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SCATTERING THEORY FOR WAVE EQUATIONS
WITH LONG-RANGE PERTURBATIONS

By

Hirokazu IwasHITA

Introduction.

In this paper we are concerned with the existence and completeness of modi-
fied wave operators for the wave equation with long-range perturbations :

Gt Lu=0, L=—31 9, a’(@)ds,+ V(z) in R*(n>3).
Jrk=1

Scattering theory for the Schrodinger operators — 4+ V with long-range pertur-
bations has been extensively investigated and already reached a satisfactory stage,
while few have been known about long-range scattering for classical wave equa-
tions. It is well known (cf., e.g., Reed-Simon [17] and Mochizuki [14]) that the
Schrodinger and classical wave equations are related by the invariance principle
of Kato and Birman theory in short-range scattering and it has been expected
that also in long-range scattering the invariance principle allows us to treat clas-
sical wave equations.

In the present paper we first prove the invariance principle for modified wave
operators intertwining L and —4 which is applicable to the wave equation. As
for the invariance principle in long-range scattering, several authors have studied
it for modified wave operators intertwining —4+ ¥V and —4 which are known to
exist (cf., e.g., Matveev [11], Chandler-Gibson [2] and Kitada [9]). Our approach
is quite different from those of the above authors, however similar to that of
Mochizuki [14]. We employ a spectral representation theory to justify the inva-
riance principle directly, which means, with no knowledge of the existence of time
dependent modified wave operators for the Schrodinger operator L. This method
is influenced by Ikebe-Isozaki [4]. However an L2-estimate of an integral operator
plays a crucial role in place of the stationary phase method (see Proposition 4.4).
The invariance principle assures the existence and completeness of modified wave
operators for the wave equation in the square integrable space, from which we
construct modified wave operators in the energy spaces by modifying the results
of Reed-Simon [17], based upon two-Hilbert-space scattering theory of Kato [8].

Received May 7, 1984.



86 Hirokazu IwasHITA

§1. Assumptions and statement of the main results.

Consider the following Schridinger operators in R"(n>2):

Li=—d=-3% 8,
i=

Li=—d4+ V)=~ 2 91 (@*(@)3e, )+ Vi),

where 0z,=0/0s; and the coefficients ¢’*(z) and V(x) are supposed to satisfy the

following

AssumpTioN 1.1. (A) The real symmetric matrix A(z)=(a’*(x)) is a C* and
everywhere positive function of z over R"™ such that for some positive constant
0<1,

1.1) |63(a?(2) = 07)| L Co(1+ | ])~"12
for any non-negative multi-index a=(ay, -+, a,) and 1<j, k<n, where ¢/* is Kro-
necker’s delta and |al=a,+---+an, 05=05---05.
(V) Vi(z) is a non-negative C*(R™)-function such that
|05 V()| <Co(L+|z|) 1

for any non-negative multi-index @, where 8 is the same constant as in (A).

Under Assumption 1.1 the formal differential operators L,(j=0, 1) have the
unique selfadjoint realizations in L*(R"™), which will be denoted by L; again. Then
note that L; have no point spectrum.

Let ¢(2) be a real C*(R.)(R.=(0, o)) function such that &' (D=(dg¢/d))>0
for 2¢R.. In order to formulate our main results we require time dependent
modifiers X;..(&, #) associated with L, and ¢(4), which are real C"((R™\{0})xR.)-
functions possessing the following properties: Given any compact set B in R"\{0},
we can find a positive constant 7' such that if &eB, t>7 and |a| >0, then

(1.2) IagX¢,i($y t)'éca(1+t)l—5 ’

where & is given as in Assumption 1.1 and the positive constant C, is independent
of £eB, and the functions W, (&, )= +i6(|€|D)+X,,+(, t) solve the equations

W26, =1E AW W,,2(&, 03+ VIV Wy,4(E, 1))
for £eB and ¢>T, respectively, where Pe=(0,, -, 0¢,)-

DerINITION 1.2. For time dependent modifiers Xy, (&, £), define

e X4, : Wy = [~ [etXy,2 O Fou] for ue L*(R™),
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where F, is the Fourier transform :
Fa =)= e~ u(z)da.

THEOREM 1.3 (Invariance principle). Let ¢(2) be a real-valued C™(R.)-function
such that ¢'(2)>0 for any 2eR.. Under Assumption 1.1 there exist time dependent
modifiers Xy, (5, 1) such that the modified wave operators

(1.3) Qu($(La), P(Lo))=s-lim e*pteTitéEo=i%e.® in LAR")

exist and are unitary from LAR™ onto L*(R™ with the intertwining property. Fur-
thermore Q.(¢(L), ¢(Lo)) are independent of ¢, that is

Qu(p(Ly), ¢(Lo))=2s(Ls, Lo),
where 2.(L,, Ly) are obtained from (1.3) when ¢(2)=2.

ReMARK. The condition on ¢(1) in Theorem 1.3 is weaker than that of Mat-
veev [11] or Kitada [9] where it is assumed in addition to ours that ¢’’(2)=0 on
R..

We now consider the following wave equations in R*(#>3): For j=0, 1,
(1.4); Gu+Hiu=0,
where each H; is the positive square root of L;: II;=+~/L;. Since ¢(H)=+v'1
satisfies the condition in Theorem 1.3, we have

THEOREM 1.4. Under Assumption 1.1 there exist time dependent modifiers
X.(&, t) such that the modified wave operators intertwining H, and H,,

Qi=s-lim e*HigFitHo—iX (O gy [} R™)
{00
exist and arve complete.
On the basis of Theorem 1.4 we consider the wave equations in the energy
spaces along the ideas of Reed-Simon [17). Let j=0 or 1. Let [D(H})] be the

closure of Q(H,), the domain of H; in the norm ||H;-||, where || - || denotes the
norm in LXR™. Let 4(; be the Hilbert space defined by

I =[D(H ) IDLHR")
equipped with norm
e, =1 el

and define

0o I
Aj=i( ) D)= DHYDDH,),
H2 0

J
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where
DH)Y={ue[PHN]; HueD(H))}

and we are denoting both H; and its extension to [D(H,)] by H,;. Then (1.4);is
written in the vector form:

(1.5); af=—id;f.

The operator A; is selfadjoint in .9, and generates a unitary group of the solution
operator Uj):

cos(H ) H:'sin(H jt)
U;t)=e"""i= : .

