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COVERING PROPERTIES IN COUNTABLE PRODUCTS

By

Hidenori TANAKA

1. Introduction.

A space X is said to be subparacompact if every open cover of X has a o-
discrete closed refinement, and metacompact (countably metacompact) if every
open cover (countable open cover) of X has a point finite open refinement. A
space X is said to be metalindelif if every open cover of X has a point coun-
table open refinement. A collection U of subsets of a space X is said to be
interior-preserving if int(N"V)=N{intV:V e} for every <V U. Clearly, an
open collection < is interior-preserving if and only if NSV is open for every
VcU. A space X is said to be orthocompact if every open cover of X has an
interior-preserving open refinement. Every paracompact Hausdorff space is
subparacompact and metacompact, and every metacompact space is countably
metacompact, metalindel6f and orthocompact. The reader is refered to D. K.
Burke [4] for a complete treatment of these covering properties and some in-
formations of their role in general topology.

Let 9C be the class of all spaces which have a discrete cover by compact
sets. The topological game G(9C, X) was introduced and studied by R.
Telgarsky [19]. The games are played by two persons called Players I and Il.
Players | and II choose closed subsets of II’s previous play (or of X, if n=0):
Player I's choice must be in the class 9C and II’s choice must be disjoint from
I’'s. We say that Player I wins if the intersection of II’s choices is empty.
Recall from [19] that a space X is said to be 9C-like if Player [ has a winning
strategy in G(2C, X). The class of 9C-like spaces includes all spaces which
admit a eo-closure-preserving closed cover by compact sets, and regular subpara-
compact, ¢-C-scattered spaces.

Paracompactness and Lindel6f property of countable products have been
studied by several authors. In particular, if X is a separable metric space or
X is a regular Cech-complete Lindelsf space or X is a regular C-scattered
Lindeldf space, then X“xY is Lindel6f for every regular hereditarily Lindelsf
space Y. The first result is due to E. Michael (cf. [14]) and the second one
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is due to Z. Frolik [9] and the third one is due to K. Alster [1]. K. Alster [2]

also proved that if ¥ is a perfect paracompact Hausdorff space and X, is a

scattered paracompact Hausdorff space for each new, then Y X [1Y, is para-
new

compact. Furthermore, the author [17] proved that if ¥ is a perfect paracom-
pact Hausdorff (regular hereditarily Lindelof) space and X, is a paracompact
Hausdorff (regular Lindelsf) 9¢C-like space for each new, then YXII X, is
paracompact (Lindelsf). e

The aim of this paper is to consider subparacompactness, metacompactness,
metalindeléf property and orthocompactness of countable products. We show
that if ¥ is a perfect subparacompact space and X, is a regular subparacompact
Pc-like space for each n=w, then Y X IT X, is subparacompact. We also prove

ncw

that if X, is a regular metacompact 9C-like (C-scattered) space for each n€wo,
then II X, is metacompact. Furthermore, let ¥ be a hereditarily metacompact

nEw
space and X, be a regular metacompact 9C-like (C-scattered) space for each n
cw. Then the following statements are equivalent: (a) ¥ X I X, is metacom-
new

pact; (b) Y X IT X, is countably metacompact and (c) Y X IT X, is orthocompact.
neEw new

For metalindeldf property, it will be shown that if ¥ is a hereditarily met-
alindelsf space and X, is a regular metalindeléf 9C-like (C-scattered) space for
each new, then Y X II X, is metalindelsf.

new

In this paper, we deal with infinite spaces. No separation axioms are as-
sumed. However, regular spaces are assumed to be T,. Let |[A] denote the
cardinality of a set A. The letter @ denotes the set of natural numbers.

Given a cover U of a space X, and YcX, let U|Y={UNY: Uesv}. For
each x&X, let U,={UcvU: x€U} and let ord(x, U)=|U-|. Let U" be the
collection of all finite unions of elements of V.

We use the finite sequences in the proofs. So we adopt the following nota-
tions for them: Let A be a set, and let P(A4) be the set of all nonempty sub-
sets of A. Let A°={@®}. For each n=1, A" denotes the set of all n-sequences

of elements of A4 and A<¢e=\J A*. If r=(a,, -, a¢,)EA<” and a& A, then Pa
nEew

denotes the sequence (a,, -+, @, @) and 7-=(ay, ***, Gn1) if n=1 and z.=¢ if

n=0.

2. Topological games.

For the class 9C and a space X, the topologi:al game G(DC, X) is defined
as follows: There are two players I and II (the pursuer and evader). They
alternatively choose consecutive terms of a sequence {E,, F,, Ei, Fy, -, E., Fa,
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---> of subsets in X. When each player chooses his term, he knows 9C, X and
their previous choices.

For a space X, let 2% denote the set of all closed subsets of X. A sequence
KE,, Fy, E\, F\, -+, E,, F,, -~-> of subsets in X is a play of G(@cC, X) if it satis-
fies the following conditions: For each new,

(1) E, is the choice of Player I,

(2) F, is the choice of Player II,

3) E.€2*Nn9c,

4) F,e2%,
b)) E,JF,cF,_,, where F_ =X,
6) E.NF,=@.

Player I wins if N F,=@ (Player II has no place to run away). Otherwise
Player II wins. e

A finite sequence {E,, F,, E,, I\, ---, E,, Fn> is said to be admissible if it
satisfies the above conditions (1)-(6) for each n<m.

Let s’ be a function from U (2%)**! into 2¥YN\9DC. Let

nEw
So={F:{s'(X), F) is admissible for G(@cC, X)} .
Moreover, we can inductively define

Sp= {(Fﬂy Fl’ U, Fn) <Eo, Fo, EI, Fy o En, Fo>
is admissible for G(9C, X), where F_,=X and
E,=s'(Fy, F,, ---, F;_,) for each i<n}.

Then the restriction s of s’ to \U S, is said to be a strategy for Player | in
new

G(9C, X). We say that the strategy s is a winning one if Player I wins every
play <E, Fy, E\, F\, ---, E,, F,, ---> such that E,=s(F,, F,, -, F,_,) for new.

Next, we define another (winning) strategy for Player I in G(9¢, X), which
depends only on the preceding choice of Player II.

A function s from 2% into 2XN@C is said to be a stationary strategy for
Player I in G(9¢C, X) if s(F)cF for each F=2*. We say that the s is winning
if he wins every play <{s(X), F,, s(Fy), Fi, s(Fy), --->. That is, a function s from
2% into 2¥*N9C is a stationary winning strategy if and only if it satisfies

(i) s(F)cF for each Fe2¥,

(ii)y if {Fr:n<w} is a decreasing sequence of closed subsets of X such that
s(Fo)NF, =@ for each ncw, then N F,=@.

nEw

The following lemma shows that there is no essential difference between
the winning strategy and the stationary winning strategy.
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LEMMA 2.1 (F. Galvin and R. Telgarsky [10]). Player I has a winning
strategy in G(DC, X) if and only if he has a stationary winning strategy in it.

As described in the introduction, a space X is @cC-like if Player I has a
winning strategy in G(9C, X).

LEMMA 2.2 (R. Telgarsky [19]). If a space X has a countable closed cover
by DC-like sets, then X is a DC-like space.

Recall that a space X is scattered if every non-empty subset A of X has an
isolated point of A, and C-scattered if for every non-empty closed subset A of
X, there is a point of A which has a compact neighborhood in A. Then scat-
tered spaces and locally compact Hausdorff spaces are C-scattered. Let X be a
space. For each F&2¥, let

M= {xeF: x has no compact neighorhood in F} .

Let X©=X. For each successor ordinal a, let X=X )",  If a is a
limit ordinal, let X“”:ﬁ(\ X, Notice that a space X is C-scattered if and
<a

only if X™=¢ for some ordinal a. If X is C-scattered, let &(X)=inf{a: X
=@}. We say that e(X) is the C-scattered height of X. For each x&X, we
denote by ax(x) the ordinal such that xeX@x@n _ X@x@+h [ et X be a regular
C-scattered space. If A is either open or closed in X, then A is C-scattered.
More precisely, if A is an open subset of X, then AW=X“"NA for each
a<e(X)and if A is a closed subset of X, then AW cANX™® for each a<e(X).
Therefore, if x&A, then as(x)<ay(x) and hence, e(A)=<e(X). A space X is
said to be ¢-scattered (6-C-scattered) if X is the union of countably many closed
scattered (C-scattered) subspaces.

