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1. Introduction and statement of the result

Let M be a smooth oriented 4-manifold, which admits an open subset K

with one end N and an open submanifold Wo with two ends A/_,N+. Wu W2, ･･■

denote copies of Wo. The 4-manifold M will be called end-periodic if it admits

a decomposition M=KvjnW0UnWiU---, where NcK is identified with the end

N_ of Wo and the end N+ of Wo is identified with the end A/_ of Wx and so

on. Let Y be the compact oriented 4-manifold which is obtained from Wo by

identifying the two ends. The manifold Y has a Z-cover Y―---UNW^1KJNW0

WjvWiUjv- with projection tz: Y^Y.

A geometric object on M, a vector bundle, a connection, a differential

operator, a Riemannian metric etc. will be called end-periodic if its restriction

on End M=W0[JNW1KJN--- is the pull back by tz of an object on Y. By making

use of a smooth function t: W0―>[0,1] such that £|jv_=O and t＼N+=l, we obtain

a smooth step function r: M―>[0, oo) such that t＼k=0 and r(x)=n+t(x) if

x<=Wn, n = l, 2, ･･･.

Let P-^M be an end-periodic principal Sf/(2)-bundle, and Ao be an end-

periodic connection on P which is isomorphic over End M to the product con-

nection on End MxSU(2). Then by the lemma 7.1 in fill,

l=a/W)＼
MHFAoAFAo)

is an integer, where tr(･) is the trace on the adjoint representation of the group

SU{2). Let E―>M be an end-periodic vector bundle. Put L＼OC{E)―{section u

of E; u<=L2(E＼A) for every measurable A<s=M＼ and denote by ||-|U0the norm

by the covariant derivative V^o: C (E)―>C°Z(E§?)T*M) of compactly supported

smooth sections. Further 7^ denote the / times iterated derivative 7j4o---7^o.

For d>0, we put
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Jll(S)={A0+a; a(=Ll,loc((LdPRT*M)

with norm
f
er*{S/=olWoa |2}<<*>},
JM

and define the small gauge group Qt―{h<=LlAoc(Aut P); ||V^0/i|U0<°°}>where

adP is the associated bundle PxAdSu(2), and Aut P denotes the automorphisms

of the principal bundle P. Here we have used the adjoint representation Ad :

SU(2)/Z2->End(su(2)) and the embedding C°°(?XAdSU(2)/Z2)^C°°(Px AdEnd($u(2)))

of effective gauge transformations, and their Sobolev completions (4 in [8]).

Let JLf(8)dJli(8) denote the subset of irreducible connections, and g0 be an

end-periodic metric on the tangent bundle TM and <S be the set of asymptoti-

cally periodic metrics ((6.1)in [11]). Consider a 5requivariant map

p: JltWxe^iA, <P)-^P-(g0)(<p-1)*FA<=Llloc(adPRP_A2T*M),

where P_ denotes the projection to the anti-self dual parts. Let xtii=p~l(0)/Si

and jf: xhi―*6be the projection.

Now the manifold SxxR3 is end periodic (Proposition 1 in Section 2). Then

our main result is

Theorem. For a Baire set of <p<^<5,the moduli space a ＼(p)r＼Jl*/Giis a

smooth manifold of dimension 81―3.

We can choose a connection Ao for each / (Proposition 9 in Section 3), and

can replace the Sobolev space L＼Aoc by L＼Aoc(Remark 1 in Section 4). Almost

allarguments in [11] are fittedwith the case, M = S1XR3 except for the admis-

sibilitywhich is (1) n^W) does not represent non triviallyvn SU(2), (2) H^N;

R)―H2(N; R)=0, (3) the intersection pairing on H2(Y ; R) be positive definite.

C.H. Taubes proved in [11].

Theorem (1.4 in [11]). Let M be a smooth, end-periodic and admissible 4-

manifold. Suppose that 7Ti(M) has only the trivialrepresentationinto SU{2). If

H2(K; Z) has positive definite,unimodular intersection pairing, then thispairing

is diagonalizable over Z. If the intersectionpairing on H2(K; Z) is only known

to be positivedefinite,then the intersectionpairing on H2(M; Z) is unimodular

and diagonalizable over Z in the following sense: There is a sequence of free

abelian groups A_1dA0C.A1c:---QH2(M; Z) with ＼＼mAn=H2(M; Z) such that (1)

A.i<S>R=Hs(K; R) and (2) the intersection pairing on An is unimodular and

diagonalizable.

Further he obtained the striking

Thorem (1.1in [11]). There exists an uncountable family of diffeomorphism
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classesof oriented ^-manifolds which are homeomorphic to R4.