~Hjsin(H;t)y  cos(Hjt)
Define

=Vilm, )

Then T; is a unitary operator from 4(; to L*(R"»@L*R") and satisfies

H, 0
TjAjT]T‘ = 0 o
i

o—iti 0
TjUj(t)T;’:( . )

eitHj

and thus

Let J be the identification operator between .4, and .4, defined by
J=T7T,.

Let J5(#) (¢>0) be the modified identification operators between .9, and ., defined
by

Py MO) 0
]j*(l‘)=T}’( )To,
0 e

~iX ()

where ¢7#¥+® are given in Theorem 1.4. Then J&({) and J#() are unitary and
related by

VROEJIHOR

Further it follows directly from the definitions that J() commute with Ult). We
are now in a position to state
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THEOREM 1.5. Suppose that Assumption 1.1 is fulfilled. Let Uyt) (j=0, 1)
and Ji(t) be as above. Then the modified generalized wave operators

We(J)=slim U(F)JF()Uo(£1)

exist on 9o to 9, and are complete. Furthermove W.(]) ave isometries intertwining
Ust) and U\(2).

ProoOF. Since

Ui(F0)J @O Us(£2)
=TT, U(FOT YT T TN ToUl(EDT) T
eiuH:le;i'rHO“‘iXi(L) 0
= Trl( ) Tl) )
0 eTitHipHit Ho~iX (D

the assertion of the theorem follows from Theorem 1.4 and the unitarity of T}
(j=0, 1). QE.D.

We now restrict our consideration to the perturbed equation (1.5), with the
coefficients on which we impose the following

AssuMpTION 1.6. a/¥(x)(1<j, k<n) satisfy (A) in Assumption 1.1 and V{(z)

satisfies
(VY V(z) is a non-negative C°(R™)-function such that

(1.6) V(z)=0(|z|™?) as |x|—>co.

We remark that the hypothesis V(x)eC'(R"™) is put for the sake of simplicity
and V(z) may have certain local singularities (see, e.g., Phillips [16]). It will be
easily seen that the same results as in Theorems 1.4 and 1.5 hold with the time
dependent modifiers X.(¢, #) solving the equations

0 X.(&, t)="TFl€| —VE-A(LE/IE| + T X.(5, D)E}-
We use the same notation as before.
THEOREM 1.7. Suppose that Assumption 1.6 is satisfied. Then 9o and I,
are setwise equal with equivalent norms, and the modified wave operators
W,:s-ltim U(FDT @)U x8)
exist and coincide with W(J). Hence Wi are complete and intertwine U,(t) and
U\(®).

By the intertwining property and unitarity of W., we have the following
result partially extending Phillips [16].
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CoroLLARY 1.8. Let 9° and g% be the incoming and outgoing subspaces
relative to Uyt) on 4, defined by

Y={fedlo; U@®)f=0 for |z|< +t, +¢>0)
(see Lax-Phillips [10], p.99). Define
L=W.9. .

Then @' and 9\ are the incoming and outgoing subspaces velative to U,(¥).

§ 2. Spectral representations for L,.

In this section we shall establish the spectral representations for L=LI, under
Assumption 1.1. We start with

LEMMA 2.1. There exists a real C(R"X(R\{OV)-function K(z, o) satisfying
the following requirements

(1) For any compact set I in R\{O} there exists a constant R>0 such that if
g€l and |x|>R, then
2.1 (VoK ), 0)-Alx)PK)(x, 0)+ V(iz)=0".

(2) Kz, 0)=—K(z, —a) for ¢<0.

(3) 10:04(K(z, 0)—ola)|<Cal(l+|z))~'"(|2| 1)

Jfor any non-negative multi-index a, non-negative integer k and o3, a compact set
in R\{0}, where the constant C. is independent of o€l

This lemma can be proved in a similar method as in Theorem L 16 of Isozaki
[5] and so we may omit the proof.

As for the function K(z, ¢) introduced in Lemma 2.1, we shall find it con-
venient to rewrite K(z, ¢) as follows:

2.2) Kz, o)=0r+Y(x, o) for r=|z|>1.
Then Lemma 2.1 implies that
(2.3) 0205 Y (2, 0)| <Car(1+|z]) 11

for any |a|>0 and integer £>0, where C,; is independent of ¢ in a compact set
in R\{0}.

DerFINITION 2.2. Let Y(z, ¢) be as above. Define a C>-function oz, &) of
z€R" and k=0-+ir with ce R\{0} and reR by

n—1

oo, £)=—ier+¥(a, )+

log7 for r=|z|>1.
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PROPOSITION 2.3. Let o(x, &) be as in Definition 2.2. Then for any rk=o+ir
with o€ R\{O} and <¢[0, 1], we have

& — WV(z)+(Va0)(z, &) A(x) Vo), £)—d40(, £)
=0(lz|")+p(x, )+rq(=z, )

as |x|-—oo, where the functions p(z, ¥) and gz, «) satisfy when |x|—co and |a|=0,
1

9Dz, £)=0(|z|-'"1-%),
92q(z, £)=0(|x|~"*-?)

uniformly in geX, a compact set in R\{0} and -.

Proor. A straightforward calculation yields the following identities :

&= V+Fz0)- AWVzp)— dap

= (ToK)- AT, K)+ V—o?+ 27(2” 3 ”2;1 Trace(4)+

-1 )
R e b, 0+ gz, )

Bz, ;c):i/c%(Trace(A)—n(l))—iZ} (32 @) B0+ 05, Y} +
+iTa0:02, Y,
g(z, ))=2(O—1)—2is(0—1)—2iz- AV, Y,

where F=(%,, .-+, #,)==/|z| and @=P(x)=z- A(z)%. Hence the assertion is easily
deduced from (2.1), (2.3) and the above identities. Q.E.D.

We introduce the weighted L*-spaces to state the radiation condition. For a
real number s, LX) denotes the Hilbert space of all measurable functions # such
that

]l 6= (1+])* u(a)|da
is finite. If s=0 or G=R", we often omit the corresponding subscript.

DerINITION 2.4. Let o(z, r) be as in Definition 2.2. A solution of the equa-
tion
2.4) (L—ku=f

is said to satisfy the radiation condition if
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ueLi i pn and T A(x) Vot Tep)(@, 0))ueLi iinn(2),

where Q={rzeR"; |x|>1} and p, v are positive constants satisfying p<v and p+
v<2.

