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SCATTERING THEORY FOR WAVE EQUATIONS

WITH LONG-RANGE PERTURBATIONS

By

Hirokazu Iwashita

Introduction.

In this paper we are concerned with the existence and completeness of modi-

fied wave operators for the wave equation with long-range perturbations:

3?w+Lw = 0, L=-tdXJa^(x)dXk+V(x) in Rn(n>3).

Scattering theory for the Schrodinger operators ―J+ V with long-range pertur-

bations has been extensively investigated and already reached a satisfactory stage,

while few have been known about long-range scattering for classical wave equa-

tions. It is well known (cf.,e.g., Reed-Simon [17] and Mochizuki [14]) that the

Schrodinger and classicalwave equations are related by the invariance principle

of Kato and Birman theory in short-range scattering and it has been expected

that also in long-range scattering the invariance principle allows us to treat clas-

sical wave equations.

In the present paper we firstprove the invariance principlefor modified wave

operators intertwining L and ―J which is applicable to the wave equation. As

for the invariance principle in long-range scattering, several authors have studiec

it for modified wave operators intertwining ―A+V and ―A which are known t(

exist (cf., e.g.,Matveev [11], Chandler-Gibson [2] and Kitada [9]). Our approacl

is quite different from those of the above authors, however similar to that ol

Mochizuki [14]. We employ a spectral representation theory to justify the inva

riance principle directly,which means, with no knowledge of the existence of time

dependent modified wave operators for the Schrodinger operator L. This methoc

isinfluenced by Ikebe-Isozaki [4]. However an L2-estimate of an integral operate]

plays a crucial role in place of the stationary phase method (see Proposition 4.4)

The invariance principle assures the existence and completeness of modified wave

operators for the wave equation in the square integrable space, from which w<

construct modified wave operators in the energy spaces by modifying the result!

of Reed-Simon [17], based upon two-Hilbert-space scattering theory of Kato [8].
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§1. Assumptions and statement of the main results.

Consider the followingSchrodinger operatorsin Rn(n>2):

u

u

n

_ A _ y 32

= -AA + V(.v)=-£ dx<ai＼x)dXk■) + V{x)

where dXj= d/dXj and the coefficientsajk(x) and V(x) are supposed to satisfy the

following

Assumption 1.1. (A) The real symmetric matrix A(x) = (aJk(x)) is a C°°and

everywhere positive function of x over Rn such that for some positive constant

d<l,

(1.1) |d;(a>*(aO-#*)|^a(l+M)-H-'

for any non-negative multi-index a = (au ･･-,≪,) and l<y, &<w, where 8Jk is Kro-

necker's delta and |a|=aH han, dax=d%＼-■-3°%.

(V) V(x) is a non-negative C°°CR")-function such that

＼daxV(x)＼<Ca(l+＼x＼)-^s

for any non-negative multi-index a, where S is the same constant as in (A).

Under Assumption 1.1 the formal differential operators Lj(j=O, 1) have the

unique selfadjoint realizations in Lz(Rn), which will be denoted by Lj again. Then

note that Lj have no point spectrum.

Let <j)(X)be a real C°(R+)(R+ = (0, oo)) function such that <p'(X)= (d<p/dX)(X)>Q

for AgR+. In order to formulate our main results we require time dependent

modifiers A^,+(f, t) associated with Lx and $(%), which are real C°°((ir＼{0})x.R+)-

functions possessing the following properties: Given any compact set B in J? ＼{0},

we can find a positive constant T such that if feZ?, t>T and |a|>0, then

(1.2) ＼dixu^ t)＼<ca(i+ty-s,

where 5 is given as in Assumption 1.1 and the positive constant Ca is independent

of c; i?, and the functions W^,±($, O=±*0(lfl2) + Xjs,±(£,t) solve the equations

dtW,,±{^ t)=±<p(^A(FsWU^ W+V(rtW<.±G, 0))

for |eB and ^>T, respectively, where ^='(3*., ･･ ･ , 3f ).

Definition 1.2. For time dependent modifiers X^,±($,t),define

e-iX*,±u=F<rl[e-iX*,±i-nFou~＼for usL＼Rn),



ScatteringTheory for Wave Equations with Long-Range Perturbations 87

where Fo is the Fourier transform:

(F0u)^) = u^) = (2K)-n/i[e-ixMx)dx

Theorem 1.3 {Invariance principle). Let <f>(X)be a real-valued C°°(R+)-function

such that <ft'(X)>Qfor any XzR^ . Under Assumption 1.1 there existtime dependent

modifiers X^, +(?,t) such that the modified wave operators

(1.3) 0±(0(L,),0(Lo))= s-lime±i^CL')eTi^(i≫)-iX≫,±a)in L＼Rn)

exist and are unitary from L2(Rn) onto L2(Rn) with the intertwining property. Fur-

thermore Q±(<j)(Lx),<j)(Lo))are independent of <fi,that is

Q±^{LX), 0(Lo))= £±(Li,Lo),

where Q±(LU Lo) are obtained from (1.3) when <f>U)= L

Remark. The condition on <f>(X)in Theorem 1.3 is weaker than that of Mat-

veev [11] or Kitada [9] where it is assumed in addition to ours that <p"(X)*?Oon

R+.

We now consider the following wave equations in Rn(n>3): For i = 0, 1,

(1.4)/ d2tU+ H2jU= 0,

where each Hj is the positive square root of Lj: Hj―VLj. Since <p(/,)―Vx

satisfiesthe condition in Theorem 1.3, we have

Theorem 1.4. Under Assumption 1.1 there exist time dependent modifiers

X±{^,t) such that the modified wave operators intertiviningHi and Ho,

£±= s-lim e±*tHie*itH°-iX±in L＼Rn)

exist and are complete.

On the basis of Theorem 1.4 we consider the wave equations in the energy

spaces along the ideas of Reed-Simon [17]. Let j―Q or 1. Let [3){Hj)＼be the

closure of 3){H3), the domain of Hj in the norm ||#rl|, where ||･|| denotes the

norm in L＼Rn). Let JCj be the Hilbert space defined by

equipped with norm

and define

COk,=llfl>ll'+||.|r,

1°

Aj=i[
＼-H2-

), g)UJ)=3)(Hy@g)<,HJ)t
0/
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where

and we are denoting both Hj and its extension to CiP(///)]by FIj. Then (1.4),is

written in the vector form :

(1.5), W=-iA}f.

The operator Aj is selfadjointin Mj and generates a unitary group of the solution

onerator TIAt):

Define

/cos(Hjt) Hzlsm(H,t)＼

＼- Hi sin(Hd) cos (Hd) I

J)

Then 7＼is a unitary operatorfrom Mj to LHRn)@LHRn) and satisfies

and thus

＼0 -Hj

＼0 eitHJ

Let / be the identificationoperator between J{0 and M＼ defined by

J=TrlT0.