In [11] the admissibility is used in many parts. Then our main task is to

deduce substitutes directlyfrom the topological structure of the manifold instead

of the admissibility condition. The main theorem is proved in Section 4.

The authors wish to thank to Professor M. Itoh for his advice.

2. Preparations

Proposition 1. The space M=S1XRS is end-periodic

Proof. Let Dl/2 be the disc of radius 3/2 in R3. Then using the follow-

ing diffeomorphism

S'XiW-DU^S'XStXOft, oo),(x, y)―>{x, y/＼＼y＼＼,＼＼y＼＼)

we see that the space SlxRz admits a decomposition as a smooth manifold,

SlXDl,^J{SlXS2X(l, 3))W(S1XS2X(2, 5))U-

U(S1X52X(2n, 2n+3))W(S1xS2X(2n+2, 2n+5))W---.

Now for our argument we put

K=S1XDI/2KJS1XS'X(1, 3),

7V=S1X52X(2, 3)=N_, ^0=S1XS2X(2, 5), N+=SlXS2X(4:, 5),

and so on, and put further End M = W0＼jW1VJ---=SiXS2X(2, oo).

Proposition 2. Any principal SU(2)-bundle over M is trivial.

Proof. The identity map 1M: M-^M is homotopic to the projection SlX

R3->S1X(0), and the space S^R3 yields the Lindelof property. Then a principal

S£/(2)-bundle P^M is isomorphic to the bundle (P＼Si)xR3, where P| Si is the

restriction of the bundle P^M onto the subspace S^iO^aS^-xR3. Since the

group SU(2) is connected, the bundle P＼Siis trivial.

Proposition 3. Let [SlxS2, Sf/(2)] feeif/iese^ 0/ homotopy classes. Then

we have a bijection

[S'XS2, SU(2)1 ―> xs(SU(2))=*Z integers.

Proof. By 8.9 Satz in [2], the following sequence is exact:

* <― [S'VS2, S£/(2)]<― [S'XS2, S£7(2)]<― [S'AS*, Sf/(2)] <― *

Fhus this proposition is obtained.
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Let Y be a compact oriented 4-manifold which is obtained from Wo by

identify N+ with iV_ via the obvious map. Then F=S1xS2x51. Let [>] be

the cohomology classwhich corresponds to the last circleS1.

Proposition 4. The Euler-characteristic and the signature of Y is zero,

and the map ＼j~＼＼J: HldR(y)-+HlR{Y) has the l-dimensional kernel {/£[>]: A<=R},

where HdR denotes the deRham cohomology.

Proof. Z(n=l-2+2-2+l=0.

The signature Is the signature of {//J(F)3x-^(xUx)[F]£Z}, then it is

zero. Let y' be the cohomoiogy class which corresponds to the firstcircle S1.

Then mw[r]=Q and MUTr! corresponds to SlX(pt)XS＼

3. Index calculations

The manifold Y admits a Z-cover Y=---＼JW_1UW0UW1]U---, with the pro-

jection7T:Y―>Y. For an end-periodicbundle E-+M, and lf^p^°°,Q^k<co,

8^R, L＼s(E) denotes the completionof C^(E) in the norm

MdvoWHU＼VUls＼p＼
,

where r: End M―>[0, oo) is the smooth step function.

Proposition 5. For all but a discrete set of 8<=R and k^A, the complex

0 ―≫ Ll+2,S(M) ―> Li+1,S(T*M) -^ Lld(P^A2T*M) ―> 0

zs Fredholm.

Proof. The proposition 4 in [11] can be applied to our case without any

change.

Proposition 6. For the anti-self-dualdeRham complex in Proposition 5

H＼L*8(d, P_d)) = ker(d: Li+2.a(M) ―> LI+1.a(T*M))=0.

Proof. For 8^0, the constantsare not in L2iB.

Proposition 7. H＼L*,d(d,P_d))=0 for k>2.

