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ON PRIME TWINS IN ARITHMETIC PROGRESSIONS

By

Hiroshi MIkAwA

1. Introduction.
Let ¢ and ¢ be coprime positive integers. Put, for a non-zero integer £k,

U(x;q, a, 2k)= 0<m2 A(m)A(n)
,ngkx

m—n=2
n=a(mod q)

where A is the von Mangoldt function. It is expected that, provided (a+2k,q)
=1, ¥ is asymptotically equal to

H(x;q,2k)=6 II (ﬁ__1> X 12|

Blgk\p—2 (q)
where
— 1
e=21(1 G=i7)
Let

Y—H, if (a+2k, g)=1
E(x;q, a, 2k)=
v, otherwise.
It is well known that E(x;1, 1, 2k) is small in an averaged sense over k.
In 1961 A.F. Lavrik [5] showed that, for any A4, B>0,
2 |E(x;q, a, 2k)| < x*log x)-4
sx

0<2%

uniformly for (a, ¢9)=1 and ¢<(log x)&. Recently H. Maier and C. Pommerance
considered the inequality

2 max 3 |E(x;gq, a, 2k)| < x%log x)4,

9sQ (a.@)=1 02kszx

which may be regarded as an analogue to the Bombieri-Vinogradov theorem.
They [3] showed that the above is valid for Q<x° with some small 0>0, and
applied their formula to a problem concerned with gaps between primes. Later
A. Balog [1] generalized this to the case of prime multiplets, and extended the
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range of validity, in the general case, to Q<x'/*(log x)® with some B=B(A)
>0.
In this paper we make a further improvement, only for the simplest case,

so as to give a close analogue to the Bombieri-Vinogradov theorem.

THEOREM. Let A>0 be given. There exists B=B(A)>0 such that

max X |E(x;q, a, 2k)| <x*(log x)™4

gszl/2Qog )-8 (a.d=1 02k <z

where the implied constant depends only on A.

Our argument is, of course, based upon the bound for E(x; 1, 1, 2k) and
the Bombieri-Vinogradov theorem. In contrast to [1,3] we employ a variant
of Ju. V. Linnik’s dispersion method. We use a standard notation in number
theory, and, for simplicity, write £ =log x.

I would like to thank Professor S. Uchiyama for encouragement and careful
reading of the original manuscript.

2. Proof of Theorem.

We call a remainder R(x; ¢, a) “admissible”, if for any A>0 there exists
B=B(A)>0 such that

gmax |R(x;q, a)|Kx*L™4.

qszV/2L-B (a,p=1

An admissible remainder is abbreviated to “A.R.” in a formula.
We first consider the following quantity :

2.1 Dx;q,a)= 3 |Ex;q, a)l®
012k s
=Ww-2V+U,

where

=5 (5 AmiAm),
012k 12

m,nET
m-n=

_ S _ p-l
(2‘2) ’ MQD((I) &i'z%zgil(x 2 Dglgzk(p_z) %'—%@k A,
n=a(mod q)
and
(& — 2 =1y
") sdisn Y 5134;(/’—2> '



On prime twins in arithmetic progressions 379

In sections 3, 4 and 5, we shali show

(2.3) WET+A.R,
(2.4) V=T+A.R,,
and
(2.5) U=T+A.R.,
where
B x®

1= fgg; 3

with

0= 11 (1 525 1 (55 5)-

Then, because of (2.1), 9(x;q, a) is admissible. By Cauchy’s inequality, we
therefore have

(2_‘, max 3 |[E(x;q, a){)2

7sQ@ (a.@)=1 0<2ksx

(552 0)(Ze max 2 BGig off)

75Q § 02ksz 4sQ  (a.@)=1 0|2k sz

KxL->qg max Yx;q, a)

asQ (a.q)=1

<<x4-£‘—2x1

for any A>0 and Q=x'"*.L~* with some B=B(A4)>0. Thus, apart from the
verification of (2.3), (2.4) and (2'5), we get Theorem.