Let Jf(t)(t>0) be the modified identificationoperators between JC0 and Mj defined

W) = Tj
(e-iX±M Q＼
I IT

＼0 e-iX*wf

where e~iX±(Oare given in Theorem 1.4. Then Jt(t) and J?(f) are unitary and

related by

Further it follows directly from the definitionsthat Jt{t)commute with UQ(t). We

are now in a oosition to state
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Theorem 1.5. Suppose that Assumption 1.1 is fulfilled. Let Uj(t) (i=0, 1)

and Jf(t) be as above. Then the modified generalized ivave operators

W±U) = s-lim UL(+t)Jtit)Uo(±t)

exist on J{0 to M＼ and are complete. Furthermore W±{J) are isometriesintertwining

U0(t) and Utf).

Proof. Since

ui(+t)jmuo(±t)

= TrHTlU1(+t)Tr1)(TJHtmi)(ToUo(±t)T7l)TQ

(g±UH ig+UHo-iX + CO

o

0 ＼
)t0,

the assertion of the theorem follows from Theorem 1.4 and the unitaritv of 7＼

0"=0, l).

We now restrict our consideration to the perturbed equation (1.5)x

coefficientson which we impose the following

Q.E.D.

with the

Assumption 1.6. ajk(x)(l<j, k<n) satisfy (A) in Assumption 1.1 and V(x)

satisfies

(VY V(x) is a non-negative C°(Rn)-functionsuch that

(1.6) V(x)=O(＼x＼~2)as U;|->co.

We remark that the hypothesis V(x)£C°(Rn)is put for the sake of simplicity

and V(x) may have certain local singularities(see, e.g.,Phillips[16]). It will be

easily seen that the same results as in Theorems 1.4 and 1.5 hold with the time

dependent modifiers X±(g,t) solving the equations

dtx±& t)=+{＼e＼-vz-A(±te/＼e＼iTpc&rw;}.

We use the same notation as before.

Theorem 1.7. Suppose that Assumption 1.6 is satisfied. Then JC0 and Mi

are setwise equal with equivalent norms, and the modified wave operators

W± = s-lim Ux{+t)Jt{t)Uo{±t)
t―>°°

existand coincide with W±{J). Hence W± are complete and intertwine U0(t) and

By the intertwining property and unitarity of W±, we have the following

result partiallyextending Phillips[16].
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Corollary 1.8. Let WL and 3)＼be the incoming and outgoing subspaces

relativeto U0(t)on J{0 defined by

&±= {feJC0; Uo(t)f=0 for ＼x＼<±t,±t>0}

(see Lax-Phillips[10],p.99). Define

R±=W±Sf±.

Then £Dland 3)＼are the incoming and outgoing subspacesrelativeto UAf).

§2. Spectral representations for L,.

In this section we shall establish the spectral representations for L=LX under

AQQiimntinn 1 1 Wp Qfarf with

Lemma 2.1. There exists a real C°°(Rnx(R＼{Q}))-functionK(x, a) satisfying

the following requirements:

(1) For any compact set I in R＼{0} there exists a constant R>0 such that if

a£l and ＼x＼>R,then

(2.1) {VxK){x, a)-A{x){VxK)(x, a)+ V{x)=o*.

(2) K(x, o)=-K(x, -a) for a<0.

(3) ＼d"j%K(x,a)-o＼x＼)＼<Calc(l+＼x＼y~M-d(＼x＼>l)

for any non-negative multi-index a, non-negative integer k and o£Z, a compact set

in i?＼{0},where the constant Cau is independent of o^Z.

This lemma can be proved in a similar method as in Theorem I. 16 of Isozaki

[5] and so we may omit the proof.

As for the function K(x, o) introduced in Lemma 2.1, we shall find it con-

venient to rewrite K(x, o) as follows:

(2.2) K(x, a)=ar+Y(x, a) for r=＼x＼>l.

Then Lemma 2.1 implies that

(2.3) ＼%&Y(x, <j)＼<Cak(l+ ＼x＼)l-M-s

for any |a|>0 and integer k>0, where Cak is independent of a in a compact set

in R＼{0}.

Definition 2.2. Let Y(x, a) be as above. Define a C°°-functionp(x, k) oj

x£Rn and K=o+h with ogR＼{0＼and t£R bv

p(x, tc)=-i(icr+Y(x, a))+ logr for r=＼x＼>l.
n-1

2
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Proposition 2.3. Let p(x, it) be as in Definition 2.2. Then for any
K=a + k

with a^R＼{Q] and r [0, 1], we have

tc2-V(x) + (FxP)(x, k)-A(x)(FxP)(x, k)-JaP(x, k)

= O(＼x＼~2)+p(x, /c)+ zq(x, k)

as ＼x＼-*ca,where the functions p(x, k) and q(x, ≪) satisfy when |a;|―>-ooand |a|=0.

1

d"xp{x, /c)=O(|^|-1-|≫l^))

d%(x, K)=O(＼x＼-iai-s)

uniformly in osl, a compact set in R＼{0} and r.

Proof. A straightforward calculation yields the following identities:

>c2-V+(Fxp)-A(Fxp)-JAp

=
~{{FxK)-A(FxK)+V-a*}+tn-1^

+ 3)R~^Tmce(A)
+

(2.4)

TlXkdXiaj'c+p(x, tc)+ rq(x, k)

(L-/c2)u=f

n ― 1

~2r~

p(x, k) = h― (Trace(A)-n0) -iZ (fixsajk){icxk+ dx.Y) +

+ iZajkdx.dXkY,

q(x, K)= r(0-l)-2i<j(0-l)-2ix-AFxY,

where x=(xu ･･ ･, xn) = x/＼x＼and 0 = @(x) ―x-A(x)x. Hence the assertion is easily

deduced from (2.1), (2.3) and the above identities. Q.E.D.

We introduce the weighted L2-spaces to state the radiation condition. For a

real number 5, L&G) denotes the Hilbert space of all measurable functions u such

||≪||S.c=f (l + ＼x＼)2S＼u(x)＼2dx
JG

is finite.If s=0 or G=Rn, we often omit the corresponding subscript.

Definition 2.4. Let p(x, ≪)be as in Definition 2.2. A solution of the equa-

is said to satisfy the radiation condition if
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ueLl^-w and x-A(x)(Vx + (VxP)(x, k))usL＼^vUi(U),

where Q={x£Rn', ＼x＼>l}and fi,v are positive constants satisfying p.<v and /*+

v<2.

Proposition 2.5. Let r>0 and 0<[i<v, fi+ v<2. Let u be a solutionof'{2.4)

with /gL(1+,)/2,satisfying the radiation condition. Then there existpositiveconstants

C and R independent, of k, f and u such that

where E(R) = {x£Rn; ＼x＼>R).