ProOPOSITION 2.5. Let >0 and 0<p<y, p+v<2. Let u be a solution of (2.4)
with feli..,,, satisfying the vadiation condition. Then there exist positive constanis
C and R independent of &, f and u such that

H(Vz—’r(pr)( <, K) u”%—wu)/z,mmS/C{‘!u”%ﬂ—m/z'i””f”%wu)/z} ,

where E(R)={zxecR"; |x|>K}.

SKETCH OF THE PROOF. Putting =+ Vz0)(x, £))u and p=Im F,p(z, £)/Im
0,p(x, £) with d,=3%-F,, we have (2.3) of [6] with —d,p and § replaced by —d4p
—V and v, respectively, which we denote by (2.3)’. Similarly the identity (2.4)
of [6] holds with —d4p, p(x, £) and B replaced by —dso—V, p(x, £)+7¢(x, £) given
in Proposition 2.3 and v, respectively. We denote this identity by (2.4). The
integrals containing p(x, «) or its derivatives in (2.4)’ can be estimated in the same
way as in [6]. The integrals containing =q(x, £) or its derivatives except for the
term rqg(z, £)8- A0 can be estimated by use of Lemma 2.6 mentioned below. As
for the integral containing rq(x, £)8-A@, shift it from the right-hand side of (2.3)
to the left and estimate it together with the second integral term in the left-hand
side of (2.3). Then we have the inequality by the same manipulation as in [6].

Q.E.D.

LEMMA 2.6. Let >0 and feli, for some positive y<(v—p)/2. Then the
solution u of (2.4) satisfying the rvadiation condition belongs to L%, and satisfies for
some constant C independent of «, u and f

2.5) elfoell; s <Clletll -2+ f Ul -

Proor. Multiply (2.4) by »#(r=|z|) and integrate the result over {|x|>R}
(R>0). Integration by parts gives

_szﬂ (% A(z) Vo) 760 dS +§ (P - Ale) {rr (%56'+Vz)ﬂ}d.r+

1<

r 2__ 20,02 — Sy
+gm<Rr(V(x)|u| ) d g rfads.

[EARS

Taking the imaginary part we obtain

2af§ r’}u]zdx~—g 7 Im {5 A(z)(Tap)(, 0} ul*dS
|zi<R |z1=R
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- “g oror’ I [Z- A@Ha+ (Poo)(, £)u}ildS

Noting that
o7 Im (&- A(@)(Pap)(x, £)}=0(z)+0(2|"?) as |z|—>co
and the right-hand side is non-negative for sufficiently large |x|, we have for

sufficiently large R

TSIzKE 7']uf2dx SC”u”NZ{HuI'(7—2)/24‘ Hf”r/z}

1 2
+_2;{Slx‘;k"v|j'/1(w)(7z+(pr)(x, ))2e|2dS} 2

where we have used the inequality r<(v—p)/2 and the elliptic estimate
WPaaells <Clllaalls+11 f1ls}, seR .

The radiation condition allows us to let R—co. Dividing the both sides by |},
we are led to the estimate (2.5). Q.E.D.
With the aid of Proposition 2.5 we now have the limiting absorption principle :

THEOREM 2.7. Let R.=(L—#>"" and let v be positive constants satisfying
p<v and p+v<2.

(1) For o€ R\(0} there exists a strong limit
S'l,if? Rovie=R,

as a bounded operator from Li.,, to L:.,_,,. Further R,f for feli.,, is con-
tinuous in o€ R\(0} in the Li_,_,,, -topology.

(2) For oe R\{0} and feLi ..., u=R.f is the unique solution of

(L—=d®u=f,

satisfying the vadiation comdition.

The following proposition is proved in a similar manner as in Propositions

2.3 and 2.4 of [6].

Proposrrion 2.8. (1) Let p, v satisfy 0<p<v and p+v<2. For any ceR\{0}
and felLiy... there exists a sequence {rn} tending to infinity such that
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(2.6) limgm=7 a2+ 7| (P + (Tap)(2, o))u|?)dsS=0,

where u=R,f and r=|x|.
(2) Let p, v satisfy 0<p<y, p+v<2, p<do and p+2(1—8)<v. Let {rn} be any

sequence satisfying (2.6) with these p and v. Then

[F (o, rm)fj(ﬁ)z—ie*‘"*”“i“\/g 0" TP (R, f)rnE) if £a>0

e

converges to F(o)f strongly in L¥(S"") and
RS = Reof s =T @ s

Furthermore F (o) is independent of the choice of the sequence {rn} specified by
(2.6).

(8) Let fi, v satisfy 0<fi<v<1 and F+p<min {23, 1}. Then the operator F (o)
initially defined on L% _.,. can be extended to a bounded operator from L. 5,0 to
L3(S™Y) which will be denoted by F(o) again. For feLi ., and ¢eL*S"™), we
have

(E.F(a)f, 9/))142(8"*1):312(&](0, rm)f, §/’)L2(sn—l> s

where {1, is the sequence specified by (2.6) when p=7 and v="r.
Making use of Proposition 2.8, we now arrive at the goal of this section.
THeOREM 2.9. (1) Let 0<o<min {29, 1}. For feLi. 5,2, define
(F o, B)=[F (@) fNF) if (6, D)eRXS5"".

Then F. can be estended to unitary operators from L¥R") to L*R.XS5"™), which
will be denoted by F. again.
(2) For any bounded Borel function a(2) on R and feL*(R"), we have

L) f=Fta(o)F - f

=silim|  Forae Ao, Ido in LR,

ey

where e.xy=(1/N, N), e.x=(—N, —1/N).

§3. Asymptotic behaviour of certain integrals.

This section is devoted to preliminaries for calculations carried out in later
sections.
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ProrosiTiON 3.1. Consider the integral
I(t):SQe”"“"”a(x, £)dz (2 a domain in R).

Assume that the phase function ¥(xz, t) satisfies the following . ¥(x, t) is a real
C(2 X R.)-function such that

(3.1) [05¥ (z, )| <C(1+8) for |a| >0, xzeQ and t>0.
Moreover, there exist constants C>0 and T>0 such that
(3.2) V¥ (x, )| >Ct for xeQ and t>T.

Suppose that the amplitude function a(x, £) is in C*(QXR,) and there exists a sub-
domain 2,€8Q such that for t>0, a(x, £)=0 if x¢2,. Then for any integer N>0
there exists a positive constant Cy such that

)| <Cnx sup |0za(z, OIA+DH~Y for t>T.

laj<N

Proor. Let L, be the differential operator defined by
Lo= £ QP G, 0175 = @ayt0a, D).
j=t 1] I 4
Then the formal adjoint L} of L, is given by

¥ L L+ 17 (=, 1)@= )z, B)ids,+Cla, B),
(3.3) -
Clz, H=A+|VY (x, t)Jz)"‘-FijZ:Il Oz [(L+|V¥ (=, )]?)0:,¥) (=, 8)].

