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META-ARELIANIZATIONS OF SL(2,Z[£]) AND

DENNIS-STEIN SYMBOLS

By

JunMorita

Abstract. Using a Dennis-Stein symbol, we willstudy K2(2,Z[j])

and the meta-abelianizationof SL(2,Z[-^]).

1. Introduction.

Let Z be the ring of rationalintegers. For a given group G, we denote by G'

the commutator subgroup [G,G] of G, and by G" the second commutator

subgroup [G',G'] of G. Then we put Gab =G/G', the abeiianization of G, and

G"wh =GIG", the meta-abelianization of G. The cyclic group of order m is

denoted by Zm, and the cyclic group of infinite order is denoted by Z instead of

Z^. And, the semi-direct product H = KxL of groups means H = (K,L),

K(＼L = ＼,and H > L. Then we will obtain the following results.

THEOREM 1. Let p be a prime number. Then

Z3 x (Z2x Z2)

SL(2,Z[-])""*=* Z4KZ3

Znx (Z7x Zfi)

p

p

p >

2;

3;

5.

Corollary. Suppose p>5. Then

SL(2,Z[-])"wh^ SL(2, Z[-])m"fcx SL(2, Z[-])mah.
p 2 3

Theorem 2.

(1) Suppose/? = 2, 3. Then ^2(2,Z[}])=Zx Zp_,,and ^2(2,Z[-^])is central.

(2) Suppose /?>5.Then K2 (2,Z[-^])3 ZxZ, and ^2(2,Z[^]) is not central.

There is an algorithm to get a finitepresentation of SL(2,Z[-^]). Therefore, it

might be possible to calculate the meta-abelianization of SL(2,Z[-^]) when p is
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given. However, the main difficulty is that one cannot expect a uniform

presentation of SL(2,Z[-^]) for all p (cf. [4]). Here we will find some element

d(a,b), called a Dennis-Stein symbol, in K2(2,Z[-^]) which leads to Theorem 1 as

well as Theorem 2. Corollary can be also obtained from the result in [9].

This research was partially supported by SFB in Bielefeld 1992.

1. K2(2,A) and symbols.

For a commutative ring, A, with 1, we define the Steinberg group of rank

one, called St(2, A), by generators: xn{t), x2x{t)for feA and defining relations:

xij(s)xij(t)= xiJ(s+ t)

and

XyWxjt-u-^XyWxjiiu-^i-u) = Xjl(-u-2t)

for sjeA, ueAx and {/,_/}= {1,2}, where Ax is the unit group of A (cf. [2],

[5]).Then, there is a natural homomorphism, It, of St(2, A) into SL(2, A) with

Put

7tXn(t) = ＼ and nxlx
(0 ･en

K2 (2, A) = ker[7T: St (2, A) -≫ SL(2, A)].

Now we define several elements in St(2, A). Set

W,; (U) = Xjj(k)*,v (~U
')Xjj (U),

hij(u) = wij(u)wiJ(-＼),

c(u,v) = hn{uv)hn(uyxhn{v)~＼

d(a, b) = x2l(-bu~] )xn(-a)x2{ (b)xi2 (au~l)hn{u)~{

for a,b e A, u, v e AxAi, j] = {1,2} with l-ab = u. Then

( 0

7tw]2(u) = ＼

nh{2{u)

u

0
, 7TW2|(M) =

0 -II"1 ^

u 0

J

B.,J.
≪*,,(≪)=[,

u)

and c(u,v),d(a,b) e K2(2,A). The symbols c(u,v) and d(a,b) are called Steinberg

symbols and Dennis-Stein symbols respectively.
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2. The case of Z[|].

First,we shallrecall that St(2,Z) is isomorphic to the 3-braid group,

fi3=(x,y＼xyx= yxy). Hence, we see St(2,Z)mab= Z X (Z xZ) . Since

K2(2,Z)<=*(c(-l,-l))=*Zand c(-l,-l)is corresponding to xn = 1 mod fl3"(cf.

[5],[8]),we obtain SL(2,Z)ma*=*Z12* (ZxZ).

Now we take a prime number p and consider A = /[-+･].For each p, we

define thegroup Gp by the generatorsxl,x2,yl,y2and the definingrelations

[(xlylxlf, y2]= [(x2y2x2f, yl] = 1.

Then St(2,Z[-M)-Gn (cf.[7]).In [8],we already confirmed that

St(2,Z[-])mah

P

fZ^(Z2xZ2) p =2

Z8 x Z3

ZP2., KfZxZ)

p = y,

p>5.

To get this,we constructed Mp as follows:

M2 =<O-,T,,T2|CT3=T,2 -x＼ =[T,,T2] = 1,(JT|(7"1-XxX2,GX2G~X = T,),

M3 = <<T,T|CT8= T3 = l.CTttT"'= T2>,

M/; =<(T,T,,T2|O"77""'=[r,,r,] = 1,(77,(7"'=T,T2"',(7T2(J~'=T,>

with /?>5. Then we obtain Gp"h~Mp for every /?, which gives the explicite

group structure of St(2,Z[j;])""'has above. In fact, we can easily see that there is

a group homomorphism a of G onto Mp satisfying

'a2(x])= <JT{,a2{yx)= a,a2(x2) = <j2,a2(y2) = cj2t,t2 (p = 2);

a3(xl) = (7T,a3(y,) = <T,a3(x2)= o＼a3(y2) = (J3t (/? = 3);

a/7(xi)= OTl,ap(yi) = o,ap(x2) = a'＼ap(y2) = gpt{ (p = 1 mod 6);

an{x{) = ar],ap(y^ = o,ap(x2) = ap,ap(y2) = (7/'t~'t2(p = 5 mod 6).