Sketch of the proof. Putting d~(Fx+ (Fxp)(x, k))u and 5y=Im Fxp(x, /c)/Im

drp(x, k) with dr~x-Vx, we have (2.3) of [6] with ―JAp and /3replaced by ―JAp

―V and v, respectively, which we denote by (2.3)'. Similarly the identity (2.4)

of [6] holds with ―JAp, p(x, k) and /3replaced by ―JAp―V,p(x, /c)+ tq(x,k) given

in Proposition 2.3 and v, revspectively. We denote thisidentity by (2.4)'. The

integrals containing p(x, k) or its derivatives in (2.4)' can be estimated in the same

way as in [6]. The integrals containing rq(x, tc)or its derivatives except for the

term rq(x, k)8-A6 can be estimated by use of Lemma 2.6 mentioned below. As

for the integral containing zq(x, tc)6-A6,shift it from the right-hand side of (2.3)'

to the left and estimate it together with the second integral term in the left-hand

side of (2.3)'. Then we have the inequality by the same manipulation as in [6].

Q.E.D.

Lemma 2.6. Let r>0 and f£L2r/2for some positive y<(v ―^t)/2. Then the

solution u of (2.4) satisfying the radiation condition belongs to L2rt2and satisfies for

some constant C independent of r, u and f

(2.5) r||≪||r/2<C{||M||(r._2V2+ l!/|U.

Proof. Multiply (2.4) by rru(r=＼x＼) and integrate the result over {＼x＼>R}

(R>0). Integration by parts gives

- [ (x■ A(x) Fxu) rru dS +
[
(Fxu) ■A{x)

[f (^x
+ Px)u＼dx +

JIj?|=jK J|a;|<i? I ＼Y / J

+ ( rr(V(x)＼u＼2--K2＼u＼2)dx = [ rrfudx.

J ＼x＼<R J ＼x＼<R

Taking the imaginary part we obtain

2ot[ rr＼u＼2dx~[ rrlm{x-A(x)(FxP)(x, K)}＼u＼2dS

J|*|<B J＼x＼=B
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= -
f
rrIm [x-A(x){(Fx + (Fxp)(x, >c))u}u]dS

+
f A^-

Im {x-A(x)(Vxu)u}-lm (/≪)1 dx
J＼xi<r ＼r J

Noting that

o^lmix-AixWxpXx, >c)}= 0(x)+O(＼x＼-d)as |ar|-Kx>

and the right-hand side is non-negative for sufficientlylarge ＼x＼,we have for

r
f

rr＼u＼2dx<C＼＼u＼U＼＼u＼＼(r-≫/2+＼＼f＼＼r/2}

lri/ff

-If f＼x-A(x)(Vx + {Vxp)(x, K))u＼2dSY/2

IT i1/2

where we have used the inequality y<(v―ft)/2 and the ellipticestimate

I|F*≪II.<C{||k||,+||/||,},sgR.

The radiation condition allows us to let R-hx>. Dividing the both sides by u＼＼r/2,

we are led to the estimate (2.5). Q.E.D.

With the aid of Proposition 2.5 we now have the limiting absorption principle:

Theorem 2.7. Let ^R4= (L ―ic2)"1and let ft,v be positive constants satisfying

ft<v and ft+ v<2.

(1) For aeR＼{0} there existsa strong limit

s-lim^o+ir = ^a
rlO

as a bounded operator from L＼^v)l2to L＼_^^)n. Further 2HJ for feL2(1+v)/2is con-

tinuous in oeR＼{0} in the L(_j_M)/2-topology'.

(2) For g£R＼{0}and feL＼1+v)/2,u = !R,f is the unique solution of

(L-o2)u=f,

satisfying the radiation condition.

The following proposition is proved in a similar manner as in Propositions

9 3 -3≪H9 A nf rfil

Proposition 2.8. (1) Let p.,v satisfy 0<pt<v and ft+ v<2. For any oeR＼{0}

and f£L2li+y)/2there exists a sequence {rm} tending to infinitysuch that
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limf (r-"|≪l2+ ^l(^ + (M(^. ≪))u＼2)dS=Q

where u = 3iaf and r~＼x＼.

(2) Let /i,v satisfy 0</j<v, pt+ v<2, ft<8 and [i+ 2(＼-d)<v. Let {rm} be any

sequence satisfying (2.6) with these pt and v. Then

[£F(a,rm)fXx)=-ie±'n-x^i/＼l~oeHV^(giaf)(finx) if ±a>Q
V IT

converges to £F(<0/strongly in L＼Sn~l)and

Ari3l.f-3l-.f, /)=||3WII'S≫
Ttl *

Furthermore £F(ct)is independent of the choice of the sequence [rm] specified by

(2.6).

(3) Let p.,v satisfy 0<p.<v<l and /3+ v<min {2/5,1}. Then the operator 3'(a)

initiallydefined on L()+v).2 c≪n ft^extended to a bounded operator from L(iJC)/2to

L2(Sn~l)which will be denoted by £?(#)again. For /eL2(1-i)/2≪w<i0sL2(Sre-1),we

/z≪ye

(£F(ff)/,̂)i2(S≪-i)= lim(£F(a,rm)/, 0W≪-i},

where {rm} is the sequence specified by (2.6) when fi―u and v = v.

Making use of Proposition 2.8. we now arrive at the goal of this section.

Theorem 2.9. (1) Let 0< v<min {2<5,1}. For /eL^s)/2, define

(£F±/)(a,x) = [^(a)f](x) if (a, x)zR±xSn-1 .

Then 2r±can be extended to unitary operators from D-(Rn) to L2(R±xSn~l), which

will be denoted by £F'±again.

(2) For any bounded Bar el function a(X) on R and /eL2(i2"), we have

a(L)f=cF*a(<J2)SF±f

= s-lim( £F(a)*a(ff2)(£F±/)(a, ■)da in L＼Rn),

where e+N = (l/N, N), e-N = (-N, -1/N).

§3. Asymptotic behaviour of certain integrals.

This section is devoted to preliminaries for calculations carried out in later

sections.
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Proposition 3.1. Consider the integral

I(t)=[ e^^aix, t)dx(Q: a domain in Rn).

Assume that the phase function ＼(x,t) satisfiesthe following: ＼(x, t)is a real

C'iQxR+yfunction such that

(3.1) ＼d"xW(x,t)＼<Ca(l+t) for |a|>0, xzQ and t>0.

Moreover, there exist constants C>0 and T>0 such that

(3.2) ＼FxW(x,t)＼>Ctfor xtQ and t>T.