It follows from (3.1) and (3.2) that

(3.4) |0;C(z, )| <C,(1+1)~! for e and ¢>T.

Since "™V =LY integration by parts shows that for any integer N>>0,
3.5) 10=\ ey a(z, b)dn.

The assertion of the proposition is easily deduced from (3.1)~(3.5). QE.D.
The following proposition is proved in Ikebe-Isozaki [4] and prepared just for
Theorem 4.10.

ProrositioN 3.2. Consider the integral

[(t):S e"S@Oq(x, )dx(2: a domain of R™)
2
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Assume that the phase function Sz, t) is divided into two parts Si(z) and Sz, ):
Sz, )=Sy(z)+S.(x, t) and they satisfy the following conditions:
(i) Si(z) is a real C~(Q)-function such that

183S:(x)| <C, for lal 20 and xeQ.

(ii) There exists a unique critical point x.682 of So(x): (FuSo)(xe)=0.
(i) The Hessian matvix A, of So(x) at x=2x, is non-singular.
(iv) Sz, 1) is a real C*(QXR.,)-function such that for some 5>0,

[055:(x, DILCot™? if || =0, €2 and t>0.

The amplitude function a(x, t) is assumed to satisfy the following :
(v) There exists a subdomain Q,€ such that for >0, a(x, £)=0 if z¢Q,.
(vi) a(z, 1) is a C*(Q2XR.)-function such that

07 a(z, DI <Cq for |a|=0.

Under the conditions (1)-(vi) we conclude the following :

(1) We can find constants T>>0 and C>0 such that for any t>T there exists
a unique critical point x@)eQ of S(x, t): (Vad)(x(@), =0 and |x{{)— x| <Ct.

(2) We have the following asymptotic expansion as t—co:

I(t)z(Zn)"’Qdet AOI_1/21—n/ze1im/aeis(m(t).na(wo, t)+R(t),
|R(D)| <Ct=2~% for t large,

where ¢ is the signature of A, and C is a constant independent of t lavge.

§4. Invariance principle; proof of Theorem 1.3.

In this section we shall prove Theorem 1.3. We verify the theorem only for
Q.(¢(Ly), ¢(Lo)) since Q_(¢(Ly), ¢(Lo)) can be treated in a similar manner.

Let 5(r) be a C°(R.)-function such that 0<5<1, »(»)=0 if <1 and 5»(r)=1 if
r>2. Set for any ¢(o, Z)eCy(R.xS*")

4.1) vy(x, 6)=e "I 2a) (et " P(a, E) (r=|x]),
4.2) 9(z, o)=(—d4+ V(z)—d* vz, o)
:(l¢(x, g)e=f ),
where p(z, o) is introduced in Definition 2.2.
LemmMa 4.1. Let ¢(o, 5)eC(R.xS™ ) and vz, o), alz, o) be given by (4.1),
4.2). Then

|2+ A(2) Vot (Fap)(@, )vg(z, o)) <C(L+|z])7"0m "%,
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10% ay(x, o)l <Cr(L+|x])~'~2 for any integer k=0.

Proor. For |z| large we have with Co=e =94 (2z)~1"*
Z- AW+ Vzp))vs=Coe%-(A—=DV:2¢ ,
@, =Cof —0*+ V—(Vap)- AlVzp)+ dap+2(V20)- (A~ D(Fz)} .

The assertion is easily deduced from Proposition 2.3 and the fact
Vap=0(|z|™") as |z|-—rco. QE.D.

ProOPOSITION 4.2. Let (o, #)eCo(R, XS*Y) and vz, o), g4(x, o) be defined
by 4.1), (4.2). Then

Q«'(a)*gb(a, ' ): —i7)¢.( "y G)+i.g?~—ag¢( ‘o 0)~
Proor. Let f, o be given as in (3) of Proposition 2.8. Lemma 4.1 and Theo-
rem 2.7 show that g,(x, g)eL% ;). and
v+, O)=R94 -, ).

For fel?.;,. let u=R,f and {r.} be the sequence specified by (2.6) with these
#, 5, f and u. By Green’s formula we have

g|x|<r gy~ f0)dx
=§m.=, (& A{(Va+ (Pap)t} Dy — - A(Va+(Tzp))0,

+O(|w |2~y GldS+i(F (0, Tm)f) D) gacgn-1, -
Letting m—oo we obtain

(F@)f, ==, v+, 0y),

where we have used (1) and (3) of Proposition 2.8. The assertion follows from

the above identity. Q.E.D.
We now choose arbitrary numbers oy, 0; such that 0<o,;<o,<oco. Let ¥ be

an open interval defined by 2={(s,, 02).

Lemma 4.3, Let ¢(2) be the function given in Theorem 1.3. Let (o, T)eCy
(xS and 9,(x, o) be defined by (4.2). Tnen

lim ”gw e HDIQ_ g - a)do“:O.

t—o0

Similarly as in Lemma 3.4 of Mochizuki [13], this lemma is derived as a

corollary of the following
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ProposiTiON 4.4. Consider the integral
[(x’ s, t):7“”“‘)/zgme‘i’”23*¢"’2”“K(‘T'"”a(a, .r)do‘ (1’2].22[)
0

for s, teR. and xe R"\{0}, where K(x, o) is the function introduced in Lemma 2.1
and functions ¢(2), alo, x) arve assumed to possess the following properties with an
interval Y=oy, 0,)(0<0,<5,<0):

(1) @) is @ real C*(R.)-function such that for some constant m>0,
4.3)  FQ=m if <i<dl.

(i1) ale, x) is a C*-function supported in SxX{xeR"; |x|=1} and satisfies
(4.4) |0% a(o, 2)|<Ce(l+|2|)"'"% for any integer k>0,

o

wheve 6 is the same constani as in Assumption 1.1.

Then there exist positive constants T and C independent of s, t such that if
t>T, then

I+, s, DI<C(s+8)~'=° for any s>0.
Proor. We set
(4.5) d=min {0'1, m0'1}.