In order to prove (2.3) and (2.4), we appeal to the following Lemmas.
Lemma 1 follows from [4] immediately. Lemma 2 is a minor modification of
the Bombieri-Vinogradov theorem, see [2, sect. 28].

LEMMA 1. For any A0 we have

Zk‘, T(2R)|E(x; 1, 1, 2k)| € x2L4
02k
where the implied constant depends only on A.

LEMMA 2. Put

x
Efx;q, a)= n; A(n)— (PTq)“

nza(m%dq)
Then, for any A>0, there exists B=B(A)>0 such that
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gszxl/2L-B

7y(g) max max | E(t; q, a)|Kx.L™4
a,.p=1 tsx
where the implied constant depends only on A.

3. Estimation of W.

In this section we prove (2.3).
W=

0|2k IS my, My, My, RgST

A(my) A(n ) A(ms) A(ns)
mi—ni=mo—ng=2k

Expanding the square, we have
>
ni=ng=a{q)

=MD IDIDY A(m ) A(n) A(my) A(ny) -
Mmy, Ny, My, NgST

My—N1=Mg—7g
nlznzga(q)
The above condition m,—n,=m,—n, is equivalent to n,—n,=m;—m,.
r'=n,—n,=m;—m,. Then ql|r’, since n,=nsq).

r’=0 contribute

Write
The terms with »'=1(2) or
<<x°[:6+x2q71-£4’
which is admissible trivially. On rewriting »'=2», we have
w= 2 (2 Am)Am)( | B Am)AGm))+A.R.
0<I2T ISz \ Ny, ngsx my, e
qier ny—ng=27 my—me=27
ny=ng=a(g
=2 5 (3
02715 n
qle2r

A(m)A(n))(lf(x; 1L, 1, 2n)+A.R,
el
We now replace ¥ by H.

Then the resulting error is
<z (.=
0%2 n

A Am)| E(x5 1, 1, 21).

SA
E]

12

3
A
5

m

Ii
[l

™

<

[l

=N

i
Q
~

3}
which is admissible, since

Sg- S Z ot E(x; 11,20
qsx oﬁ;rszq

<<x.£2o ;2 (2r)| E(x; 1, 1, 27)|
2T =X
by Lemma 1.

<<.X3.£_A,
Hence
—1
wsze 3 -I(E=) | 3
ofire g pm2

Am)A(n)+A.R..
—'n;=§21r
Let ¢, denote the multiplicative completion of ¢,(p)=p—2. Then
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glgg(‘i——z) & od)

(21

Since ¢ (p)=(1/2)(p—1) for p=3, we see

Z
Py (§l<<.£ > %<<.£‘ Dry(r).
((;i(.i%g 1 ¢i(d) &Ko
>

Here D=9+ A. This contributes to W
<x 3 ,C“Dr3(r)~§.£’2,

0<2rsx
qlzr

which is also admissible, since

Lx2LD 3 fs(r)r(r)

L x:Lo-P,

By partial summation, we therefore have

WgZ@S:w(x, ¥;q, a)dy+A.R,

.where
2
d
=3 3 (d% S AmAn).
"e Y (= 1(/)1( g,
dsLD m=n=a(q)

We proceed to consider w. Since (d, 2)=1, the condition m—n=2r and d|r
is equivalent to m=n(2d). Thus,

¥d
@.1) o=5, 29 5 4w 5 sm).
(d%éfi;:lgol( ) WY PRy Y

m=n(2d)

The above simultaneous congruences are soluble if and only if n=a ((2d, ¢q)),
which is satisfied. Moreover, p*d)=1 and (d, 2)=1 imply (2d/(2d, q), ¢)=1.
Hence, if (n, 2d/(2d, g))=1, then m is restricted by a reduced residue class to
modulo [2d, ¢]. The terms with (n, 2d/(2d, ¢))>>1 contribute negligibly. There-
fore the innermost sum of (3.1) is equal to

min (y, x—n)

(3.2 o(C2d, ¢

+0( max |E(t;[2d, q], b)]).