Suppose that the amplitude function a{x, t)is in C°°(QxR+) and there exists a sub-

domain Q0^Q such that for t>0, a(x, t)= 0 if x$Q0. Then for any integer N>0

there exists a positiveconstant Cm such that

＼I(t)＼<Cy sup ＼daxa(x,*)l(l+*)~* for t>T.
xza0

Proof. Let Lx be the differentialoperator defined by

(i
-0*/x*' w≫j)

Then the formal adjointL$ of Lx is given by

(3.3)

L*=
t
{l + ＼VxW(x,f)＼*)-＼dx＼)(x,t)idXj+C(x,t),
j=i 3 3

c{x, t)=(i+＼Fxw(x,t)＼*)-i+i£dxm+＼rxnx, oi2)-1^/)^, 0]

It follows from (3.1) and (3.2) that

(3.4) ＼dsC(x,t)＼<Ca(l+ tyi for xzQ and t>T.

Since eiru't)= Lxeirixa),integration by parts shows that for any integer N>0,

(3.5) I(t)=
[
e^-^LtYaix, t)dx.
JO

The assertion of the proposition is easily deduced from (3.1)-(3.5). Q.E.D.

The following proposition is proved in Ikebe-Isozaki [4] and prepared just for

Theorem 4.10.

Proposition 3.2. Consider the integral

I(t)=
[
e^^aix, t)dx(Q＼a domain of Rn)
JO
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Assume that the phase function S(x, t)is divided into two parts S0(x) and S{(x,t):

S(x, t)―S0(x)+Si(x, t) and they satisfy the following conditions'.

(i ) S0(x) is a real C°°(Q)-functionsuch thai

＼daxSo(x)＼<Cafor ＼a＼>0and xeQ.

(ii) There exists a unique criticalpoint x^Q of S0(x): (FxSo)(x0)= 0.

(iii) The Hessian matrix Ao of S0(x) at x = x0 is non-singular.

(iv) Si(x, t)is a real O°{QxR+)-function such that for some <5>0,

|3SSi(a?,t)＼<Cj-d if |≪|>0, x£Q and t>0.

The amplitude function a(x, t) is assumed to satisfy the following:

(v) There exists a subdomain f20<s.Qsuch that for t>0, a{x, t)= 0 if x$Q0.

(vi) a(x, t) is a 0^(0xR+)-function such that

＼d"xa(x,t)＼<Ca for |a|>0.

Under the conditions (i)-(vi)we conclude the following:

(1) We can find constants T>0 and C>0 such that for any t>T there exists

a unique criticalpoint x(t)£Q of S{x, t): (PxS)(x(t),t)~0 and ＼x(t)―xo＼<Ct"d.

(2) We have the following asymptotic expansion as t-^oo:

/(O = (27rr|detA0＼-l/H^/ze^MeiS^w'na(x0, t)+R(t),

＼R{f)＼<Ct-nn-&for t large,

where a is the signature of Ao and C is a constant independent of t large.

§ 4. Invariance principle; proof of Theorem 1.3.

In this section we shall prove Theorem 1.3. We verify the theorem only for

Q+(<p(Li), <f>(L0))since i2_(0(Li), 0(LO)) can be treated in a similar manner.

Let r]{r) be a C°°(/2f)-functionsuch that 0<^<l, 7](r)= 0 if r<l and rj(r)= l if

r>2. Set for any </>(<?,sfyeCTiR+xS"-1)

(4.1) vt(x, o) = e-in-^i/iC^)-1/%r)e-nx''^(a, x) (r=＼x＼),

(4.2) g^x, o) = {-/lA+V{x)-oz)Vt(x, a)

= a*(x, o)erp<-x-a＼

where p(x, a) is introduced in Definition 2.2.

Lemma 4.1. Let (J>(o,̂ gC^R+xS71-1) and v^x, a), a^x, a) be given by (4.1),

(4.2). Then

＼x-A(xWx + (FxP)(x, a))vJx, ^I^CXl + la;!)-1-*-1"-1^2,
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ffiatix,a)＼<Ck(l+ ＼x＼)~1~ifor any integer k>0.

Proof. For |j?|large we have with C0=<rCM-3)i!i/4(27r)~1/2

£-A(Fx + (FxP))Vt=Coe-pX'(A-I)Fx<p,

a^Ca{~a*+V~-(Fxp)-A(Fxp) + JAp + 2(PxP)-(A-~I)(Fx<p)}.

The assertion is easily deduced from Proposition 2.3 and the fact

Px<p=O(＼x＼~i)as |#|―mx> Q.E.D.

Proposition 4.2. Let <p(o,#) C"(l?.txS"-1) <mJ #,≫(#,<x),g^-r, a) be defined

by (4.1),(4.2). Then

&{o)*<p(o, ■)=-ivt( ■, a)+i3l-,g^ ■, o).

Proof. Let //,v be given as in (3) of Proposition 2.8. Lemma 4.1 and Theo-

rem 2.7 show that g^x, ff) L^!)/2 and

For /eL^4j)/2 let u-SiJ and {rm} be the sequence specified by (2.6) with these

,≪,v, / and ≪. By Green's formula we have

＼ (u<3f―fv)dx
J|jr|<rTO

[x -A{{VX + (Fxp))u}v, -ux-A(Fx + (Fxp))v^

+O(＼x＼-s-^-inu^ldS+i(SF(a, rm)f, <p)LKSn-h.

Letting m->co we obtain

i(3(p)f, 0)=-(/, *＼0+ (≪,g*),

where we have used (1) and (3) of Proposition 2.8. The assertion follows from

the above identity. Q.E.D.

We now choose arbitrary numbers au a2 such that 0<<;1<<72<oo. Let I be

an open interval defined by I=(ou a2).

Lemma 4.3. Let $(Z) be the function given in Theorem 1.3. Let <p(o,x)sC

(SxS*-1) and gJx, a) he defined by (4.2). Tnen

lim
Ve-i*i'2≫&-.gt(

･ , a)da = 0
4-.OOJo

Similarlyas in Lemma 3.4 of Mochizuki [13],this lemma is derived as a

corollaryof the following
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Proposition 4.4. Consider the integral

Jo

for s, tzR+ and xgRk＼{0}, where K(x, a) is the function introduced in Lemma 2.1

and functions $(X),a(a, x) are assumed to possess the following properties with an

interval I―{au a2)(Q<(Ji<02<oo):

(i) <j>(l)is a real C°°(R+)-functionsuch that for some constant m>0,

(4.3) <i>'(X)>mif o＼<X<o＼.

(li) a(o, x) is a C^-function supported in Ix{x£Rn; |.r|>l} and satisfies

(4.4) ＼(%a(o,x)＼<Ck(l+ ＼x＼)~1~sfor any integer k>0,

where 8 is the same constant as in Assumption 1.1.

Then there exist positive constants T and C independent of s, t such that if

t>T, then

||/(･ , s, t)＼＼<C(s+t)-1-'for any s>0.

Proof. We set

(4.5) d―vam{(7U max).

Choose a partition of unity {xj}j=uz on R+ such that ii(X)= 0 for k>5d/& and yi(l)

=0 for /K3rf/4. We set

Ij(x, s, t)= U＼x＼/{s+t))I(x,s, t)(j = l, 2).