Choose a partition of unity {y;};-1,. on R, such that y,(1)=0 for 1>5d/4 and %.(2)
=0 for 1<3d/4. We set

Iz, s, Y=y(lz|/(s+t) (=, s, 1) (j=1, 2).
1st Step. We shall estimate I (x, s, £). Putting z=(s+¢)y we have
L+, 5, H={s+Dlyl)= "= e v 0p((yDalo, (+ou)d;
Il"(ﬂ, Y, S, t):qfo(()’, Y, S, t)—Y((S—*—t)y, U)’
VYo, v, s, )=0"s+¢(a®)t—a(s+1)|yl,

where Y(x, ¢) has been introduced in (2.2). Then it follows from (4.3) and (4.5)
that

18.% (o, ¥, s, t)}z|2as+2o¢’(ae)——(s+t)ly||2—:j-d(s+t)

for (o, v, s)el'={(s, v, 5); 0€Z, y,(Jy])#0, s>0}. By (2.3) there exists a constant
T’>0 such that if £>7" and (o, v, s)el’, then

16, Y((s+2)y, 0)] S% d(s+12).
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Hence we obtain the inequality
) d
10,9 (o, v, s, t)lzg(sﬂ‘)

for (s, ¥, s)el” and ¢>7". We also have for any integer £>0
105%(a, v, 5, D <Cel(l+s+1), |05 {1(|y)alo, s+ <Cy

if (6, ¥, s)el” and ¢>7’. Thus we can apply Proposition 3.1 to obtain for any
$>0, £>7" and large integer N>0

[I((s+8)y, s, D <Cx(s+1)-¥
uniformly for |y|<5d/4, which gives
(4.6) (-, s, OISCa(s+2)¥
for s>0, t>7" and N large.

2nd Step. In order to estimate I(z, s, £) we need the following
LEMMA 4.5. For any ¢(o, £)eCo(EXS™) let A(s, t) be defined by
[A(s, t)¢;](x)=r("*“”SZe“"”2“*“"2”‘1"‘”' ye(lx] /(s+8))a(e, z)d(o, F)do .

Then there exist constants C>0 and T>T' such that Sfor any s>0 and t>T,
(4.7) [AGs, Hll<Clis+2)--%|¢|]

Txgnl

Hence the operator A(s, t) can be extended to an operator Jrom L¥Y X S™ ') to LY R"™)
with bound C(s+t)~'-3,
The proof of the lemma will be given in Section 5. It now follows from the
inequality (4.7) with ¢(s, #)=1 that
o -, 5, OI<Cls+8)1-2
for any s>0 and #>7. Combining this with (4.6) we are led to the assertion of
the lemma. Q.E.D.

The following result stating the asymptotic behaviour of e~ a5 f>co is
derived from Theorem 2.9, Proposition 4.2 and Lemma 4.3.

THEOREM 4.6. Let ¢(2) be as in Theorem 1.3. Let ue L (R™) such that F.u
€CHR. XS""), and define for ¢(o, &)eCr(R,xS* 1)

W (z, £ </;)=—isme"“¢"’z’v,,,(x, 0)ds
1]

= e_(n_l)"i/'4(271‘)_”27](7’)7’_ ("—-l)/ZS:oe—i(qﬂ (eDt-K (=, v)l¢)(0., z) dO'.
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Then
&im”e‘“ﬂwu—w‘;"( -, b Fau)l|=0.
REMRK. When ¢(1)=¢T, wi(z, t; F.u) corresponds to the asymptotic wave
functions constructed in Mochizuki [13] and the author (6], but in our setting

where the potential V(z) is in a long-range class, K(z, o) is not a linear function
of ¢ and therefore w? cannot be described as a modified diverging spherical wave.

LemMA 4.7. Let ¢(2) and K(z, o) be given as in Theorem 1.3 and Lemma 2.1,
respectively. Then we have Co(R™{0) X R..)-functions z(&, 1) and a(&, t) possessing
the following properties: For amy compact set B in R™\|0} there exists a positive
constant T such that if €eB and t>T, then

E=(VK) (=&, 1)), o€, 1),

20(¢, 1) (o°(&, =0, K =&, 1), o, 1));
|82 (w(&, 1)—26¢"(JEMN<Ca(1+0)7,

02 (a(8, )—1ENILCA+D,

(Jarl 20)

where the constant C,>0 is independent of £€B.

This lemma is a consequence of the inverse function theorem and since the
proof can be carried out similarly as for Lemma 6.1 of Ikebe-Isozaki [4] (see also
Proposition 2.2 of Kitada [9] and Lemmas 4.1, 4.2 of Ikebe-Isozaki [3]), we may
omit the proof.

DerINITION 4.8. Let (&, £) and o(¢, #) be as introduced in Lemma 4.7.  Define
Xy, O)=—tg(|e])+a(&, 1)-E+td(a*E, 1) —K(x(£, 1), o§, 1))
It follows from Lemmas 2.1 and 4.7 that Xy(&, H)eC™(R"\{0})XR.) and
05 X8, ) <C(1+2)°

for £ B, a compact set in R"\{0} and |a[>0. Put W, H=tg(|€|1D)+ Xy £). Then
Lemma 4.7 implies that for any compact set B in R™0} there exists a positive
constant 7" such that

V.WAE, =&, 1), aW4E, )=¢(d*E, 1)
for £eB and t>T. Since K(z, o) satisfies
(FeK)z, o) Alz) VKX, o)+ V(z)=0

we replace z, VeK(z, o) and o® by F:WE, #), € and ¢7'@:W(&, 1) respectively in
the above equation. Then we get the Hamilton-Jacobi equation
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W&, D)=g(&- AWy, )+ VT (&, 1))

for éeBand ¢>7. Thus We have obtained the time dependent modifier X,(&, #).

DerINITION 4.9. Let F. be the operator from L*R") to L*R™) defined by
(Fsu) &) =61~ "DXF u)|él, &/|&]), usL¥R"),

where & . is the operator defined in Theorem 2.9.
Theorem 2.9 implies that . is a unitary operator from L*R™ onto LA R™).

THeoREM 4.10. For any we LR we have

|le—it¢(L1)u_Fu—l[e»iwﬂ',t)ﬁ‘+u]H_,0 as t—co,
where W&, D=1t4(I¢]*)+ X (&, t).

Proor. Since the operators are unitary, we have only to verify the theorem
when (o, 2)=(F u)(o, £)eC(¥xS"") with Y=(a,, ) (0<06,<02<0). The proof
follows the same lines as in Lemma 6.3 of Ikebe-Isozaki [4]. Let a=inf {20¢'(c?);
o€X} and b=sup {20¢'(s*); 0€X}. We cover R, by three open subsets U,=(0, a),
Ue=(a—2¢, b+2¢) and U/y3=(b, o), where ¢ is a sufficiently small positive constant.