=X
(b, [2d, g) =1

The contribution of the O-term is admissible. Actually, Lemma 2 yields that
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B 5 ) max B (24, 6], b)

231G % ——
ds 1D
@ <d72'§=190‘(d) 22 a0 (b, [2d, gD =1

cs2Q.LD\12d. q1=¢ -

LxL S ( > )maXIEl(t 2 b)]|
(b,

Lx*L 2 13(c)max|E(t ¢, b)|
cs2Q.LP (b C) 1

<< xﬁ-[:—A ,
provided Q<(1/2)x'2.L-B+D with Bin Lemma 2. Let w, denote the remaining
terms. Then we have showed that

(3.3) WgZ@g:w,(x, y:q, a)dy+A.R,

We turn to @,. By (3.1) and (3.2),

B ;zz(d) mm(y x— n)
G4 O 2o oid) = M a2, )

(d, )=t m=a(q)
(n,2d/2d,q))=1

z(d) _ ) B
é((d% 1g01(d)<p([2d q])) ,;? A(n) min (y, x—n)
=¢->, say.

By partial summation, we see

(3.5) = Syfﬁdmoumax \Et: g, @)])
Because of (2d/(2d, q), ¢)=1 and (d, 2)=1,
_o(d)e(g)
o(l2d, 4= e gy -
So,
. o« Hde(d, 9)
(3.6) plgo= 2 (p(d}?p@?

=G zxp i) =) =)

—3p+3 (p—2Xp—1) p—1
=1 =6mn) s b 2)

(p—2Xp—1) pr—3p+3 p—2
_ (p—1) 17(1? —3p+3 0)) I _~(P”1)2 )
pSe p(p~2) (p—1¢° pig\ p*—3p+3

=87'9g).
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In conjunction with (3.4), (3.5) and (3.6), we have

5o Sl Prol S i)

since $(¢)<7(¢). Combining this with (3.3), we get

W<28 8- 9@5 (xy—y{)dy

@)
+ o(xZ%%rgglEmt; g +AR.
!su 4.3
’;f(qq))-%-l—meA.R., say,

Since
3} ¢ max || Lx* I Zr(q) max |Et; q, )i,

< a, =1
7=Q (a.q (aq)l

®, is admissible by Lemma 2. Hence we conclude

W<TH+AR.,
as required.

4. Evaluation of V.

By the argument similar to that in the previous section, we have

(—q)g v(x, v;q, a)dy+A.R.,

where

4.1) b= 5 x5 49
0|12k 1Y (ddztgzklgol(d) n;_zzr
ds.LD (]

A(m)A(n) .

Here D=A+7. We approximate v by

= 20er-3)

Let vy(x, v; g, a) denote the resulting remainder. We then have

n(x, ¥; 9=

@2 V= v Q0 max v, 35 @) FAR
Do) &
=2 oq) 3 +uv;+A.R., say.

If v, is admissible, then (2.4) follows.
We proceed to consider v defined by (4.1). If p*(d)=0, then the congruence
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qk=0 (d) reduces to k=0 (d/(d, ¢))

Since (d, 2)=1, the condition m—n=2Fk
and 2=0 (d/(d, ¢)) is equivalent to m=n (2d/(d, q))

, ¢)). Thus, we have
2
d
LD s s Amdm)
(4.3) tRE R ORI L T
m= n(zd/(d Q)
n=a{qQ)
2
RGO ) = /I(m)+0(_£ += .£3)
das L go,(d) nsx n<msmin(z, n+y)
(d,2)=1 n=a(q or max (0, n— y)(m<n
(n,2d/(d,@))=1 m=n2d/(d,q»