1st Step. We shall estimate L{x, s, t). Putting x = (s + t)y we have

ms+t)y, s, t)= {(s+t)＼y＼}-^-l^＼%-ir^v^Xi(＼y＼)a(a,(s+t)y)do;
Jo

＼(a,y, s, t)= W0(<J,y, s, t)-Y((s+t)y, a),

W0(o, y, s, t)=o2s + <p((j2)t-o(s+t)＼y＼,

where Y(x, o) has been introduced in (2.2). Then it follows from (4.3) and (4.5)

that

＼dc＼Q(a,y, s, t)＼= ＼2as+2o0'(o*)-(s+t)＼y＼＼>jd(s + t)

for (a, y, s)er={(ff, y, s); oeZ, ii(＼y＼)^0,s>0}. By (2.3) there exists a constant

2v>0 such that if t>T and (o, y, s)eF, then

＼daY((s+t)y, a)＼<jd(s + t).
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Hence, we obtain the inennaiitv

＼da＼(a,y, s, t)＼>j-(s+t)

for(a, y, s) F and t>T'. We also have for any integer k>0

＼dka＼{a,y, s,t)＼<Ck(l+s+t),|3*{zi(|y|M^(s+t)y)}＼<Ct

if(g, y, s)ef and t>T'. Thus we can apply Proposition3.1 to obtain for any

s>0, t>T and large integer 7V>0

＼ms+t)y, s, t)＼<CN(s+t)-N

uniformly for ＼y＼<5d/A,which gives

(4.6) !!/,(.,s, t)＼＼<CN(s+ty*

for s>0, t>V and iV large.

2nd Step. In order to estimateI2(x,s,t) we need the following

Lemma 4.5. For any Ma, ^eCnTxS"-1) let A(s, t)be definedby

[A(s, t)(pXx)^r-'n-1'/2＼e-il"2s+^^t-KCx'^l2(＼x＼/(s+t))a(a, x)<p(<r,x)da

Then there exist constants C>0 and T>T' such that for any s>0 and t>T,

(4.7) ＼＼A(s,t)<p＼＼<C{s+ty^U＼＼^sn^.

Hence the operator A(s, t) can be extended to an operatorfrom L＼l'xS""1) to L＼Rn)

with bound C{s-＼-tyx~b.

The proof of the lemma will be given in Section 5. It now follows from the

inequality (4.7) with ip(o,x)= l that

n/2(･, s, mKQs+tr1-*

for any s>0 and t>T. Combining this with (4.6) we are led to the assertion of

the lemma. Q.E.D.

The following result stating the asymptotic behaviour of e~u^CL°as £-≫oois

derived from Theorem 2.9, Proposition 4.2 and Lemma 4.3.

Theorem 4.6. Let <j>(X)be as in Theorem 1.3. Let u L2(En) such that 3<+u

tC?(R+xSn-l＼ and define for d>(a.x)&C?(R+xSn-1)

u%(x, t; </f)=-i['e-it*c'i%(x, a)da
Jo

= g-(K-l)n/4(27r)-i/23?Wr-(≫-l)/2^-i,^fl2K-^^o))^((?)^^
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lim||e-^(Ll)≪-<( ･ , t; £F+≪)II=O
It-oo

Remrk. When
<f>(A)=V A,

u%(x, t; £F+w) corresponds to the asymptotic wavi

functions constructed in Mochizuki [13] and the author [6], but in our setting

where the potential V(x) is in a long-range class, K{x, a) is not a linear functioi

of a and therefore w cannot be described as a modified diverging spherical wave

Lemma 4.7. Let <f^A) and K(x, a) be given as in Theorem 1.3 and Lemma 2.1

respectively. Then we have CK>(J?'1＼{0})xR+)-functions x($, t) and o(£,t) possessing

the following properties: For any compact set B in i2w＼{0} there exists a positivi

constant T such that if g£B and t>T, then

£= (F≫£)(ar(£,t)＼<r(f,t)＼

2,/(£,t)4>'(a＼?,t))t=(daK)(x(t t), *(?, t));

ISfCard, t)-2$<p'(＼mt)＼<Ca(l+ty-s,
(l≪l>0)

|3|(≪/(?,t)-＼$＼)＼<Ca(l+ty＼

where the constant Ca>0 is independent of £eB.

This lemma is a consequence of the inverse function theorem and since the

proof can be carried out similarly as for Lemma 6.1 of Ikebe-Isozaki [4] (see alsc

Proposition 2.2 of Kitada [9] and Lemmas 4.1, 4.2 of Ikebe-Isozaki [3]), we ma^

omit the proof.

Definition 4.8. Let x(g, t) and o(£,t) be as introduced in Lemma 4.7. Define

Xtf, 0=-WI8) + s($, t)-$+t$(a＼e, t))-K(x& t),^, t)).

It follows from Lemmas 2.1 and 4.7 that Xfa t)£COD(Rn＼{0})xR+) and

＼3lX^,t)＼^CJX+t)1-'

for 6e£, a compact set in R*＼{0} and |≪|>0. Put Wt(£, t)=t0(＼%＼2)+X^, t). Then

Lemma 4.7 implies that for any compact set B in i?m＼{0} there exists a positive

constant T such that

W(£, t)=xtf, t), dtWtf, t)= <fco*($,t))

for %gB and t>T. Since K(x, a) satisfies

(FxK)(x, a)-A(x)(VxK)(x, o)+V(x)=o＼

we replace x, FxK(x, a) and a2 by F?W^, t),$ and ^~＼dtW^, t)＼ respectively in

the above equation. Then we get the Hamilton-Tacobi equation
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for $ JB and t>T. Thus we have obtained the time dependent modifier X#(£, t).

Definition 4.9. Let F+ be the operator from L＼Rn) to L＼Rn) defined by

(F+≪)(f)=|f|-(B-1>/2(£F4≪)(|f|,£/|S|),u^L＼Rn),

where £F+ is the operator defined in Theorem 2.9.

Theorem 2.9 implies that F+ is a unitary operator from L＼Rn) onto L＼Rn).

Theorem 4.10. For any u£L＼Rn) we have

＼＼e-"*<.Liiu-Fa-l[e-iW*l'>nF+ii]＼＼-+Qas t->oo,

where W^, t)=t0(＼$＼2)+X^, t).

Proof. Since the operators are unitary, we have only to verify the theorerr

when u(a, x) = (3f ,u){a, x) C0oo(21xSre-1)with I={au a2) (0<(;1<(72<oo). The prooi

follows the same lines as in Lemma 6.3 of Ikebe-Isozaki [4]. Let≪=inf {2a^f(a2)

aeS} and b = sup{2a^(a2); osl}. We cover R+ by three open subsets cUi = (0, a)

cU2 = (a―2e, b + 2s) and cVz ―(b, oo), where e is a sufficiently small positive constant

Let {xj}j=n 2,3 be a partition of unity subordinate to this covering such that Xi(s)~(

for s>a ―£,x2(s)= l for s£[a, b] and ^3(s)= 0 for s<b + s. We set

fj(x, t)= yj(＼x＼/t)w(x, t; u), 7 = 1,2,3.