LEMMA 2.3 (R. Telgarsky [191). (a) If a space X has a o-closure-preserv-
ing closed cover by compact sets, then X is a DC-like space.

(b) If X is a regular subparacompact, o-C-scattered space, then X is DC-like
space.

LEMMA 2.4 (G. Gruenhage and Y. Yajima [11], Y. Yajima [21]). (a) If X
is a regular subparacompact (metacompact) DC-ltke space, then X XY is subpara-
compact (metacompact) for every subparacompact (metacompact) space Y.

(by If X is a regular C-scattered metacompact space, then X XY is metacom-
pact for every metacompact space Y.
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For topological games, the reder is refered to R. Telgarsky [18], [19] and
Y. Yajima [21].

3. Preliminaries.

Let Z be a space and {Y;: i=w} be a countable collection of spaces. For
ZX Y, we denote by # the collection of all basic open subsets of Z X JT V..

€0 €w

Let us denote by ® the collection of closed subsets of Z X II'Y; consisting of
cEw
sets of the form R:ERXiH R;, where Ep is a closed subset of Z and there is
Ew

an n€w such that for each i<n, R, is a closed subset of ¥, and for each i>n,
Ri=Y,;. For each B=Uzx [[ B;=49 and R=Erx II R, R, we define n(B)

icw 1Ew
=inf{icw: B;=Y; for 724 and n(R)=inf{icw: R;=Y; for j=i}. We call
n(B) and n(R) the [length of B and R respectively. Let JC:{iII K;:K; is a
cw
compact subset of ¥, for each icw}. For each z&Z and Kex, let K x=
{2z} XK.

LEMMA 3.1 (D.K. Burke [3], [4]). 7The following are equivalent for a
space X.

(a) X is subparacompact,

(b) Every open cover of X has a a-locally finite closed rejinement,

(¢) For every open cover U of X, there is a sequence {V} new of open re-
Jfinements of U such that for each x=X, there is an n<w with ord(x, <V,)=1.

It is well known that a space X is metacompact (metalindelof) if and only
if for every open cover U of X, UF has a point finite (point countable) open
refinement. In order to study subparacompactness of ZXTJLIY,, we need the
following lemma. e

LEMMA 3.2. Let Z be a space and {Y.:i<w} be a countable collection of
spaces. Assume that all finite subproducts of in[[ Y are subparacompact. If,
Ew

for every open cover © of Z><1H Y, OF has a a-locally finite refinement consist-
cw

ing of elements of R, then ZX 1Y, is subparacompact.
1ew

PROOF. Let O be an open cover of ZX I[Y,. We may assume that O 3.
t€w

By the assumption, there is a ¢-locally finite refinement U R, of ©F, consist-

mew

ing of elements of ®. Fix mew. For each R:Enxil'[ R.eR,, let{O(R, k):
Cw
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k=0, . j(R)} be a finite subcollection of © such that Rcig:O(R, k). Let
O(R, k):U’”Xig O(R, k); for each k<j(R), and let n=max{n(R), n(O(R, k)):
kE<j(R)}. Put R(n):ERXil;IDRi and O(R, k, n)=Ug, X EO(R’ k), for each
E<j(R). Let O(R)={O(R, k, n): k<j(R)}. Then R(n)cUO(R). Rince Z X
ili[oYi is subparacompact and R(n) is a closed subspace of Z X ﬁ[oYi, R(n) is
subparacompact. Thus there is a o¢-discrete closed refinement tg) D(R) of
O(R)| R(n). For each t=w, let DiI(R)= {D><i1>'£Y,-: Deg,}. Put G, . =U{Di(R):

Re®,} foreachm, icw. Then \J G..is a g-locally finite closed refinement

m, t€w
of ©. It follows from Lemma 3.1 that ZX TIY, is subparacompact. The proof
is completed. =
In order to study metacompactness and metalindelof property of countable
products of C-scattered spaces, we need the following.

LEMMA 3.3. Let X be a regular C-scattered metacompact (metalindelif) space.
For every open over U of X, there is a point finite (point countable) open cover <V
of X such that: For each V&<V,

(a) ¢lV is contained in some member of U,

(b) (V)™ is compact for some a<e(X).

PROOF. We prove this lemma by induction on the C-scattered height e(X)
for the sake of completeness. Let X be a locally compact metacompact (met-
alindelof) Hausdorff space (i.e. e(X)=1). Thus there is a point finite (point
countable) open cover <V of X satisfying the condition (a) such that for each
Ve, W is compact. Clearly & satisfies the condition (b). Let X be a re-
gular C-scattered metacompact (metalindeldf) space and e=¢(X), and assume
that for each a<e, the lemma holds. Then there is a point finite (point coun-
table) open cover % of X such that (cf. R. Telgarsky [18, Theorem 1.6]):
Let Wew.

(i) ¢/W is contained in some member of U,

(ii) If ¢ is a successor ordinal, then (c/W)“™" is compact,

(iii) If ¢ is a limit ordinal, then (c/W)* =@ for some a<e.

Case 1. ¢ is a limit ordinal. By induction hypothesis, for each W&,
there is a point finite (point countable) open collection &V'(W) in ¢/W such that
a’'(W) covers ¢lW and for each Ve’ W), (c/V)™ is compact for some a<e.
Put SYW)=v'(W)|W for each Wew and W=U{VW): Wew}. Then <V
satisfies the conditions (a) and (b).
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Case 2. ¢ is a successor ordinal. Let W,={WcW: e(clW)=¢}, and W,=
W—W, Take a We9,. Then e(c/W)<e. By induction hypothesis, there is
a point finite (point countable) open collection /(W) in ¢/W such that V(W)
covers c¢/W and for each Ved@”W), (cIV)* is compact for some a<e. Put
Put W)=’ W)|W for each Wew,. Take a W&, Since e(ciW)=¢,
(c/W)#~D is compact. Let W=W \J(J{VW): Wsw,}). Then <V satisfies the
conditions (a) and (b).

The proof is completed.

4. Subparacompactness.

We firstly study subparacompactness of Z XiH Y..
ew

THEOREM 4.1. If Z is a perfect subparacompact space and Y ; is a regular
subparacompact DC-like space for each icw,, then ZX [1Y; is subparacompact.
cw
Proor. Without loss of generality, we may assume that ¥,=X for each
icw and there is an isolated point a in X. Indeed, put X:iGB Y. U{a}, where
cw

ae\JY,;. The topology of X is as follows: Every Y, is an open-and-closed

tew

subspace of X and a is an isolated point in X. Since every Y, is a regular

subparacompact 9C-like space, by Lemma 2.2, X is a regular subparacompact

DC-like space. thﬂ Y, is a closed subspace of ZxX*. Therefore, if ZxX*
cw

is subparacompact, then Zx [1Y,; is subparacompact.
iew

Let © be an open cover of Zx X, Put @'={B=4#: BcO for some O =OF}.
For each zeZ and K& X, there is an O=0” such that K, x,=0O. Then, by
Wallace theorem in R. Engelking [8], there is a B€ 8 such that K, x,cB<O.
Thus we have Be@’. Define n(K, x,)=inf{n(0): O=®’ and K, x,=O}.