Proof. By the Sobolev imbedding Ll+1,5cLl+1cCJ for & + 1―2>l, and for

w<=ker P_d, the equality



shows that dw
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0=[ ＼P-dw＼* = (＼/2)＼ ＼dw＼*

JM JM

= 0 on M. Here the second equality is obtained as follows:

P_dw 2=((l/2)(l~*Wu0A((l/2)(*-lWw)

dwf＼dw = d(dw f＼w), {*dw)f＼(*dw) ―(*dw, dw)a)0 = dw f＼dw ,

463

r _

o)p is a volume form. Now we consider the integral ＼ d{dw/＼w), where Kn
J K n

denotes the closure of Kn = K＼JNW(＼JN ■■■＼JyWn. Then the integral is equal to

J3Kn
dwAw which converges to zero as n-^co. Thus w represents a class [_w~＼

g//^(M; R), and a homomorphism

r:H＼IJ,d(d, P_d)) ―^ HUM; R)

is obtained. If w^0 m C^M;/?), then there exists a z^Cz(M; R) such that

w = dz. Now the lemma 5.2 in fill can be applied,

(
eTd＼z-z＼*<z[ 6t<5|m;|2<co for some z(^R.
Jm J 3/

Then d(z―z)=w and dw=Q, therefore w^O in L＼+lj(T*M). Hence r is monk.

Any class[w^^H^L2j5(d, P-d)) can be represented as w=fdd+ ■■■,0 is the

localcoordinatein the circleS1. Then

(
e^|/!2<°° and /―>0 as t―> oo
JM

(1)

On the other hand HlR(M; R)^R is generated by the class [d#]. If w ―dd =

(dg/dd)dd+ ■■■, then (f-l)d0=g0d0, ga = (dg/d0). Therefore go--l as r-oo

by (1). Now g is a periodic function of 6 and so ge can be expanded as a

Fourier series

go 2 n=i{an cos nd + bn sin nd) (2)

Here the constant term is zero. Therefore the Fourier series can not converge

to the constant function ―1. This is a contradiction. Thus r is not surjective

and the proposition is proved.

Now we proceed to compute the second cohomology group H2(L2,s(d, P.d)).

The homomorphism rn:H＼L2,d{d, P^d))~>Ht,dR(Kn ; R), (5.13) in [11] can be

denned by the property Hz(Kn; R) = 0 instead of the condition H2(N; R)=0

which is one of the admissiblity condition in [11]. For our case we have to

choose k with k― 2>1, i.e. k>3. The lemmas 5.2, 5.4,5.5,5.8 and 5.9 for the
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proof of the lemma 5.3 in [11] can be obtained in our case without the admis-

sibilitycondition except for the proof of the lemma 5.9. So we state it again

and Drove.

Lemma. Consider the complex

dz P-dz
0 ―> C°°(Y)―> C°°(T*Y)―> C%P_A2T*F) ―> 0,

where zeC obeys |z|=l

coker(P.dt)=O.

and dzf=^df+ztdz~tAf, is a l-form on Y. Then

Proof. The manifold Y = SlXS2xS1 has a positive scalar curvature, and

is conformally flat. Then it is a self-dual 4-dimensional manifold (Example 1

in the section 1 of [1]). Now dz is a covariant derivative with respect to a

connection (―log z)dt. Then its curvature is zero and so the connection is

self-dual. Thus the second cohomology of the complex vanishes.

Proposition 8. H＼L2,a(d, P_d))=0 for k^A.

Proof. By the Lemma 5.4 in [11], the homomorphism rn is injective for

sufficientlylarge n. By making use of Poincare duality, Ht,dR(Kn) = Hn(Kn)―0.

Then by the Lemma 5.6 in [111, we obtained the proposition.

4. Gauge theory and Moduli space

By Proposition 2 in the section 1, any S£/(2)-principalbundle over M is

isomorphic to the product bundle MxSU(2). We have in particular P＼EndM^

n*(YxSU (2)),i.e. it is end-periodic, where tz: End M―>Y is the projection.

Proposition 9. For each integer I, there exists a principal SU{2)-bundle P

and an end-periodic connection Ao on P which is isomorphic over End M to the

product connection on End MxSU (2) satisfying

p=a/Sn*)＼
Mtr(FAoAFAo)=l.

Proof. As in the proof of the Lemma 7.1 in [11], consider a compact 4-

manifold Q. In our case the manifold Q is SlXDz+＼jSlXDl.. Here we refer

to the construction of the definition4.2 in [10]. Let 7c: FQ-^Q be the projec-

tion of the orthonormal frame bundle, and {f^mn be a set of orthonormal

frames at / distinct points in SlXD＼. We choose sufficientlysmall Gaussian

coordinate neighborhoods Ut of x(fi) such that U^S^XDX for all i, and put
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U<>=Q ―＼J＼-ix(fi).Then ＼Jli=0Uiis a covering of Q, and by the construction

due to Taubes we obtain a bundle P(y) which satisfies the relation ―ct(P{y))

= 1, where y denotes an /-tuple((/t, ^i)f=1)for some positive numbers {Xt}. By

the relation

(l/4;r≪)jtr(FAoAFAo)=J {c＼{P(y))-2c2{P{y))},
Q

p is equal to /, where Ao denotes the connection which is given by the defini-

tion 4.2 above. Since AQ=d-＼-'2,li-i(pJi(^ujwli)(d is the flat product connec-

tion) gives the product connection in S1XDi, we can replace S1xDl by End M.