Let {¢s}j=1,2 s be a partition of unity subordinate to this covering such that y,(s)=0
for sza—¢, y(s)=1 for sela, b] and 3x(s)=0 for s<b+e We set

1st Step. We begin by estimating f;(«, ¢) for j=1,3. Putting x=¢y we have
fj(ty, t):e—(n—l)niu(zﬁ)_uzxj(wDS”eMY(a,y.t)}l(g, ¥, t) dd;
0

Vo, y, )=¥oo, y, )~ Yy, o)
Yolo, y, )=tolyl—p(s?)),
o, y, =nltly[Xely[)=">"%(a, y/v])
with Y(a, ¢) introduced in (2.2). Put
Q5={(o, v); o€, y(ly))*#0}, j=1, 3.
Then we have with some constant C>0
(4.8) 10:%o(0, v, )] 2CH1+|y))
for (s, ¥)eR;, j=1, 3. In fact, since 8,% (o, ¥, ) is calculated as
¥ o(e, v, H=Hlyl—20¢(a*),

it follows that if (s, ¥)ef,, then
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10,7 (0, ¥y, D] Ze[1+(a—)] 1+ |yl

Next, take a sufficiently large constant R,>0 such that Ro(1+R.)"'>3/4 and

b(1+R,)'<1/4. When (o, y)€2;, we have
[6(1+Ro)*‘t(l+\y|) if |yl <R,
Iauyfo(ﬂ', ?/, t)l? .

L1+ 12 if 1> Ro.

Thus we have shown (4.8). On the other hand, it follows immediately from (2.3)
that for ¢ large,

9, Yy, o) <CLH(1+ |y
Hence we can find positive constants C and 7" such that
10.¥(a, y, ) =Ct(1+ui)
for (e, ¥)€Q;, j=1, 3 and ¢#>7. Noting that
|05 ¥ (o, ¥, HI<C(1+1y)),
0% (o, y, DISClH(1+ [y "7

(k>0)

for (s, ¥)€Q;, j=1, 3 and ¢>7, we can use Proposition 3.1 to obtain
Lf ey, OI<Cut=¥(A+[y)~", j=1, 3

for any large N>0 and >7. Therefore we have for j=1, 3

(4.9) ILfsC- s DlI—0 as t—co.

2nd Step. We now choose {CV;};-1,2,3, a covering of R, such that =0, a1),
Wa=(0,—2¢, 0:+2¢) and CV3=(0,, o0). Take a partition of unity {¢;}j-1, 2 subor-
dinate to this covering such that ¢:(s)=0 for s>¢,—¢, ¢u(s)=1 for seX and ¢s(s)
=0 for s<a,+¢. Noting that fo( -, £)eL}(R"), we set for j=1, 2, 3

016, =)™ 918D o €= f ol D,

We shall estimate g,(§, ¢) for j=1, 3. Putting =7ty we have

g](E, t)z(271.)—(711-1)/Ze‘(n—l)m’,/fit(n - 1)/2¢j(|$|)
x| o\ et ony, o, 1)dody;
0

W(?j, a, E; t)=w0(yv a, g, t)—- Y(tyv 0‘),
Vo(y, o, & )=ty -E+¢(0*)—olyl),

Wy, o, £)=xlyDptly DIy~ "%(o, y/1y])-
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Then it is easily seen as in 1st Step that for some constant C>0,
P ¥ o(y, o, & 6 =CH1+IE])

if (y, o, £)el’;, j=1, 3. If we take account of the inequality
Py Y(ty, o) <CLIL+[EN)°

for (y, o, £)el'y, =1, 3 and ¢ large, then we can find positive constants C and T
such that

\P ¥ (y, o, & )| =CHL+|E])

for +>T and (v, o, £§)el’y, j=1, 3. We also see that
05 ¥(y, o, & DI<CH(1+1D),
|05 h(y, o, 1) <Ca

(la| >0)

for (y, o, &)el’y, j=1, 3 and £>7T. Thus we can apply Proposition 3.1 to the y-
integral to obtain for any integer N>0 and ¢>T

116D o €70y, 0, Y| <CutFA+ED P, j=1, 3

uniformly in ¢€X. Hence we have
(4.10) o -, OlI—-0 as t—oo, j=1, 3.
3rd Step. Rewrite g¢(&, t) as follows:

gz(E’ t):(zﬂ.)—(no l)/2€--(n—l)ni/4t(n+l)/2¢2(|S|)

XSR“S e USW. & Op(y o, tydedy ;

Sy, o, & )=Sy, 0, §)+5(v, 0, 1),

So(y, 6, )=y-&+¢(o*)—alyl,

Si(y, e, t)=—t""Y(ly, o),

iy, o, )=xlynltlyDly|~">"%(a, v/lv]).
Then it is easily seen that the following inequalities hold:

10505 So(y, 0, &) <Car, 10507 Su(y, 0, O <Curt™?,

|65 Ay, o, )| <Cu (la| =0, £=0)

for (y, o, €)el’» and ¢ large. Thus we have checked the assumptions (i) and (iv)-
(vi) of Proposition 3.2. Let B={¢eR"; ¢:(|€])+0}. For £eB there exists a unique
critical point (26¢'(|£|%), 1€]) of Su(y, o, ). Let Al (&) be the Hessian matrix of Si(y,
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a, &) at (y, a)=(264(€]%), |€]) and sign A, its signature. A direct calculation yields
det Ao(&)=(~ 1)"(26(|£]2))- 1,

for éeB, hence det Ay(&)=0 since ¢/(2)>0. Thus we have a unique critical point
(wel&, 1), 08, 1)) of S(u, o, & ¢) for ¢ large and £eB if we apply Proposition 3.2,
(1). Noting that

1Sy, 1), adé, 1), & )=W(&, 1),

MR (1E1%), 161, y=|264"(161D|-""a((g], &/1€])
when &eB and {—oc0, we obtain by Proposition 3.2, (2)

92§, B)—eWHED(F L) (€)=0(1)
uniformly for é€eB as t—oo. This shows that
(4.11) llgo( ) £)—e ™D E )| -0 as f—o0

since F.u vanishes outside B. Hence the assertion follows from combining (4.9)-
(4.11) and Theorem 4.6, and using the inverse Fourier transformation. Q.E.D.