Let s be a stationary winning strategy for Player I in G(@¢C, X). Let R=
EzXx TI R;e & such that for each /<n(R), we have already obtained a compact

icw
set Ciwmo) Of Ri. (Camaen=@. Cix o=@ may be occur for i<n(R).) Fix
i=n(R). If Crmo#®@, let Frg o m=R; for each mew. Put A(R, i)={A(R, i)}
and (R, i, m)={y(R, 7, m)} for each mew. Let C(R,{)={C;:2€A(R, i)} =
{Cir.0} and F(R, i, m)={F,:yel'(R, i, m)} ={Fy& i n )} for each mcw. Put
F(R, i):mgwsf(R, i, m). Assume that C;p »H=@. Then there is a discrete col-
lection C(R, /)={C;: A= A(R, i)} of compact subsets of X such that s(R;,)=
\JUC(R, 7). Since R; is a closed subspace of X, R; is a subparacompact space.
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Then there is a family (R, i)=\U F(R, 7, m), where F(R, i, m)={F: rc
mew

I'(R, i, m)}, of collections of closed subsets in R; (and hence, in X), satisfying
(1) <(R, i) covers R,
(2) Every member of F(R, /) meets at most one member of C(R, 1),
(3) F(R,:, m) is discrete in X for each mcw.
In each case, for 7Emg) I'(R, i, m), let K,=F,N\C; if F;N\C,;#@ for some

(unique) C,;. If FN(UC(R, i))=, then we take a point p,=F, and let K,=
{ps}. Thus, if Cia o@D, then Kyrs.ov=Frwr s myNCir=Ciwq for each
mew. For p=(my, -, Mym)S0™®*, let dg ,=I'(R, 0, my)X - X'(R, n(R),
Mam). For each neo™®* and d=(7(0, 0), -, 10, n(R))=dg, 4, let K(0)=
Ky.oX - XKrgnmy X {a} X - X {a} X -+, and let Kp ,={K(6):0=4dr ,}. Then
Kp K. For each zeEg, neo™®* and d=(7(3, 0), ---, 18, n(R))Edg, ,, let
(K, k@) =max{n(Kq ko), n(R)}. Fix z&Ep, neo™®*! and 6=(7@, 0), -,
7@, n(R))edgr ,. Take an 02"3:[]3'5Xig,0"5'i60’ such that K, x),C0, s and

n(K g@»y)=n(0,;). Then we can take a subset Hu,m»:Hz.ax_lg'I He ki
1cw
of ZxX?® such that

(4) H, is an open neighborhood of z in Ep such that H,,CU,,,
(K (z, K(5))) -1
(5) H, ;X I clH ke, i XXX o XXX - CO,.4,

=0
(6-1) For each ¢ with n(K gwen)Si<r(K. xey), let He xon.i=Frao,
(6-2) For each i<n(K xey) With i<n(R), H, xw),: be an open subset of
Fra. such that Ky o0 CHe ken.iCelH e k6y),iC 0264
(6-3) For each 7 with n(R)<i<n(K, xen), let He xey.i=1{a},
(6-4) In case of that »(K(, xuy))=n(R), let H, xaey.:=X for n(R)<i. In
case of that r(K¢. xwn)=nKe xwn)>n(R), let He ko i=X for n(Kq ko)) =i,
Then we have K¢ xonCHe, k6. For each jew, let Vi (K(@)={zeEpg:

(K. key)=J1 and I (K(@0)={H, ;: n(K., re»)=J}. Fix j€w. Then k\iJoVk(K(a»
=U{H..;: n(Ku,mm))gj}Zkk_ﬁu(uﬂf #«(K(3))). Since Z is a perfect space, V (K(3))

is an F,-set in Ep Since Er is subparacompact, there is a family 9, ;=
U Dy.5.5.6, Where Dy, 55 ,=1{Ds: §€5, 5,4}, of collections of closed subsets in
kew

Egr (and hence, in Z) satisfying

(7) Every member of 9, ; is contained in some member of 4 (K(9))]
V (K (),

8) Dy, covers V(K(9)),

9) 9Dy.5.5. is discrete in Z for each kcw.

For kewand é5, ;5 ;. :, take a z2(§)eV ,(K(9)) such that D:C H, . sNV ;(K(9)).
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n(R)
Put Fy="TI Fro.o XXX -+ X3 - and Dg,o=Dsx Fp. Then {Dys: p€w™ ™+, oe

Ay, J, ko and €5, ;) is a collection of elements of ® such that for
each new™®*, dcdg, ,, J, kecw and E€5,; ;.4, DesC R and {Dg;: nE@™®H
0€4r,,, J, kew and £€5, 5,4} covers R.

(10) For each pcw®*! and j, k€w, {Dgs: 0€dr, and £€5,; .} is
discrete in Z X X°.

Fix nee®®*! and j, kew. Let (z, x)€ZXxXX® and x=(x;);eo,. For each
i<n(R), since R; is a closed subset of X, we may assume that x;=R;. Then,
for each /<n(R), there is an open neighborhood B(x;) of x; in X such that

[0S 45,2 1L BOONFn(R) @} | 1, where Fn(R)="1I Fyo., for eachde
dg, ;. Put B'(x)= nﬁ:) B(x;) and B(x)=B'(x)X HR X;, where X; is a copy of
i= i>n(R)

X for i>n(R). If B'(x)NFsn(R))=@ for each =4y ,, then Z X B(x)e 8 and
(ZXB(x)NDg 5= for each 6&€dp, , and £€5,;,; . Otherwise, take a unique
0 dp, 4 such that B/ (x)NFyn(R))+#@. Since 9, is discrete in Z, there is
an open neighborhood U of z in Z such that [{é€&,,,:: UNDe#@} <L
Then UXB(x)e8 and [{Dgs: Dea NUXB(x)# D, 0’4, yand €5, 5, 5.1} |
<1. Thus {D¢;: 0€dp, , and §€5, 5 ;) is discrete in Z xX“.

For each npew"®*, d€dp,, J, ko and §€5,;;.., let Ggo=D:X
i]éIwCZH(z(E).K(a)).iCDE,B and gr]‘ﬁ,j,k(R>:{G€.5: EEEW,J,j,k}- Define &, ; .(R)=

G55, :(R): 0€dg, ,} for each new*®*! and j, kcw. Then we have

(11) For each pe*®*!, j, kew, every member of G, ; «(R) is contained
in some member of ©'.

(12) For each peo™®*!, j kew, 9,.;(R) is discrete in ZxX*.

This is clear from (10).

(13) For each pew™®*!, j, kcw, every element of G, ;, has the length
max{s, n(R)+1}.

Fix pew™®*1, =), 0), ---, 70, n(RN)<E4dp,,, J, k€w and €5, ; ;.
Then n(Kew,xwen)=J and hence, (K., ren)=max{j, n(R)}. Let Ae
P({0, 1, -+, (K. kon)}). In case of that (K., k@))=n(R), ie, n(R)=j.
For each i€ A, let Re 4 i =Fr6.0—Heo,ken,:. For each i A withi<n(R), let
Re 4i=clH¢ ), k..~ Foreachi>n(R), let Rs 4,,=X. Put Rf,A:Dgxig Re 4

In case of that j>n(R). For each i€A with /<n(R), let Re 4 i=Fr6 o—
Hee, ken,i» For each i€ A with i<n(R), let Rz 4 :=clHuw, xen.:- Let n(R)
<i<j. I i€A, let Reai=X—Hew. xon.i=X—{a}. U i¢&A, let R:q:=
clH . konc=1{a}. Forizj, let Re4.=X. Put Rg,A:DSXi]ET;)Rf,A,i. In each
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case, R 4,:C R, for each icw. Notice that if R, 4+ @, then n(R)<n(Re 4). By
the definition, D, ;=G¢ s\ (U {Re a1 AcP({0, 1, -+, max{j, n(R)}})}). For each
AeP({0,1, - ,max{j, n(R)}}), let Ry s 6. sAR)={Re 4: €55 ;. and Re 4% D}.
For j, k€w and Ae®({0, 1, .-, max{j, n(R)}}), define R, ;. +4(R)=
U{Ry.5.5.1.4(R): 0€dp 4. Then, by (10), we have

(14) Every R, ; . 4(R) is discrete in ZxX°.

Let R, ; «(R)=U{Ry ;v 4(R): AcP({0, 1, -, max{j, n(R)}})}. Then, by
(14),

(15) For each new"®*, j, kew, R, ;(R) is locally finite in ZXxX*.