1st Step. We begin by estimating fix, t) for /=1,3. Putting x = ty we have

fj(ty,t)= e-^-^＼2Tz)-^Xj{＼y＼i＼eir^y^h{G, y, t)da
Jo

＼(a, y, t)= ＼o(a, V, t)-Y(ty, o)

＼0(a, y, t)= t(a＼y＼-<p(e*)＼

Ka, V, t)= V(t＼y＼Xt＼y＼y^/2u(o, y/＼y＼)

with Y(x, a) introduced in (2.2). Put

Qi = {{o, y); e l＼ xj(＼v＼)*0},j=l, 3.

Then we have with some constant C>0

(4.8) ＼da＼0{a,y, t)＼>a(l + ＼y＼)

for (a, y)$Qj, j=l, 3. In fact, since da＼Q(a, y, t) is calculated as

d.Wo(a, y, t)= t{＼y＼-2a<f>＼a2)＼

it follows that if (a. v)eQ,. then
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＼da＼,(a,y, t)＼>s[l+(a~~e)Tlt(l+ ＼y＼).

Next, take a sufficiently large constant i?0>0 such that i?o(l + i?o)"'>3/4 and

6(l+i?0)-1<l/4. When (a, y)£Qz, we have

(e(l + R0)-H(l + ＼y＼)if ＼y＼<R0

＼d.W0(o, y, t)＼>＼
kl+M)/2 if ＼y＼>R0

Thus we have shown (4.8). On the other hand, it follows immediately from (2.3)

that for t large,

＼daY(ty,a)＼<C[t(l + ＼y＼)r5.

Hence we can find positive constants C and T such that

＼da＼(o,y, t)＼>Cta+＼y＼)

for (a, y)eQj, j = l, 3 and t>T. Noting that

＼%W(o, y, t)＼<Ckt(l+＼y＼),
(k>0)

＼3kJi(a,y, 0l<CfcWl + |?/|)]-("-1)/2

for {a, y)zQj, j=l, 3 and t>T, we can use Proposition 3.1 to obtain

＼ftfy, t)＼<LCwt-≫a+＼v＼)-N, j=l, 3

for any large N>0 and t>T. Therefore we have for j=l, 3

(4.9) ||/X ･ , 0ll->0 as ^->oo.

2nd Step. We now choose {cVj}j=U2,3, a covering of R+ such that cy1 = (0, ay),

ci/2 = (o1 ―2e, <r2+ 2e) and cy3 = (<;,,oo). Take a partition of unity {^}j=i,2,3 subor-

dinate to this covering such that <p1(s)= O for s^^ ―e, ^2(s) = l for scl7 and ^3(s)

= 0 for s<<72 + £. Noting that /2( ･ , t)£L2(Rn), we set for 7 = 1, 2, 3

gtf, t)=(2n)-n/^m)＼Rne-ix-'Mx, t)dx,

rj={(y, o, £); Zl(|y|)*0, ozl, f&/|£|)*0}.

We shall estimate #/£, t) for ; = 1, 3. Putting x―ty we have

g/f, 0 = (27r)-Cra+1)/2g-CB-1)^/4^re+1>/VX|fl)

Ji5 Jo

^te, ff,f, 0 = ^0(1/, a, f, /)-F(^, ff),

Ky, o, t)=xz(＼y＼Ht＼y＼)＼y＼^n^/2u(o,y/＼y＼)
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Then it is easily seen as in 1st Step that for some constant C>0,

＼Fy＼0(y,a, |, t)＼>Ct(l+＼m

if (y, a, £) /＼ j = 1. 3. If we take account of the ineaualitv

＼PvY(ty,a)＼<C[t(l+＼m-s

for (y, a, ^)£fj,j ―1, 3 and t large, then we can find positive constants C and T

such that

＼pyw(y,a, e, t)＼>aa+m

for t>T and (?/,a,£)er1t 7= 1, 3. We also see that

＼d"yW(y,a,£,t)＼<Cata + ＼$＼),
(kl>0)

＼d$h(y,a, t)＼<Ca

for (y, a,i)£fj,j ―1, 3 and t>T. Thus we can apply Proposition 3.1 to the y

integral to obtain for any integer 7V>0 and t>T

l^(l£l)(
ne~iriy'''^h(.y,

a, t)dy＼<CNt-≫(l+＼!;＼yN, j = l, 3

uniformly in a£l. Hence we have

(4.10) llgX ･ , *)ll-≫0as *->oo, j = l, 3.

3rd Step. Rewrite g2(f, t) as follows:

g2(£,̂ )= (27r)-cn+1)/2g-c"-1M/4^+1)/V2(lfl)

X
f (V"^.

≪.≪.≫h(y, a, t) dady ;
JRn}o

S(y, a, f, t)= S0(y, a, $) + Sx(y, a, t),

S0(y, o, £)= y£ + 0(o2)-a＼y＼,

Si(y, a, t)=~~t~lY(ty,a),

Ky, o, t)=li(＼y＼)v(t＼y＼)＼y＼-^^/zu{o,y/＼y＼).

Then it is easily seen that the following inequalities hold:

＼%%So(y, a, £)＼<Cak, ^yd^S^y, a, t)＼<Cakt~s,

＼%dth(y, a, t)＼<Cak (|a|>0, k>Q)

for (y, o, ^)gP2 and t large. Thus we have checked the assumptions (i) and (iv)-

(vi)of Proposition 3.2. Let B={$ Rn; ^(ISD^O}. For $gB there exists a unique

critical point (2&5'(|6|2),|<j|)of S0(y, a, £). Let A0(f) be the Hessian matrix of S0(y,
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a,£)at (y, ff)=(2£0'(|£|2),|f!) and sign Ao its signature. A direct calculation yields

detAo(£)=(-l)W(|£|2))-(B-'＼

sign/to= ―(≪―1)

for £ei?, hence det ACO^O since 0'(/O>O. Thus we have a unique critical point

(vM, t), ac(i, t)) of S(y, a, q, t) for t large and £gB if we apply Proposition 3.2,

(1). Noting that

tS(yc(Z, t),<;,(?,0, f, 0=^(^, 0,

M2cT(ifi2), ia o=i2e^'(ifi2)i-w-i)/ffi(iei, e/i^i)

when f ^ and t-+oo, we obtain by Proposition 3.2, (2)

uniformly for f 5 as ^->oo. This shows that

(4.11) ||02(･ , t)-e-iW*l"≫F+u＼＼-+Oas *-≫oo

since F+u vanishes outside B. Hence the assertion follows from combining (4.9)-

(4.11) and Theorem 4.6, and using the inverse Fourier transformation. Q.E.D.