Thus the proposition is proved.

Proof of Theorem. The smooth manifold structure is obtained by the

argument in sections 6, 7 and 8 in [11]. The manifold Q in the proof of Pro-

position 9 is self-dual and the connections on Q is self-dual and so, on the

manifold Q the index of the ellipticoperator P-{g0) ((p~l)*dA+e~zddA*e'rdis 8/,

where we use the equations 1(Q)=t{Q)=0.

On the other hand, by Propositions 6, 7, 8 in section 3, the index of the

anti-self-dualdeRham complex

0 ―> LU,8(M) ―> L$+UT*M) -^ Lls(P- A2T*M) ―> 0

is zero. Let mi = p-＼Q)/3'i,where Q[= {g^Qi; r(g)=l] [11], and nr'.ni[^<5 be

the projection. By the excision property of the index, the index of the elliptic

operator above is just the dimension of the manifold (Tt'yl((p),^J.f/S'i(c.f. the

proof of the Lemma 8.4 in [11]). Since the projection (n')~＼<p)f^J.f/Qi^7i~＼(p)

r＼J.f/Siis a principal SO(3)-bundle (c. f. the proof of the Lemma 7.3 in [11]),

the dimension of our moduli is 8/―3.

Remark 1. By the Proposition (4.2.16)in [3], our theorem holds for k = 2.

In fact we can use the regularity of the linear ellipticoperator e~z5dB*ezd+

P-dB, where B is a smooth connection and so the operator has smooth co-

efficients.

Remark 2. Existence of self-dual connections.

Using the connection Ao in Proposition 9, we will get a<^LlAoc(adP(^)T*M)

such that A=A0-＼-a is self-dual. It sufficesthen to solve the equation

(P-DAo)*DAau + P-(*DAuA*DAou)=-P-FAo ((3.4)in [9], (2.2) in [6]).
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By the consideration in the section 4 of [9], the solution is constructed induc-

tively. The firststep is to solve P.DAo{*DAou)= ―P-FAo. Now A0―0 on the

half 5xXDi in Q, then we can assume that u1=0 on the half S^Dl. For the

equations

P-DAo(*DAouk)=2^P-(*DAoUjA*DAouj)-P-.(*DAouk-1A*DAouk-1),

we can assume that uk = 0 on the half S1XDi.

Next we replace the half S!X/)i by EndM. Then

j

it/{St=olV^o(i)a|2}=^{St=ol^;^a|2}<c≪.

Therefore by the argument in sections 5~9 of [9], it can be shown that A is

Oalf_rliio1

Remark 3. Reducible self-dual connections.

Let A be a reducible connection on an S£/(2)-bundle over the space S^R3.

Then A reduces to an S(£/(l)x£/(l))-connection, and the curvature FA has the

form _. , , where da is a 2-form. Now a self-dual connection is a
L 0 ―da＼

Yang-Mills connection. Therefore da is harmonic. Since H2(S1XRS, R)=0,

FA=0 and so the connection is flat. The moduli space of reducible flat connec-

tions is just the space Horn (n1(S1), S(U(1) X f/(l))/Ad SU(2), which can be

identified with a one dimensional manifold U(l)/Zz, the upper hemicircle (c. f.

the Lemmas 6.2 and 6.5 in F6T).
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Added in proof. In the proof of the lemma in Section 3, we assume that

the manifold Y=SlXS2xS1 is conformally flat,but thisis not clear. Then we

give here a correct proof. The twist map S1XS2X51-―S2X51XS1 is orientation

preserving. We give on the projective line S2 the Fubini-Study metric, which

coincides with the metric obtained by the stereographic projection onto Eucli-

dean plane i?2. On the other hand we introduce the flat metric on the torus

S^XS1. Then we obtain a product Kahler metric on the manifold Y and its

scalar curvature is positive. Now we apply the Theorem 3.1 in [M. Itoh, On

the moduli space of anti-self-dualYang-Mills connections on Kahler surfaces,

Publ. RIMS Kyoto Univ. 19(1983), 15-32]. Then for each irreducible ASD con-

nection on the Kahler surface Y h2=Q. Now we reverse the orientation on Y,

then for the complex in the lemma the second cohomology vanishes.