(16) For each nEe@"®*! and j, kcw with R, ;,#@, every element of
R, ;. has the length max{j, n(R)+1}.

Fix a RS,A:DEXi]é'E’Rg,A,iE_‘R,],(;,,-‘k,A(R) for yee"®*, 0=(y@,0), -,

70, n(B)Edr,y, 7, kew, £€5,.5,; and AcP({0, 1, -, max{j, n(R)}}).

(17) For each ;= A with i<n(R) such that C, =0, s(R)NR: 4,,=D.

Since Re 4= Fro.o—Haw.xon.i, S(RONRe 40 =(JCR, NN (Fra,0—
H(z(f),K(&)).i):Kr(é,i)_H(z(E),K(B)),izg'

For each i A with i<n(R), a compact set K,,;) is contained in Rg 4=
clHi . ko0.. Let Cae o=Kre. For each i¢gA with n(R)<i<j, let
Cire, 4 ov=1{a}. For each i€ A, let Cimg ,00=90-

For {=w, we shall inductively construct an index set @, and two collections
G. and R, for each 7= @, satisfying

(18) For t=1 and r€@®,, 7.€9,_,,

(19) For tcw and 7=®,, ¢. and R, are collections of elements of R,

(20) For tew and r=@, with R.+ @, elements of K, have the same length.

Let @,=@’. For each z=(m, j, B)E@,, let G, =G (ZXX*) =G, ; (ZXX*)
and R.= RA(ZXX*) =R, ; (ZxX?). Let t=(m, j, k)= ®P,. By the construction,
G, and R, are collections of elements of ®. Assume that R.#=@. By (16),
elements of ®. have the same length. Thus ¢, and R., r=®,, satisfy the
conditions (19) and (20). Assume that for {w, we have already obtained an

index set @,, for ;<t, and families {Q’,: e i\ijo@z}, {.‘RT: TE i\;Jo(Di} satisfying
the conditions (18), (19) and (20). Take a =@, with R.+@. By (20), elements
of ®. have the same length. So we denote this length by n(z). Let @.=
{tP(y, j, k): nE@™®@*!, j, kew}. For each ReR. and €™V, j, kcw, we
denote G, ; x(R) and R, ; :(R) bY Grewy. i (R) and R.acy, ;. »(R) respectively.
Define G.ocy. ;. v ="I{G0y.;.0n(R): RER:} and Reecy. ;. v="I{Rea(n.;. (R): RE
R.,}. Let @,,,=U{®,: =@, and R.#+@}. Then, by (16) and the construc-
tion, @.,,, families {¢,: p®,,,} and {R,: p=d,,,} satisfy the conditions (18),
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(19) and (20). Thus, for each {cw, we heve an index set @, families {G.:
re@,} and {R.: r€®,} satisfying the conditions (18), (19) and (20). Let e
U{®,: lcw}. Then |0|=L0.

By Lemmas 2.4 and 3.2, our proof is complete if we show

CLAIM. \U{G,: r=®} is a ag-locally finite closed refinement of O'.

PROOF OF CLAIM. Let re®. By (19), ¢.cR. By (11), every member of
@, is contained in some member of ©@. By (12), (15) and induction, ¢. is locally
finite in ZXX® Assume that \U{G.: r=®)} does not cover ZxX®. Take a
point (z, x)€ZXX*—U{UG,: re®P}. Let x=(x;)ico. Take an p0)=m0)cw
and 3(0)=7(5(0), 0)Edzy xo.n=1"(ZxX*, 0, m(0)) such that x& F5,. Put F(0)=
{Fy6wm.0). Let K(0)=K((0)E Kzxxono and let jO)=n(Kc, kw)). Choose a
k(0)ew such that (z, )€ UG ), jo. #0(Z XX DWI(J Ry, 5. k(£ X X)) Let
(0)=(5(0), 7(0), k(0)E®,. Take a &0)E & w.s0.j@. k@ Such that z€ De-
Put H(0)={Hccwn xw».i: 1<70)}. Since (z, x)# UG, there is an A0)e
@({0, 1, -, j(O)}) such that (z, )€ Rew, 40, Rew, a0 € Re(ZXX). By the
definition, if 0€A(0), then Reco, 40, 0=F;ww,0—Haewon, kw0 We have 0=
M Z XX )< n(Rewr, a0)) FOT Rewy, aw, take p(l)Ee@"®Fe@. a0t §(1)=(r(a(1),
0), -, 7OL), n(Recwr, 40))VE dre gy, acoy n v SUCh that x& Foy. Put FV)={Few.o:
i€n(Rewy, a)}. Let K(D=K(OA)E Kz, 4¢0y 7> a0 JD=n(K kun). Take
a k(l)ew such that (z, x)eugrj(l),j(l),k(1)(R$(0),A(O))U(U-CRW(U.J'(I),k(l)(Ré(O).A(0)>)~
Let z(1)=((7(0), j(0), k(O0)), (1), j(1), kW)NE®,. Take a ELEE w.om.5m. k0>
such that z&€D;qy. Put H(D={Hcean. xan.:: i=max{j(l), n(Rew, a0>)}t}. Since
(z, X)&\UG. ), there is an A)eL({0, 1, ---, max{j(1), n(Rew aw)}}) such that
(2, )€ Rewy, vy, Rear, a0 € Reay(Recor, acy). Thenm, if i€ A(L) with i<n(Rew, aw)s
then Reay, a0 = From. o —Haeean. xan. We have n(Reqw),am) < n(Rewy, acy)-
Continuing this matter, we can choose a sequence {7(1): t€w} of elements of
o<®, a sequence {0(f):tSw}, a sequence {F({): t=w} of collections, a sequence
{K@): t=w} of compact subsets in X, where K(t):{l;uK(t)ieJC, sequences

{j(t): tew}, {k(1): tew} of natural numbers, a sequence {z(t): tEw} of elements
of @, where =(1)=((5(0), 7(0), k), -, (n(t), j(©), k(1))), a sequence {&(t): lCw},
a sequence {J4((f):tcw} of collections, a sequence {A({):tew} of finite subsets
of w, a sequence {Reu. 4w : tSw} of elements of R containing (z, x), where
Rewy, arv=Dsy X iIeIwRé(”'A(”’i’ satisfying the following: Let t€w. Assume that

we have already obtained sequences {5(i):i<t}, {8(): i<t {F@): i<t} {K(@):
i<t), {J@): i<ty {k@): i<t), {zG): i<t} {86): ist}, {IH@): i<l {AQ): it}
and {Rf(i),A(i): th} Then
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@) pt+DEw B, s,

(22) 0Gt+D=((©B¢+1), 0), ---, 7(0(t+1), W(Rewr, a0 € ARy, 4ery nusn Such
that x& Fsn, and FE+1D={F;6¢.n.0: iSn(Rewy. acr)},

(23) K(H—l):K(5(!—}—1))6%1{5”),[4(“.y(ul) )

24) 4+ = MK ka-1n), k(iE+1) € o and T(t+l):(<77(0>y 7€0), k), -,
(p(t+1), j(+1), k¢+DNED, ..,

(25) @+ D E Eecanswrn.jusn.kisn, HE+1)= {Hegwon, kaen, it 15
max{j¢+1), n(Reuy, ar)}} and A@+1e@({0, 1, -+, max{j(t+1), n(Rewy, ar)}),

(26) If i< A(@+1) with ¢ < n(Req), ay), then Recisny acen i=Freasn, o—
Heearm, ks, o

27) (2, x) € Rewsv, aasn = Dearny XiIeIw Rewin, acsn, 6 Rewsn, aaen €

Recrn(Rewy, aw), and n(Reay, aey) <N Reciny. acsnr)s

(28) For each i<n(Reu), 4») With i€ A(t-+1) such that Cirrgyy gy =92,
S(Recy, sy, OV Rer1y, actsny. i =D,

(29) For each i<n(R:u), ay) With i€ A(t+1) such that Crereery acey 0 D
K(z+l)i=CI(RE(”,A(DJ)-

The rest of the proof is similar to that of Theorem 3.2 in the author [17].
However we include it here, because the method of it plays the fundamental
role in this paper.