Proof of Theorem 1.3. We have already constructed the time dependent

modifier Xtf, t). Theorem 4.10 implies that for u£L2(Rn),

This together with the unitarity of e~u^L^ and F*F+ in L＼Rn) shows that

＼＼eWLtie^t*iL$^*wu^F*pQU＼＼_+Q as ^^oo.

This yields the existence of i3+(^(L,),0(LO)) and

Q+(<f>{U),f(Lo))=FSFo,

which implies the unitarity and the intertwining property. In particular if we

take <j>{X)=X,we have

Q+(Llt Lo)=F*Fo.

Similarly we obtain

Q-i^L,), 0(Lo))^F?Fo

if we set

(F-≪xo=i^i-("-1)/1(3r-≪x-ifi, -e/iei)

with £F_introduced in Theorem 2.9. Q.E.D
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Remark. For an interval I=(o＼, aV)(0<<7i<<x2<oo), let

J.r(l)u= (2n)-i/2[2e~nx-^^n-lUi/i rfrrXSBtuXo, x)da

(SFtuXa, x) = (2n)~n/2(j(n-1)/2( e-ia*-yu(y)dy .
JRn

Then we have another type of the invarianceprinciplefrom Theorems 4.6 and

4.10 similarlyas in Mochizuki-Uchiyama [15](see also Kako [7]):

O+(LU Lo)<So(T)=s-lime"'c'-'i)/+(/)e-"<"L≪>£o(/),

where g<>(}.)is the spectral measure of Lo

§5. Proof of Lemma 4.5.

This section is devoted to the proof of Theorem 4.5, which will be carried

out along the ideas in Calderon-Vaillancourt [1] and Mochizuki-Uchiyama [15].

Lemma 5.1 (Calderon-Vaillancourt [1]). Let I be a bounded interval of R and

let B(r) with rzlbe a weakly measurable and uniformly bounded family of operators

in a separable Hilbert space M- If

＼＼B(r)B*(r')＼＼<h＼r,r'＼＼＼B*(r)B(r')＼＼<ti＼r,r')

for r, r'e/ with a non-negative function h(r,r') which is the kernel of a bounded

operator in L＼T) with norm bounded by M, then the operator // B(r)dr defined by

(f B(f)dry=＼tB(r)fdr, f£J{

is a bounded operator in M with norm bounded by M.

Let C(a?)be a Cr(J2B)-function such that Q<C<1, C(a?)= l if |x-|<l and C(ar)=O

if ＼x＼>2. We set

(5.1) 6.C. I r, x, s, t)=Z(^fx2(＼x＼/(s+t))2a(a,x)a(X, x),

6(0, X, r, x, s, t)=A2s+0(Z2)t-K(x, A)-[0*s+<p(<j2)t-K(x, a)l

where r=|#|, x=-x/＼x＼and e>0.

Lemma 5.2. Let BXs, t) be the operator defined bv

[fl.(s, t)<p](<j,x)= IV <･'■≫･≫■･*.･･≫fc(≪x, x, r, x, s, t)d>& x)dldr

for (pG.L＼2xSn~l). Then we can find a constant T">T' having the following

property. For any s>0 and t>T" there exists a constant e0 such that if s>0, t>
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T" and 0<s<£0, then Be(s, t)is bounded in L＼SxSn'x) and satisfies

＼＼Be(s,t)＼＼<C(s+ t)- +s＼

where the constant C>0 is independent of s, t and e.

Proof. For s>0 and t>T', put eo=3/d(s+t), where d is the constant given

by (4.5). Let /,,,t,,be the interval defined by lt,t,,= [3d(s+t)/4, 2/s] for s>0, t>

V and £6(0,e0). Note that the support of he in r is contained in /s,≪,£.We define

the family of operators in LHIxS71"1) with parameters 5, t and s by

[B.(r, s, t)<I>Jp,x )=[ei6^x-r-*'s-≫bio, I r, x, s, t)</>(lx)dl

Bs(r, s, t) is bounded and selfad joint in L＼SxS"-x). Sine

WBlr, s, t)＼＼<sup
if f
＼b.{a,X, r, x, s, t)＼*dodl＼/2,

Then each BXr, s, t) is bounded and selfadjoint in LHIxS71-1). Since

it follows from (4.4) and (5.1) that

＼＼Blr,s,t)＼＼<C

for t>Tf, s (0, so) and re/Ml£. Furthermore Lebesgue's theorem implies that

R.(r s t＼is strnncrivrnnHnnons in ref. , . and thus

Be(s, t)=＼ Bt(r,s,t)dr

Now we claim that there exist a constant T">T and a kernel h.(r,r',s,t) such

that if s>0, t>T", £(0, £0)and r, rfel,t., then

(5.2)

(5.3)

＼＼Bt(r,s, t)Bt{r', s, t)＼＼<h%r, r', s, t),

J'..≪..

f
hir, r', s, t)f(r')dr'

2
dr

<C(s+0-4(1+4 |/<V')|W

for f(r)eL2(Is,t,e),where the constant C>0 is independent of s, t and s. To this

end, consider the kernel function GXa, k,r,r',x, s,t) of BXr, s,t)BXrf,s, t):

G.((T, X, r, rf, x, s, 0=f ***<"･･･i-r-''･**･"g^, a, 1, r, r', x, s, t)dfi;

Wifi, a, 2, r, r', x, s, f)=8(o, p, r, x, s, t) + 0((t, x, r, x, s, t)

= -(K(rx,fi)-K(r'x, v))+a2-o*)s

+ W2)- <p{e*))t+K(rx, o)-K(r'x, X),
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g,{n,a,1, r,rr,x, s,t)―b,(a,p, r, x, s,t)be(fx,X,r',x, s,t).

Then it follows from an immediate calculationthat

dpW{fi,a, X,r,r'',x, s,t)= -(r-r')(l+Z(pi, r, r',x));

Z{(x,r,rr,x)-[＼drd(iY){{Tr+{l-ry}x, n)dz,
Jo

with Y(x,o) defined by (2.2). In virtue of (2.3), there exists a constant T">T

such that if t>T", r, r;£ls,t,eand pel, then

＼Z(fi,r,r',x)＼<l/2,

＼dkpZ(/x,r,r',x)＼<Ck for any integer k>＼.

Hence the following inequalities hold if t>T", r, /ei,,≪,6and a, a, XsZ:

＼dfW(fji,a, X,r,r',x, s, t)＼>^-＼r-r'＼,

＼d*W(fi,a,1,r,r',x, s,t)＼<Ck＼r-r'＼for any integer k>2.