Proor oF THEOREM 1.3. We have already constructed the time dependent
modifier X (&, ¢). Theorem 4.10 implies that for e L*R"),

[le7t8( L0y — =ttt (L -iXsO X 44]|—( as t—co.
This together with the unitarity of e~##Z> and F}F, in L%R"™ shows that
|leité v g-ite (Lo ~iXsW gy — P Foy|| >0 as f—oco.
This yields the existence of 2.,(¢(L,), ¢(L,)) and
QL) H(Lo)=F%F,,

which implies the unitarity and the intertwining property. In particular if we
take ¢(2)=2, we have

2.(Ly, Ly)y=F%*F,.
Similarly we obtain
(L), §(La))=F*F,
if we set
(F_u)&)= €|~V "(F-u)—|E], —&/I€])
with &_ introduced in Theorem 2.9. Q.E.D.
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Remark. For an interval I=(c?, ¢3) (0<o, <o:<00), let

T D=y et g g o, 2)da
91

(Fiu)o, )=2r)""? 0(",1,,2S e~V y(y)dy .
R’ﬂ
Then we have another type of the invariance principle from Theorems 4.6 and
4.10 similarly as in Mochizuki-Uchiyama [15] (see also Kako [7]):

0Ly, LoguD=s-lim e ] (D40 (D),
t—co

where &4(2) is the spectral measure of L,.

§5. Proof of Lemma 4.5.

This section is devoted to the proof of Theorem 4.5, which will be carried
out along the ideas in Calderén-Vaillancourt [1] and Mochizuki-Uchiyama [15].

LeMMA 5.1 (Calderon- Vaillancourt [1]). Let I be a bounded interval of R and
let B(r) with rel be a weakly measurable and uniformly bounded family of operators
in a separable Hilbert space 9. If

B B*(r" W< h¥(r, 1), |BXn)B@ )| <h(r, 1')
For v, '€l with a non-negative function h(r, v') which is the kernel of a bounded
operator in L¥I) with norm bounded by M, then the operator [; B(r)dr defined by
(], Bar)r={ Bwrar, fes

is a bounded operator in I with norm bounded by M.

Let ¢(x) be a CP(R™-function such that 0<<1, {(z)=1 if |2[<1 and {(x)=0
if |z|>2. We set

(6.1 blo, 2, 7, & s, )=Llexlrl|z|/(s+1) alo, 2)ad, @),
6o, 2, 7, & s, H=2s+¢(10)— Kz, )—[o*s+ (o™t —K(z, a)],
where 7=|z|, ¥=x/|z| and ¢>0.
LeMMA 5.2. Let BJ(s, t) be the operator defined by
(BAs, Dgllo, D= | eocrrFnon o, 2,7, &, s, 09, Hdidr

for ¢eLAExS""). Then we can find a constant T''>T' having the following
property: For any s>0 and t>T" there exists a constant & such that if s>0, t>
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T and 0<e<e,, then B(s, t) is bounded in L¥Z KS™ ") and satisfies
1B.ds, DI <Cls+8)=>+,
where the constant C>0 is independent of s, t and «.
Proor. For s>0 and #>7", put ¢,=3/d(s+2), where d is the constant given
by (4.5). Let I, . be the interval defined by I, .=[3d(s+¢)/4, 2/<] for s>0, ¢t>

7" and ¢€(0, ¢). Note that the support of &, in 7 is contained in Is:... We define
the family of operators in L3 xS"') with parameters s, ¢ and ¢ by

[B(r, s, t)ylo, & )=S2e"9<"' LnEaDh (g, 2 7, & s, DN, E)dA.

Then each BJ(7, s, t) is bounded and selfadjoint in L% XS™* ). Since
1/2

1B, s, 0li<_sup {{ [ 100, 2,7, 2, 5, i2doa)

resn -1
it follows from (4.4) and (5.1) that
[|1Br, s, DI <C
for t>T, ¢€(0, &) and rel,,. Furthermore Lebesgue’s theorem implies that

B(r, s, t) is strongly continuous in el , and thus

B(s, )= S . B(r.st)dr.

$,t

Now we claim that there exist a constant 77/>7" and a kernel Az, 7', s, t) such
that if s>0, £> T, ¢€(0, &) and 7, r'el, .., then

(5.2) IBdr, s, DB, s, DI|<hir, ¥/, s, 1),

(.3) gl h{gl& e, 7 s, DFGar *ar

<C(s +t)_4(1+5)§1

$,

| f(r)2dr’

for f(r)eL*(I,...), where the constant C>0 is independent of s, # and . To this
end, consider the kernel function G.o, 2, 7, ¥, &, s, ¢) of B.(7, s, )B.(v, s, )

GE(G, 2; 7, 7',, Z‘) S, t)zgzeilf(#.v,z.r.w.x SVDQC(,Uu g, Zy v, 'rl’ j’ S, t)d/l ;

U(p, 0,4 7,7, &5, 0)=0(0, 41, 7, &, s, H+6(u A, 1, 3,5, 1)
=—(K(rz, )= K(r' %, p)+(2—o%s
+(P(®) — ("Nt + K(rz, o) K5, 2),



Scattering Theory for Wave Equations with Long-Range Perturbations 107

9t 0, 4, 7,7, B, 8, )=bla, 1, ¥, &, S, Obpt, A, 7', &, 5, 1).
Then it follows from an immediate calculation that
aﬂw(ﬂ, a, 2, 7, 7’,’ 'i‘) S, t>: _(7%‘7’/)(1‘1_2(/1) 7, 7” 'i')) H
2, 7, 7, z)zg; 6,0,Y ler +(L—)'}5, w)de,
with Y(z, o) defined by (2.2). In virtue of (2.3), there exists a constant 7/> 7"
such that if ¢>7", 7, v’el,,,. and p€2, then
12, 7, 7', 8)|<1/2,
108 Z(p, v, ¥/, )| <Cy for any integer k>1.