Assume that for each icw, | {tcw: i€ A(#)} | <w. Then for each icw, there
is a t;ew such that i<y, and if t>¢;, then /&£ A(t). Then, by (29),

(30) For each icw and t=t,;, K(t);=K (t;);.

Let K:iHK(ti)iEJC. There is an 0<0®’ such that K, x,<0. By (27)

(S

and (30), take a t=1 such that n(O)<n(Re -1y, ac-n) and if i<n(0), then K (t);=
K{(t:);. Then we have K, x, <O and hence, jit)= n(K, k) < n(0). Since
EDEE ,ir.5m, 50, bty n(K e, kan)=J). For i with n(O)<i<n(Rei-1), ac-1)),
by the definition, H(z(eun,K(m,i=Fr<5(t>.i>- Hence A()N {n(0), -, n(Reu—n.Au-n)}
=@. Since (z, X)ERer. 4v and Recy, 4y E Rey(Ree1y, ace-1), there is an ie
A(1) such that x;¢ Heeon, k.. Thus i<n(0) and x,€ Rewy. awr.i=Fraow, o —
Hoean, kan.i. Since i€ A1), t<t;. For each t'>t K(t');, C Recy, acey, ;. Thus
K(fi)iCR§(:>.A(z),i~ Since K(t)tCH(ztg(m,K(m,i. we have K(1);#K(t;);. This is
a contradiction. Therefore there is an i€w such that |{{cw: i€ A} | =o.
Let {tew:ic A and i < n(Rewy.aw)t = {t,: p=w}. Let p =w. Since
Cz(k.g(tp),Aup),w:@y if t,.1=t,+1, then, by (28), S(Rﬁ(tp).A(tp).i)mRE(tp+1>.A(tp+l),i
=@. Assume that f,,, > t,+1. Since KT(J(l‘,fFI)\i) = C“Réupm»mpm,w =
CNRéu(,Hq).A(tm,rl),i) - H(z(f(cl,ﬂn.K(tp“)),i, by the definition, we have

S(Rect o act . 0V Recr iy actop. i=@. Since s is a stationary winning strategy
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y,i, Which

o)t ©

for Player I in G(“;’DC, X), mRe(tﬂ)’A“ :Q) But X, & m RE(LP):A“
=) vE®

is a contradiction. It follows that '‘J{¢.: z=®} is a cover of ZxX* The
proof is completed.

COROLLARY 4.2. If Z is a perfect subparacompact space and Y ; is a regular
subparacompact space with a a-closure-preserving cover by compact sets for each
i€w, then ZX [1Y, is subparacompact.

icw

PrROOF. This immediately follows from Theorem 4.1 and Lemma 2.3 (a).
Similarly, by Theorem 4.1 and Lemma 2.3 (b), we have

COROLLARY 4.3. If Z is a perfect subparacompact space and Y, is a regular
subparacompact, a—C-scattered space for each icw, then Z X LY, is subpara-
cw

compact.

REMARK 4.4. Let M be the Michael line and let P be the space of irra-
tionals. P is homeomorphic to w®. The following are well-known (see D. K.
Burke [4]).

(a) M is hereditarily paracompact but M X P is not normal and hence,
not paracompact.

(b) MXP is hereditarily subparacompact and hereditarily metacompact
(see also P. Nyikos [15]).

-

5. Metacompactness, orthocompactness and metalindeléf property.

THEOREM 5.1. If Y, is a regular metacompact DC-like space for each icw,
then Y1Y,; is metacompact.
)

PROOF. We may assume that ¥;=X for each /=w and there is an isolated
point a in X. Let O be an open cover of ZxX“. Similarly, let O ={Bs4®:
BcO for some O<0f}. For Ke=.X, there is an O<of such that X 0.
Then there is a B€4# such that K cBcO. Define n(K)= inf{n(0): O=¢’
and KCO}. It suffices to prove that © has a point finite open refinement.

Let s be a stationary winning strategy for Player | in G@c, X). Let B=
il;[wBic-‘.!B such that for each /<n(B), we have already obtained a compact set
Cimo Of ¢lB,. (Crgaen=@. Ciwm=¢@ may be occur for i<n(B).) We
define ¢(B) and ®B(B) of collections of elements of @. Fix i<n(B). If Ciazo
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=@, let Wypn =B, Put AB,i)= {A(B,d} and ['(B,i)= {r(B, i)}. Let
C(B, )=1{C,: A€ A(B, D} ={Ciw.0}, and WB, )={W,: 1€I'(B, D} ={Wirzo}-
Assume that C;;.=@. Then there is a discrete collection C(B,i)={C.:
A€ A(B, i)} of compact subsets of X such that s(elBy)=\UC(B, i). Since X is
a regular metacompact space, there is a collection W(B, i)={W,: rel'(B, i)}
of open subsets in B, (and hence, in X) satisfying

(1) 9W(B, i) covers By,

(2) For each y&I'(B, i), c/W, meets at most one member of C(B, 1),

(3) (B, i) is point finite in B; and hence, point finite m X.

In each case, for & I'(B, ), Ky = cW,nC; if cdW,NC,#@ for some
(unique) C,. If clW,N\(UC(B, i))=@, then we take a point pcW, and let K;=
{ps}. Thus, if Crx o+ @, then K o=cW;5.6N\Cimso=Cimun. Put 4=
I'(B, 0)X--XI'(B, n(B)). For each d=(7(3, 0), ---, 1(9, n(BY)eds, let K(0)=
Ki.oyX - X Ky nemy X {a} X - x{a} X+, and let Kz=1{K(0): ddz}. Then
Kz K. For each 8= (7(8,0), -, 70, n(B))cdp, let r(K (6))=max{(n(K (),
n(B)}. Fix a 6=(@, 0), -, 18, n(B)))edp. Take an 0(5):——11;5)0(5)1-60' such

that K(8)CO(8) and n(K(8))=n(0(d)). Since X is a regular space, there is an
H(®)=TI H();= % such that:
1€

n(K(8))-1

4) I clH@) XXX - XXX - CO@),

(5-1) For each i with n(K(0)<i<r(K(3)), let H(@):=X,

(5-2) For each i<n(K () with i<n(B), let H(8); be an open subset of X
such that K. CH(@),CclH(@),CO0),

(5-3) For each i with n(B)<i<n(K(d)), let H(0),={a},

(5-4) In case of that r(K(d8)=n(B), let H(6),=X for n(B)<i. In case of
that #(K (8)=n(K (0))>n(B), let H(8),=X for n(K(d)=i.

Then we have K(6)(CHJ). Put W(&)Zn]i)WT(E,i)XXX v XXX -+, Then

(W(©): = 4} is a collection of elements of B such that for each 6 dp,
W@)CB and {W(d): d& 43} covers B. By the definition, we have

6) {W(@d): =4} is point finite in X*.

Fix a 6=(1(, , 0), ---, 7@, n(B)))edp. In case of that r(K(8)=n(B). For
each i=n(B), let G@),=0®);"W;p . For each i>n(B), let G(@);=X. Put
G(B):igG(ﬁ)i. In case of that »(K(6))=n(K(d)>n(B). For each i=n(B), let

G(8),=0(8):"Wyws.0- For each i with n(B)<i<n(K(9)), let G(8);=H(d)={a}.
For each i>n(K (), let G(d);=X. Put G(®=1IG®);. Then we have G
=7

W ). Define ¢(B)={G(0): d=dz}. Then
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(7) Every member of ¢(B) is contained in some member of @’.

(8) &(B) is point finite in X°.

This is clear from (6).