From (4.4) and (5.1) we have for any integer k>0

|3*g2(/i,a,I, r, r',x, s,t)＼<Ck(s+ t)-ia^

if t>T"', £(0, £0),r, r'£ls,t,iand n, a, teZ. We can now apply Proposition 3.1

to get for any large integer N

＼Glo,I r,r',x, s, t)＼<CN(s+t)-H1+d＼l+ ＼r-r'＼)-N

if s>0, t>T", s (0, £o),r, r' /s,t,£and p.,a, tel, which implies that for s>0.

t>T", £(0, so)and r, rf£ls,t,t,

＼＼B.(r,s,t)Blrf,s,t)＼＼<CN(s+ty^l+i＼l+＼r-r'＼yN,

where the constant Cn>0 is independent of 5, t and e. Hence the function h,{r,

r', s, t)=VC^(s+t)-2C1+s＼l+＼r-r'＼)-N/2 fulfills(5.2) and (5.3) for iVlarge. Apply-

ing Lemma 5.1 to Be(s, t), we conclude the proof of the lemma.

Proof of Lemma 4.5. By (2.3) there exists a constant T>T" such that ii

t>T, ＼x＼>Ms+t)/4 and ael. then

＼daY(x,a)＼<^-＼x＼,hence ＼daK(x,a)＼>^r＼x＼.

We apply Proposition 3.1 to [A(s, t)<p](x)to obtain for large N

＼[A(s,t)<p](x)＼<Cs,t(l+＼x＼)-Nif t>T,

that is, A(s, t)ipzL＼Rn) for each s>0 and t>T. Therefore we can use Lebesgue's
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theorem and Fubini's theorem to get for s>0 and t>T

＼＼A(s,O0lla= Hmf Mtx)[A{s, t^Jx^dx

= lim (2?t(s, t)<p, 0)i2(jxsn-i) ･

lit

This and Lemma 5.2 complete the proof of Lemma 4.5.

§6. Proof of Theorem 1.7.

Lemma 6.1. Suppose that Assumption 1.6 is fulfilled. Then

(6.1)± IKZ^-LoJe-''"^'^!-^ as t->oo

for u£g) = {u S(Rn), the Schwartz space; ueCT(Rn＼{0})}, where

g-iWi (t)=-g*itHo-iX±(.f)

Proof. It is sufficient to prove only (6.1)+. since (6.1)- is similarly verified.

For u <3)we set

f(x, O = (L1-Lo)e-*B'+≪>≪(ar).

Let {xj}j=i,2 be a partition of unity on i£+ such that zi(s)= 0 for s>l/2 and %2(s)=

0 for s<l/4. Put

/X^, O=zX4kl/o/(^, 0 (;=l, 2).

We shall first estimate fi(x, t). Putting x = ty we have

A(ty,t)=＼ eir≪<v'na(e,y,t)de;

W{t,y,t) = W^,y,t)-X^,t),

V≪(5,v,t)=Ky£-＼Z＼),

atf, V, t)= (2n)-n/2Xi(4＼y＼)l
£
{{a^{ty)-d^^k +

-i(dXja^)(ty)^}+V(ty)]u^).

Let r={(£, ?/); ≪(?)=^0, zi(4|y|)^=0}. It is easily seen that for (£,?/)g/' and ^>0,

|P≪£, y,t)＼>ft.

On the other hand, by (1.2) there exists a large constant T>0 such that

＼rex+& t)＼<jt
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for t>T and fesupp it. Hence the following inequality holds:

IW£, v, t)＼>＼t for (£,y)zf and t>T.

We also obtain for any a

＼31W($, y, t)＼<CJ, |5|a(f,y, ^)|<Cff

if (f, ?/) /" and ^>T. We can now apply Proposition 3.1 to get for any integer

＼fi(ty,t)＼<CNt~N

uniformly for ＼y＼<l/2,which implies that

(6.1) IIAC-, t)＼＼<LC≫tr≫

for t>T. As for fi{x, t), we have with some positive constant C

II/.C･ , OII<Csup{|^U)-^|, ＼dX]ai＼x)＼,＼V{x)＼;

＼x＼>t,j, k = l, -･･,≫},

which together with the assumption gives

ll/i(-.0II^C(H-0-*.

Combining this and (6.1) we have

＼＼(L1-L0)e-iW+wu＼＼<.Ct-i

for t>T. This completes the proof.

Proof of Theorem 1.7. The firsthalf of the assertionin the theorem is an

immediate consequence of Assumption 1.6 and the followingtwo well known in-

equalities(cf.,e.g.,Lax-Phillips[101 p.95 and Mizohata [121 p.451):

＼

＼X＼<R

jRn

＼f＼*dx<

dx<

R2

2(n-2)

4

(n-2)2

[
＼Pxf＼*dx,R>0,

＼

nW*f＼2dx

1ZI!

＼x＼*

for n>3 and fs.C {Rn). We shall show the last half only for W+ since W- can

be treated in a similar manner. It sufficesto show that

(6.2) Jim ＼＼(J-DUo(t)fmf＼＼jc^O

for f―＼fu fz) with /i, /2e^} since 3) is dense in ＼_<D(H0)]and the operators are

uniformly bounded. The proof of (6.2) to be carried out below is essentially the
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same as for Theorem XI. 76 of Reed-Simon [17]. Recall that J=TrlT0, and // is

calculated as

Jf=＼H?Hofu f2).

If u(t)is the firstcomponent of U0(t)Jt{t)f,then

＼＼{J-I)U0{t)Ji{t)f＼Yjc,=＼＼HlHTlHo-r)u{tW

HKflo-ffiMOII'.

Since

u{t)= --{e- +≪＼fl+ iH^fz) + e-iW-"＼fl-iH^fi)}

it suffices to show that for usW,

(6.3)± ＼＼(Ho-H1)e-iw±(≫u＼＼= ＼＼e±itlIi(Ho-Hi)e-m±wt*＼＼-+Oas *-k≫.

We shall prove only (6.3)+. Hereafter we denote e~m+U) by e~iwa＼ By Theorem

1.4 we know that

eUHiHoe-ilvlt>u->Q+HoU as f->oo.

Hence to obtain (6.3)+, we have only to show that

(6.4) eUHlHle~m'wu = H^^e-^'^u-^H, U-u

since HXU,=L^HO by the intertwining property. For uzQ) we have

= ||^1eit^e-iwr("M|r + ||^1i2+≪|r+ 2?(O,

where we have put

R(t)= -(Hlemiie-iW(-nu, H,Q+u)-{H,Q,u, HxeUB*-m u)

Since R(t) converges to ―2＼＼HiQ^u＼＼2,in order to conclude (6.4), it remains to show

that

XimWHye^e-w^uWLKWHSJM?.

In fact, the left-hand side of the above inequality is calculated as

lim ＼＼HleitH'e-iwa'u＼＼2^＼im(e-iwwu, Lle~iwu^u

*-.oo J-oo

)

= lim(e-iw u, Ue~iwwu)
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^HouW^WQ+HouW^WHiQMY.

In the second equality we have used Lemma 6.1. Thus we have completed the

proof of the theorem.
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