This map ap induces an isomorphism of G"'"honto Mp .

Mp = 2, then K2(2,Z[±]) is generated by c(-l,-l) (cf. [1]), and c(-l,-l) is

corresponding to 1 e M2. Therefore, SL(2,Z[^])""'*^Z3 x (Z2 x Z2). If p = 3, then

K2(2,Z[$]) is generated by c(-l,-l) and c(3,-l) (cf. [1]), which are

corresponding to 1 e M3 and cr4e M3 respectively. Therefore, SL(2,Z[j])"'"/7

=*(ZAKZ,) .
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Next suppose p>5. Then we will choose some Dennis-Stein symbols, and

consider their images in Mp. Note that if l-ab = ±p, then

w12(l)x12(±bp~])wl2(-l)xl2(-a)x2l(b)xl2(±ap'i)w2{(±p)wl2(1) e St(2,Z[^]),

corresponding to

e(a,b) = (x)ylxl)y;h(x.y.x,)"1 x,~"y?y*"(x,y,x,)+l(x,_y,x,) g Gn.

d(a,b) =

which is

Since yf'x s 1 modG"p (cf. [8]), then yi = xp2 mod G" and y2 = x[ mod G"

Hence, e(a,b) = x2bx~"y^hy2cl(x2y2x2)+l(xly{xl) modGj.

If p = 6k + ＼,k= 2'm,(2,m) = l, then

a
pe(-2M,3m)

(<t")3"'(ot,)2'+I

= <T
3pm a per-3'"

cr^W2

o

p

a

aip-＼){Mn,-lh-2M) ,

3/h /

a"

1MP

y+

(7

-2'+'(<J/'cT/'T1<T/TVtiC7<TT1)

3/>+3

-Mp-D

where (cjt,)2'+'= G'+'p, p = t,t2 or r, xx＼, and p'^{xxrx＼,xfxf ,x＼x＼＼.In parti

cular, the order of d(-2l+i,3m) is infinite.

If/? = 6*-l,* = 2'm,(2,m) = l, then

ape(2/+1,3m)

= (a/T3'"(cTT,)-2'+' c7-3("((T/>Tr1T,)-2'+1(cr/'(J''Tr'r,(j/')(cjt.cjot,)

= <T-3'""CJ-2/+'pG-*mp-l(J-2'+l "(J3/'+3

= (T-3</>+≫≫<CF-2'+lp-2CF-2'+1

_(7-(/)+l)(3(/≫-l)+2/+l|p'
5

1 / ＼-y+lwhere (or,) " =<J

P(jMp+＼)

2 + p,P = t.t, or t.tv , and p' e {t, 2t,,t,4t?2,t, 2t72}. In parti

cular. also in thiscase, the order of d(2M.3m) is infinite

Proof of Theorem 1. For p = 2, 3, we already discussed completely.

Suppose p>5. Then the homomorphism K of St(2,Z[-^-]) onto SL(2,Z[-^]) induces

the homomorphism, called n, of Mn onto SL(2,Z[-j])"wh. Since

a'2,Tf,rf t; e ker/r as above, we obtaina homomorphism of Z12x (Z2x Z6) onto

SL(2,Z[-^])'""*. On the other hand, we see that PSL(2,Z/3Z) = 914==

Z,K(Z2xZ2) (cf.[3]) and SL(2,Z/4Z) -Z. X 2L (cf. Section 3). Hence,

SL(2,Z[£])""'*~Z12 x (Z2xZ6) ■ □
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Considering the action of (J in Mp, one reaches Corollary easily.And, the

resultin Theorem 2(1)is already known (cf.[11,[51,[61,[71).

Proof of Theorem 2(2). In K2(2,Z[j;]), we have found three elements

c, = c(-l,-l),c2 = c(p,-l), d = d(+2M,3m)

as before, where p = 6k±l. Let L be the subgroup of K2(2,Z[j]) generated by

cvc2 ,d. Then, L is abelian, and d is not central and of infiniteorder in St(2,Z[^])

St(2,Z[-£])by the structure of Mp. Therefore, c^c^d"3 = 1 with n,,/i2,n3eZ

implies n3 = 0 and c"]c'2'2=1. Then, since the image of c, (resp. c2) in the stable

K2 over the field of real numbers is of infinite order (resp. trivial),nx must be 0

(cf. [5]). Hence, L = (cvc2,d) ―ZxZn xZ, where n is the order of c2 and > 2. □

In particular,for every p>5, we get Ar2(2,Z[-^])^ZxZH (cf. [8; Theorem

91).

3. Some remarks around SL(2,Z/4Z).

The group SL(2,Z/4Z) is generated by

-C:-(:;} -1 2/

and the subgroup generated by rvr2 (resp. s) is isomorphic to ?I4 (resp. Z4).

Hence, we see

(1) SL(2,Z/4Z)-Z4 X 2l4.

In particular, SL(2,Z/4Z)>m'h― Z4 KZ3. Furthermore, by some easy and routine

calculation,we obtain the following as an appendix:

(2) GL(2,Z/4Z)=GL(2,F2[£]/(£2)) = 33 x(Z2)4-Z2x (34xZ2),

(3) PGL(2,Z/4Z)-PGL(2,F2[£]/(?))-SL(2,F2[§]/(|2))≪34 x

(4) PSL(2,Z /4Z) - PSL(2,F2[£]/(<f))- S
4.
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