Fix d=(7(0, 0), ---, 16, n(B))=dz. Let Ac2({0, 1, -, r(K(B)}). In case
of that »(K(8)=n(B). For each i€A, let By 4:=W;s.—clH(d),. For each
i£ A with i<n(B), let By, 4,,=0(0);"\W;e . For each i>n(B), let B; 4.,=X.
Put B&FEDBM»' In case of that »(K(9)=n(K()>n(B). For each icA

with i=n(B), let Bs 4, = Wye.—clH(d);. For each i£A with i <n(B), let
B 4.:=000);"\W;6.5. Let n(B)<i<n(K(d). If i€A, let Bs 4. =X—clH(),=
X—A{a}. If i A, let Bs 4 ,=H(@);=1{a}. For izn(K (@), let B; ,,=X. Put
B&,A:ig)BJ,A,i- In each case, B; 4.CB; for each icw. We have that if B; 4

#@, then n(B) < n(B; ). Let B3(B)={B;s: A= ®({0, 1, -, (K ())}) and
B 4#=@}. By the definition, W(8)=G(0)\ (U BsB)). Define B(B)=\U{BsB):
dedp}. Then, by (6), we have

(9) 8(B) is point finite in X,

Fix a Ba_A:ile{)Ba_A,iE.@g(B) for 0=(y(3, 0), -, r(0, n(B))edy and Aec

2x{0, 1, -, r(K(ON}).

(10) For each i€ A withi<n(B) such that C . =@, s(ciB)NelBs 4= .

Since Bs 4 =W, o —clH(@);, s(c!B)N\clBs 4, C(\JC(B, IDN(CW y5,4,—H(@D);)
=K;6.0—H@):=0Q.

For eachi¢ A withi=<n(B), since ¢lBs, 4,i=cl(O00);: "Wy, 5))D0©0)0NetW .19,
a compact set K;¢ ) is contained in ¢/Bj, 4 ;. Let Ciwg 4 0o=Kre0. For each
1£ A with n(B)<i<n(K(9)), let Cip; ,.n=1{a}. ForeachieA4, let Cisy 1. 0=2.

Now we define ¢; and @; for each jew. Let G,=G(X*)=¢(X®) and B,=
B(X*)=8(X*). Assume that for jew, we have already obtained ¢; and B ;.
For each Be 8;, we denote ¢(B) and B(B) by ¢,,,(B) and 8,.,(B) respectively.
Define &¢;,,=U{G;..(B): B&€38,} and 8,,,=U{38,.(B): B€8,}.

QOur proof is complete if we show

CLAIM. \U{G;: jE€w} is a point finite open refinement of .

PrOOF OF CLAIM. Let jew. By the construction, ¢,C®. By (7), every
member of &; is contained in some member of . By (8), (9) and induction,
G; is point finite in X¢. Take a x=(x,)ico=X?. Let J0)={0€dy0: xSW({D)}.
Then, by (6), 1</4(0)| <w. Let X(0)={K(d): d=4(0)}. Put H(0)={H(@): d=
A0)}, WO)={W(d): 6=4(0)} and ¢(0)={G@B): d=4(0)}Cg,. For each d=40),
let A@)=2({0, 1, -+, #(K(0))}), and let AQ)=\U{A0): d=4(0)}. Let B(0)=
U{Bs(X*): 0€4(0)}. Then B(0)C B, By the definition, for each 6=7(3, 0)=



580 Hidenori TANAKA

4(0) and AsU@) with 0 A, Bs a0 = Wye.n—clH(@). Since W(d) = G(@)\
(UBX?) for each d & 4(0), 1<18(0)UB(0)| <w. Observe that (G UB)z C
20U B(0). Take a BeB(0). Let 4(B)= {0'sdz: x&W(@')} and let A1) =
U{A(B): BE3(0)}. Let x(1)= {K(d): 6€4(1)}. Put (1) = {H(d): 64},
@(1)={W@B): 6€4(1)} and 6(1)={G(B): dd)}Cg,. Define A(d) for each o
A1), and (1) as before. Let 8(1)=\U{B4B): B€ 8(0) and d<4(B)}C B
Let 6=(3(8, 0), -, 78, n(B))=d(B) and B& 3(0). For each AeUA@), if icA
with i< n(B), then B 4:=Wreo—clH@). We have |¢1)U8B(1)|<e and
(6, UB,), C g(1)Us(1). Continuing this matter, we can choose a collection
{4(/): jew}, a family {X(j): j=o} of collections of compact subsets of X¢,
where for each K& X(s) and jew,KzingieJC, families {4()): j € v},

(W) jew}, {6(7): jew} of collections of elements of #, a family {AG):
jew} of collections of finite subsets of @ and a family {8(;): j€w} of collec-
tions of elements of @ such that for d= (3, 0), -, 78, (B A(B), B&
B(j—1), where Bscp),4ny=X¢ and B, =8(—1)={X*}, and Ac o), if ieA
with i<n(B), then B; 4 ;=W;u,n—clH(0);, and for each jEo, 1¢(HUB(N|<w
and (G,UB,),Ce(HUB(j). Assume that x& U 38, for each jew. Then, by
the construction, x=\UB(j) for each jew. Since B(j). is non-empty and finite
for each jcw, it follows from Koénig’s lemma (cf. K. Kunen [13]) that there
are a sequence {0(j): jEw}, a sequence {K(j): j€w} of compact subsets of
X« sequences {H(3())): jeo}, IWO(U)): jew} of elements of @B, a sequence
{A(j): jew} of finite subsets of w, a sequence {Bs) 4 JE@} of elements
of @ such that: For each j€o,

(1) d(H=©0), 0, -, 78, M(Bsg-.aG-NEA(),

(12) K(ND=K©()),

(13)  A()EA@0UN),

(14) For each i€ A7) with ié”(BB(j—n‘Au-n), Bam,A(j).i :Wﬂa(j),n_
clH(O(7))s,

(15) x&Bsey, ap and Bsgy, an € B(Bsi-1. a6-1)-

Furthermore we have

(16) n(Boiy, 4n)<n(Bsgen, a+ny) for each jEw,

(17) For each i<n(Bs, ap) with i€ A(G+1) such that Cimyyy, 4000 =D
s(elBsiy, an) N elBsGiy, ags0=0D,

(18) For each i<n(Bs), an) With i€ A(G+1) such that Cimsy 45 0F Do
K(]‘+1):cl(85(j),A(j).i)'

By the similar proof of Claim in Theorem 4.1, we can show that there is
an i< such that | {jew: icA()} | =w. Let {jew:ic A(j) and i=n(Bsg, 4}
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={/k: k€w}. Then we can prove that s(c/Bsg,. 4,) clBsGysp. apep =D

for each k=w. Since s is a stationary winning strategy for Player I m

G@C, X), NelBigy.agp=0. But x,e N Bi,y, 4,), Which is a contradic-
kew kew

tion. Thus there is a k=w such that x&\B,. Let j=inf{kcw: x&\UB,}.
Since x&\UB;_,, we have x&€\Ug,;. For each k>j, every element of ¢, is
contained in some member of ®B;. Therefore (\U{G,: kew}), C \U{G,: P<]}.
Since every g, is point finite in X, it follows that \/{G,: k€w} is a point
finite open refinement of ©’. The proof is completed.

COROLLARY 5.2. If Y, is a regular metacompact space with a c-closure-

preserving cover by compact sets for each i€, then IIY, is metacompact.
1cw

PROOF. This follows from Theorem 5.1 and Lemma 2.3(a).

For a T,-space X, let F[X ] denote the Pixley-Roy hyperspace of X (cf.
E.K. van Douwen [7]). Every Pixley-Roy hyperspace is a hereditarily meta-
compact Tychonoff space and has a closure-preserving cover by finite sets. In
[17], the author proved that if Z is a perfect paracompact Hausdorff space and
YV, is a T,-space such that F[Y,] is paracompact for each i=w, then ZX
i];[wéf[Y,-] is paracompact.

COROLLARY 5.3. If Y, is a Ti\-space for each i< w, then TIF[V,] is

=

metacompact.

By D.K. Burke [4] and M. M. Coban [6], every perfect metacompact (me-
talindel6f) space is hereditarily metacompact (hereditarily metalindelsf), Next,
we show the following result.

