(q)(x-y)+O(xXs-DTz(q))

Combining this with (5.1), we get

u 2@^

On choosing D―l+A, the above O-term is admissible, since

as required.

This completes our proof of Theorem.
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