We replace the innermost sum by

o min (n, y)+min (y, x—n)
T @(2d/(d, )

Then the resulting error is

2
(4.4) < 3,20 max | Eu; 24/, g) b))
=t 901( ) g 7 w00t =1
<<x_°£—3—A’
q

by the Siegel-Walfisz theorem [2, sect. 22]. The contribution of v, is equal to

w5 (3,

Do e d, ) |2 Ae)min(n, ) min(y, r—n)+0(x.L)

=g -2+0(x.L?), say.
By partial summation

(4.6) E=W+O(x ryg}lEl(u; q, a)l)
*(d)=1 and (d, 2)=1 imply @(2d/(d, ¢))=¢(d)/e(d, ¢))

— #Ad)e(d, 9) | (d, 9)y(d)
4D I= e o d)p(d) ( 3, (log ¢) =475

=8719(q)+0(L*Pz4(g))

Hence,

In conjunction with (4.3)-(4.7), we get

0= €780+ 0L eI 0 max By 4, o))

+0(x.[3)—|-0( L-4- 3)
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__r~_1"~6(Q) __2% 2 3—D?iq_)
= =) o= l)

+0(xe(q) max| Ei(u; g, a)l)+0< L4+ 3).
=0, +0(x L4 ry(g)g™ +x7(q) n;gggiEl(u; g, a)l).

Combining this with (4.2) we see

quax ]L31<<x2 oy max lv—uv1]
<@ (a. (p(q) D=1
KX LAFXL zf(q) max | E(u; g, a)l.
(a q) =1

Hence Lemma 2 yields that v, is admissible, as required.

5. Calculation of U.

It remains to show (2.5). By the definition (2.2) of U,

v=2% 5 (x—Zk)gl”_[(p——l)z.

o) e pig P2
Now,
(p 1) p(d)
g =2/ Ly, pdd)

where ¢, 1s the multiplicative completion of (p)=(p—2)*/(2p—3). Since @«(p)
>(p—1)4/(2p*) for p=3, we see

;f(d) N
ou(d) D" <so<d>>
or
A, 2 T(d) LLPry(qh) .
d‘i‘%?’%l z(d) D

Here D is a constant. By partial summation, we then have

2

(5.1) U:Z@ZS ( 2 = Z(dl)dy+0(~3“—~ S L' Prgh))

©*(9) Sy S, P 0o(d) ©*(q) o<irsa
ds1D
2@2 3 3-D TS(Q)
= Z(Q)S 2y-u(x, y; g, a)dy+0( L g )> say,

We proceed to u. We treat the condition (a+2k, ¢)=1 by the Moebius
function and interchange the order of summation, getting
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gk=0 (d)
E (e)#{0(2k<x Y }

a+2k=0 (e) .

The above congruence gk=0 (d) is equivalent to k=0 (d/(d, q)), because of
#*(d)=1. Since (a, ¢)=1 and e|q, the congruence a+2£=0 (e) is soluble if and
only if (e, 2)=1, and reduces to k=—aZ2(¢). Moreover, #*(d)=1and e|q imply
(d/(d, q), e)=1. Hence £k is determined by some congruence to modulo de/(d, q).
We therefore have

©d) ( ){ (x—)/2
<pz(d) de/(d, q)

e 2<—2<>~>>< 5.5 )rowws)

(e,2)=1

+0)}

—*y #(dXd, q) pe)
=22 5 ol O m(q)))((e%‘ll 2 )+069).0)

=G B(g)(x— )+ 0(x L3 Pry(q)).
Combining this with (5.1), we get

—,,Zi -2 3 3_1_)73((])
oy & D] 2=y +0(x s 5.

On choosing D=7+ 4, the above O-term is admissible, since
- 3 p2-D 3(‘]) 3_pi-D
Z L gy €L

Thus,

PR
©(q) 3

+A.R,,

as required.
This completes our proof of Theorem.
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