THEOREM 5.4. Let Z be a hereditarily metacompact space and Y, be a
regular metacompact DC-like space for each i=w. Then the following are
equivalent,

(a) ing Y, is metacompact,

(b) ZXTI1Y, is countably metacompact,
icw
() ZXTIIY, is orthocompact.

1€w
PrROOF. (a)—(c) Obvious.
(c)—(b) We shall modify the proof of Theorem 2.1 in N. Kemoto and Y.
Yajima [12]. Assume that ZXx I]Y; is orthocompct. Let 0={0;: jEw} be a
€W
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countable open cover of Zx I1Y,. By their proof, it suffices to prove that
icw
there is a countable open refinement U of © such that for every infinite sub-

collection U’ of U, int(NU)=¢@. Applying their technique to ZX [1Y;, we
1cw

have a countable collection {G; ,: jEw and =0, 1}, where G, ,=ZXxH,,, for
each jew =0, 1, of open subsets of ZX [1Y; such that
i€ew

(i) For each jew, I1Y,=H,;\JH; . and hence, ZX [1Y =G, \JG;,,

i€ tr=rn
(i) For each infinite subset M of @ and each =0, 1, int{"\{H;.: j€EM})
=¢ and hence, int(N{G,,.: jEM}N=Z xint("{H;,,: jeM})=0.
Let U={0,;NG;,,: jew and t=0, 1}. Then U is a countable open refine-
ment of @ such that for every infinite subcollection U’ of VU, int(NU")=@.
(b)—(a) Assume that ing Y, is countably metacompact. For each i€w,

take a point a; in ¥,;. Let @ be an open cover of Z><1II Y, and let @'={Be 3:
cEw

BC O for som O=0©F}. For each z&Z and Ke X, define n(K(, x)) as the proof
of Theorem 4.1.

Let s; be a stationary winning strategy for Player I in G(9C, Y,) for icw.
As Theorem 5.1, take a B=UpX Il B;< @ satisfying the following condition:

icw

For each i<n(B), we have already obtained a compact set C;s.o Of ¢/B;.
(Cinn=0. Cipn=¢ may be occur for i<n(B).) Fix i=n(B). If Cis.n»
+@, take the same Wy, A(B, 1), [(B, i), C(B,i) and W(B, i) in Theorem
5.1. Assume that C;z=@. Then we take a discrete collection C(B, #)=
{C;: 2= A(B, i)} of compact subset of V; such that s;(c/B;)='UC(B, ), and a
collectiom W(B, i)={W,: yeI'(B, i)} of open subsets in B; (and hence, in Y
satisfying the condition (1/)=(1), (2/)=(2) in the proof of Theorem 5.1 and

(3") W(B, i) is point finite in B; and hence, point finite in Y.

Define the same K, for y&I(B, i) and 4z in Theorem 5.1. For d=(7(, 0),
o, 70, n(BY)YEdg, let K@O)=K;e.0X X Kr,nmn X {8t X oo X {ar} < -
Define X5 as before. For each zeUj and d=(7(3, 0), ---, 704, , n(B))sdg, let
(K, koy)=max{n(Keq, ga»), n(B)}. Fix zeUp and 0=(r(3, 0), -+, 7(3, n(B))
c4p. Take an ()z,,;:Uz,(;Xl_leIw(),_a,iEO’ such that K, k), C0..s; and n(Ke, k@)

=n(0,,s5). Since Y, is a regular space, there is an He xon=H. X _IEIH(Z_ K@), i
1cw

€ 3 such that:
71(1((2,]{(5)))*1 ~ .
4) H.sx I ClH i, k601 XY nik s gy X XY X C 0,5 and z&

Hz,(?CUBmUz,ﬁy
(5’-1) For each ¢ with n(Ke, xwn)<I<r(Kwu ken), let He xon.«=Yq,
(5'-2) For each i<n(Kq, xwn) With i<n(B), let H, xw,: be an open subset



Covering properties in countable products 583

of Y, such that Ky o CHe. xan. i CelHG. k6,10, 6.4,

(5’-3) For each 7 with n(B)<i<n(K. xw), et H., k@, be an open subset
of Y; such that a;€He, k6, i CClHa, k69,00, 5,4,

(5'-4) In case of that »(K, xwy)=n(B), let H,, xwuy,:=Y; for n(B)<i. In
case of that r(K.. xwn)=m(Ke, xwn)>n(B), let He ke, =Y for n(Ke, xa) =i

Then we have K., ks CHe., k). For each j€w, let #; ;={H, ;: n(K.. xw)))
<j}. Fix jeo and let V(K@)={z€Usp: n(K, xw»)=j}. Then V,(K(9)=
U4 ;. Since Z is a hereditarily metacompact space, there is a family <V; ;=
{Ve: £ 55,5}, of collections of open sets in V(K (d)) (and hence, in Z) satisfying

(6’) Every member of <V; ; is contained in some member of 4;

(7)) <V;,; covers V(K (d)),

(8) <V;; is point finite in V(K (0)) and hence, point finite in Z.

For each ¢=5; ;, take a 2(§)eV(K(d)) such that V.C H.e 5. Put W=
”ifj))wr(a,i,xywmx XY 3% - and Ve,=VexWs Then {Ves: 6 Eds, j cw
and é=5;,;} is a collection of elements of @ such that for each d€4d;, jew
and €55, Ve OB and {Vg,: 04, jew and £=5;,} covers B. Clearly
we have

(9) For each jew, {Vs: 04 and E= 5, ;} is point finite in ZX,EDY“

Fix a 0=(703,0), -, 700, n(B)) € 43, j =w and &=5; ;. In case of that
V(K(ug),lf(a))):"(B)- For each i<n(B), let G(z(f).1((6)).@':Oz(a.s,imwr(a,i» For
each i>n(B), let Gee.ron.: =Y. Put Gow.rw) = stiguc(z(s),mﬁ)).i- In

case of that (K., xon)=nKew@. x@))>n(B). For eachi<n(B), let G, k0.«
=0.¢,5. \Wren. For each i with n(B)<i<n(Kuw,xen) let Gow, kon.i=
()z<5),6.i- For each Z'Zn(Ku(g),K(a))), let G(z(é),K((?)),i:Yi‘ Put G(z(é),K(J)):VEX
g‘)c(z(f),K(ﬁ)).i- Then we have G(z(f),K(&))Cvg,(s. Define Qa,j(B> = {Gu(e),ma))l

é=X; ;) and G(B)=\U{G; ;(B): d4g}. Then, by (9) and definition,

(10’) For each jew, every member of G,(B) is contained in some member
of ¢’.

(1) For each jew, ¢(B) is point finite in ZX iIE'[in.

Fix 0=(7(3, 0), -+, 700, n(B)))eds, jEw and £€5;,; Let Aee({0, 1, -,
r(Kee.xen)}). In case of that (K., xon)=n(B). For eachi€ A, let Be 4.,=
Wie,o—clHeg, key.. For each iEA with i<n(B), let Be =0, Wra.s.
For each i>n(B), let Bg4.=Y, Put BE,A:Vgxi]é'IwBé,A,i. In case of that

r(Kee, kon)=n(Kew, xen)>n(B). For each ;€A with i<n(B), let Beai=
Wr(é,i)_ClH(z(G),K(ﬁ)),i- For each Z%A with Zén(B), let Bf_A‘i:Oz(f),ﬁ_imIVr(ﬁ,i)-
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Let n(B)<Z’<77(I<(Z(§)>K(a))). 1f ZEA, let Bg_A,i:yri"*lei(z(f),[\’(,;))_i. If 2.61_:‘4, let
Be ai=0.¢.0.:. For i>n(Kee, ken), let Bga=Y,; Put Be,szenge,A,i-

We have that Be 4.CB, for each icw and if B+ @, then n(B)<n(Bg ).
Since n(K. . k@) <7j, for a subset A= ({0, 1, ---, max{j, n(B)}}), let B; ; «(B)
= {Be4: E€ 55, Be s is defined and Be .+ @}. For jew, let B4B)=
U{B;,;.4(B): d=dp and A=@({0, 1, -+, max{j, n(B)})}. Then we have

(12) Every #,B) is point finite in ing)Yi.