Hence the following inequalities hold if > 7", v, '€l . and p, 0, 2€X:
/! = ~ 1 /
10,9 (¢, 0, 2,7, 7', &, s, 8)| 4‘511’—7’ [,

|5 (p, 0, 4, 7,7, &, 5, )| <Cilr—7'| for any integer £>2.
From (4.4) and (5.1) we have for any integer £>0
105 9.(t, 0, 2, 7, 7', &, 5, )| <Cul(s+4)74 49

it t>T", ¢e(0, e), 7, v'€ls,,. and p, 0, 2€3. We can now apply Proposition 3.1
to get for any large integer N

(Go, 2, 7,7, & 5, )| KCu(s+H) DA+ r—7'|)¥

if s>0, t>T", ¢€(0, <), 7, r'el, . and p, 0, 26X, which implies that for s>0,
t>T", €(0, &) and 7, ¥'¢el;,,..,

1B(7, s, )BAr", s, DI <Culs+ ) +D(1+|r—7'])-7,

where the constant Cy>>0 is independent of s, # and «. Hence the function A.(7,
v, s, z‘):\/CT,(s-i-z‘)*““‘”(l—i—[r—r’l)‘l‘”2 fulfills (5.2) and (5.3) for N large. Apply-
ing Lemma 5.1 to BJ(s, ¢), we conclude the proof of the lemma.

Proor or LEMmA 4.5. By (2.3) there exists a constant 7>7" such that if
t>T, |x|>3d(s+1t)/4 and o€, then

1
10, Y(x, a)|§%]x], hence |0,K(x, o)lz—iu\.

We apply Proposition 3.1 to [A(s, £)¢)(x) to obtain for large N
ITAGs, )X @) <Co 14 |2])¥ if t>T,

that is, A(s, t)peL*(R™) for each s>0 and #>7T. Therefore we can use Lebesgue’s
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theorem and Fubini’s theorem to get for s>0 and ¢>7T
JAGs, gil=tim| e Als, Hgke)de

:11{101 (BE(S, t)gb, g[’)L2(2xs"-‘) .

This and Lemma 5.2 complete the proof of Lemma 4.5.

§6. Proof of Theorem 1.7.
LEMMA 6.1. Suppose that Assumption 1.6 is fulfilled. Then
(6.1). (L = Lo)e™™ Dy |--0 as t-—>co

for ue D={uecS(R™), the Schwartz space; eCy(R"\{0})}, where

—iW , (1) —— pFitHp—1X L (D
e Wi =p¢ O,

Proor. It is sufficient to prove only (6.1), since (6.1). is similarly verified.
For ued we set

Sz, t)=(Li—Lo)e W +Du(z).

Let {xj};-1.. be a partition of unity on R. such that y,(s)=0 for s>1/2 and y.(s)=
0 for s<1/4. Put

fiz, =ydlz|/t)f(x, 1) (=1, 2).
We shall first estimate fi(x, ). Putting x=fy we have
filtw, =] everoa v, nas;
s

W(E, Y, t)=w°($, Y, t)—){4 (Ey t))

-I[fO(Ey Y, t):t(y"s_ |‘:—.D1

a, vy, l‘)=(27r)””211(4|yi)[j%l{(d”‘(ly)~5j“)5j5k+
— (02 7% )2y )Ea + V(Ey)IAE).

Let I'={(, v); #&(&)#0, n(4ly))#0}. It is easily seen that for (¢, y)e/" and >0,
. 1
V¥ o, ¥, t)IZEt.
On the other hand, by (1.2) there exists a large constant 7>0 such that

VX6 DIyt
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for ¢£>7 and éesupp 4. Hence the following inequality holds:

|\7:U(E, v, t)lz%t for (¢, y)el’ and ¢>7T.
We also obtain for any «

02V (&, y, D) <Cut, |05alt, v, HI<C,

if (¢, y)el’ and t>7. We can now apply Proposition 3.1 to get for any integer
N>0 and t>7T

|filty, DI<Cyt™
uniformly for |y|<1/2, which implies that
6.1) FiC-, ON<Crt
for t>T. As for fi(x, t), we have with some positive constant C
1fo( -, ON<C sup {la? () ~67¥], |85 ,a7%(x)|, |V(@)|;
|zl >t j, k=1, ---,n},
which together with the assumption gives
ILfoC -, DI<CA+)2
Combining this and (6.1) we have
Ly~ Lo)e=t%+Wyy)| < Ct-?

for £>7T. This completes the proof.

Proor oF THEOREM 1.7. The first half of the assertion in the theorem is an
immediate consequence of Assumption 1.6 and the following two well known in-
equalities (cf., e.g., Lax-Phillips [10], p. 95 and Mizohata [12], p. 451):

quz /o< Z(W—Z)SRn‘V"ﬂ dz, R>0,

L1 4 2y
S " Top dxg(nwz)ZSRn}szl da

for >3 and feCP(R"). We shall show the last half only for W, since W_ can
be treated in a similar manner. It suffices to show that

(6.2) Hm I/ =D UL @) f s, =0

for f=4f1, fa) with fi, f.€9 since @ is dense in [P(H,)] and the operators are
uniformly bounded. The proof of (6.2) to be carried out below is essentially the
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same as for Theorem XI. 76 of Reed-Simon [17]. Recall that /=TTy, and jf is
calculated as

Jf="HHof\, f2).
If #(¢) is the first component of Us(¢)/;(¢)f, then
I(T=DUKDT 5@ S P, = H(H Ho— D)l
=[[(Ho— H)u(@)I”.

Since
U(t)=g e+ Of iH )+ V-0 f =il ),

it suffices to show that for ue 9,
(6.3): (Ho— H e < Oul| = le* 44 Hy— Hy)e =l >0 as 1-c0.

We shall prove only (6.3).. Hereafter we denote e=*"+® by ¢~#"©®_ By Theorem
1.4 we know that

eI o= W By 0 o as t—o0,
Hence to obtain (6.3),, we have only to show that
(6.4) eUHIH o= W By = H ot~ WOy T, u
since H,Q.=0.H, by the intertwining property. For u#€g we have

||H e# gt Oy — Qg |?

=||H e He= W Oyl P+ | H 2,10l + R(8),
where we have put

R(t)=—(H et Me- Oy H.Q.u)—(H,Qu, H e W Oy)
= —(etthe= Wy 120 1) —(H? Qu, *Hig=WDy),

Since R(¢) converges to —2||H,Q.u|]%, in order to conclude (6.4), it remains to show

that

lim || H eitHe=W Oyl < || H Q. ] .

Lo

In fact, the left-hand side of the above inequality is calculated as

lim HH]eiLHle—iwmm 2= Eﬁ(e_iwmu, L= tW®y)

t—oo

=lim (e~ ©Du, Lo~ Ou)

o
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=1 Houl|*= |12 Houl* = || H,2:ul]".

In the second equality we have used Lemma 6.1. Thus we have completed the
proof of the theorem.
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