Fix a Bg 4=VeX eIEE)BE‘A‘iE B ; 4(B) for a=(7(3, 0), -+, 70, n(BY))Edp, j<
o, f€5; ; and Ae2({0, 1, ---, max{s, n(B)}}). Then

(13’) For eachie A with 7<n(B)such that C; =0, siclB)NclBe 4.:=D.

For each 7<n(B; 4), define a compact set C;p: ;1) in ¢/B; 4, as Theorem
5.1.

Now we define ¢. and 8. for each r€w<® with 7 @. For each j€w, let
Q;:Q]-(ing Y;) and _@j:_CBj(ZXiEJYf). Assume that for rew<® with =@,

we have already obtained ¢. and @.. For each B€ 48, and j=w, we denote
Gi{(B) and B,B) by G.5;(B) and $.e,(B) respectively. Define G.q;=\J{G:e;(B):
B=a3,} and B.4,=\/{B.e;(B): BE3B,}.

Firstly we show that \/{g.: r€w<® and t#@} is a o¢-point finite open
refinement of ¢@’. Let r=w<® and = @. By (10’), every element of ¢, is
contained in some member of ¢. By (11’), (12) and induction, for each r€w<®
and r# @, 9. is point finite. Thus, it suffices to prove that \U{g,: r€w<® and
r+@} is a cover of Z><i££)’i. However, the proof is similar to that of Claim

in Theorem 4.1. Let G.=\&. for each r=w~® with 7. Then {G,: r€w<®
and z+# @} is a countable open cover of ZX II}Y;. Since ZX ] Y, is countably
1€w

i€w
metacompact, there is a point finite open refinement {G;: r€@<® and 7+ @}
such that G.C G, for each 7€w<® with 7= @. Then {GING: GEg&,, tw™®
and r# @} is a point finite open refinement of ©’. It follows that ZX IIY,

t=w
is metacompact. The proof is completed.

REMARK 5.5. B. Scott [16] showed that if ¥ is orthocompact and Z is
compact, metric and infinite, then } X Z is orthocompact if and only if V is
countabjy metacompact. J. Chaber [5] constructed a scattered hereditarily
orthocompact space Y~ which is not countably metacompact. Thus, for J. Chaber’s
space Y, Y X(w-+1) is not orthocompact, even though both factors are hereditarily
orthocompact and scattered (cf. Lemma 2.4).
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COROLLARY 5.6. Let Z be a hereditarily metacompact space and Y, be a
regular metacompact space with a ¢-closurepreserving cover by compact sets for
each icw. Then the following are equivalent.

(a) inie[(Iu Y, is metacompact,

(b) Zx 1Y, is countably metacompact,
1ew

() ZXIIY; is orthocompact.
i€Ew

Since every ¢-point countable collection of Z X JIY, is point countable, by
1cw

the proof of the implication (b)—(a) in Theorem 5.4, we have

THEOREM 5.7. If Z is a hereditarily metalindelif space and Y is a regular
metalindelsf DC-like space for each icw, then ZX 1Y, is metalindelif.
cw
COPOLLARY 5.8. If Z is a hereditarily metalindelif space and Y, is a regular
metalindeldf space with a o-closure-preserving cover by compact sets for each icw,
then ZX [1Y; is metalindelif.
1€Ew

We consider metacompactness, orthocompactness and metalindelof property
of countable products using C-scattered spaces.

THEOREM 5.9. [If YV, is a regular C-scattered metacompact space for each
i€, then iI[ Y. is metacompact.
cEw

ProoF. We also assume that Y;=X for each icw and there is an isolated
point a in X. We shall modify the proof of Theorem 5.1. Let @ be an open
cover of X“ Define the same @ and n(K) for each K X. We take a B=
11 B;€ # satisfying the condition of the proof of Theorem 5.1. Fix i<n(B).

icw

If Cimn#*®, then we take the same Wi, A(B, i), I'(B, ), C(B, i), and
W(B, i). Assume that C; n=@. Since c/B; is a regular C-scattered meta-
compact space, by Lemma 3.3, there is a collection W(B, /)= {W,: 7 (B, 1)}
of open subsets in B; satisfying the conditions (17)=(1) and (2”)=(3) in the proof
of Theorem 5.1 and

(3”) For each rel'(B, 9), (/W) " is compact for some a(y).

Let A(B, H)=1(B, i) and C(B, i)={(cIlW ;)***" : 2& A(B, 7)}.

Let K,=(cilW)“7 for ye (B, i) and take 4z, K(0) for €45, Xs, r(K(@)),
H(9), W(0) and G(0) for 645, G(B), Bs 4, Bs(B) and B(B) for d€d(B), Ac
({0, 1, ---, r(K(0))}) as before satisfying the conditions (4”)=(4), (5”-i)=(5-7)
for 7=1, 2, 3 and 4, (6”)=(6), (7")=(7), (8")=(8) and (9”)=(9). Furthermore, we
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take the same G; and 4; for each j€w, and show that U{g;: j€w} is a point
finite open refinement of @. Let x=(x:)ic,. Take the same {4(j): j€0},
(K(): jE0), 143G): jEo}, (W) : jew}, {6(): jEw}, {A()): jEo} and {B()):
jew}. Assuming x&\U3; for each jEw, we similarly choose a sequence {3(j):
jew}, a sequence {K(j): jEw} of compact subsets of X, where for each jew,
KU):ig,K(j)ie‘K' sequences {H@()): jew}, {(W(@()): jew} of elements of

@, a sequence {A(j): j€w} of finite subsets of w, a sequence {Bi;,ap ' JE®}
of elements of @ satisfying the conditions (107)=(11), (11")=(12), (12")=(13),
(13")=(14), (14”)=(15), (15”)=(16) and (16”)=(18). Then there is an i€w such
such- that |{jew: i€ A} |=w. Let {jew: icA(j) and i=n(Bsy), 4t =1{7s:
kew}. We have

(17”) For each k€®, e(clWrai, s +0.0)<e(€Wrag,n.0)-

Fix k€w and take a y&ciWreo,, en.0. Since Wi psy+0.0CWraGeen, i
ﬂClWr(ii(jk+1+l),i)(y)§aCZWr(ﬁ(jk+1),i)(y)- Assume that j,.=j.+1 Then

Wit pege0. 0 CBoG 10 4G 100 and
K(]'ku)i:Kr(J(jkﬂ),i):(CZWT(MJHI),1))"(r(a(”“)'i”CH(a(]'kn))i-
Assume that j,,.>j.+1. Then

K(]k+1)i”—_Kr<6(jk+n.i):C,i<B,;(J-k+1),A(jk+”,i):C2(Ba(ij_1),A(,-k+1-1),i)CH(5(]kn))f .

In each case, we have aclW s, . »(¥) <a(y(@(j +1), 7). Hence acWiiiyaen 0(¥)
< a(@(s+1), 7). Therefore e(ciW;Gi,en.0) = a(7(@(j,+1), 9.  Since
3(CIWT(8(jk+1).i)):a(r(é(].k+1)y 7)+1, we have 3(CIW7(ij+1>‘i))‘(E(CZWr(E(j,,H),i))-

Thus {e(c!Wrii,+0.0): REw} is an infinite decreasing sequence of ordinals,
which is a contradiction. Thus there is a k€ such that x& U B,. Similarly,
it follows that \U{¢,: j€w} is a point finite open refinement of ©’. The proof is
completed.

Similarly, we have

THEOREM 5.10. Let Z be a hereditarily metacompact space and Y; be a
regular C-scattered metacompact space for each i€w. Then the following are
equivalent.

(a) ingYi is metacompact,

(b) Zx 1Y, is countably metacompact,
icw

(c) ZX tH Y, is orthocompact.
cw

THEOREM 5.11. If Z is a hereditarily metalindeldf space and Y, is a regular
C-scattered metalindeléf space for each iSw, then inl'[ Y is metalindelif.
ca
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