
TSUKUBA J. MATH.

Vol. 3, No. 2 (1979), 41―51

TITS' SYSTEMS IN CHEVALLEY GROUPS OVER

LAURENT POLYNOMIAL RINGS

By

Tun Morita

0- Introduction.

Our aim is to show that the elementary subgroup of a Chevailey group ovei

a Laurent polynomial ring has the structure of a Tits' system with an affim

Weyl group (as for Tits' system, see [2]).

We let denote Z the rational integers.

Let A be a (reduced) root system (cf.[2],[4]). Then there is a finite dimen-

sional complex semisimple Lie algebra L = L(A), unique up to isomorphism, whose

root system is J. Let p be a finitedimensional complex faithfulrepresentation

of L.

Let G be a Chevalley-Demazure group scheme associated with L and p (as for

the definition,see [1],[8]). Since G is a representable covariant functor from the

category of commutative rings with 1 to the category of groups, we get a group

G(R) of the points of a commutative ring R, with 1. We call G(R) a Chevailey

group over R. For each root a£A, there is a group isomorphism of the additive

group R* of R onto a subgroup Xa of G(R) (cf.[1],[8]). The elementary sub-

group E(R) is defined to be the subgroup of G(R) generated by Xa for all≪eJ.

If A is of type AL and p is of universal type (cf.[4]),then G(R)=SLi+i(R) and

E(R) is the subgroup EU1(R) of SXm(J?) generated by /J+i+fley for all ≪ei? and

l<i'^j<l+l, where It+1 is the (/+l)x(/+l) identity matrix and e^ is a matrix

unit (1 in the i,j position,0 elsewhere).

If 2? is a field,then E(R) has the structure of a Tits' system associated with

the Weyl group of A (cf.[9]). If R is a fieldwith a discretevaluation, then E(R)

has the structure of a Tits' system associated with the affine Weyl group of A

(cf.[5]). Let K[T, 71"1]be the ring of Laurent polynomials in T and T~l with

coefficientsin a fieldK. In this paper, we will show that E{K[T, T~r＼)has the

structure of a Tits' system associated with the affine Weyl group of A. Let Lz

be a Chevailey latticein L (cf.[4]) and set %K=K[T, T^y&zLz. Then %K is iso-

morphic to a Euclidean Lie algebla (cf.[6]). Thus, if p is of adjoint type, and if
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char K=0 or >5, then our result corresponds to the special case of [7].

Let x and y be elements of a group, then the symbol [x, y] denotes the com-

mutator xyx~ly~xof x and y. For two subgroups G% and G3 of a group d, let

[Gz, G3] be the subgroup of Gi generated by [x, y] for all xeG2 and yeG3. We

shall write Gi=G2-G3 when a group d is a semidirect product of two groups G2

and G3, and G3 normalizes G2.

The author wishes to express his hearty gratitude to Professor Eiichi Abe

inr Jiiqvniiinihipnrivir-p

1. Characterization of affine Weyl groups.

Let 4 be a (reduced) root system of rank /, W the Weyl group of A, and W*

the affine Weyl group of A (cf.[2],[4],[5]). Let 77= {≪!(･･･,a*} be a simple sys-

tem of J, and zf+(resp. A~)the positive system (resp. negative system) of A with

respect to 77. Let a and /3be in J, then we abbreviate 2(/3,≪)/(≪,a) by </},a>,

where ( ,) is a scalar product (cf.[4]). For each a£A, wa denotes the reflection

with respect to a. Set Ji = AxZ, then an element of At is represented by acn),

where a A and hgZ. For each ameAlt let wf be a permutation on A defined by

for any /3(m)ii. Let Wi be the permutation group on Al generated by w for

all a(ra)eii. We shall identify W with the subgroup of Wi generated by wf

for all ocqA. Set kijt)=wijl)w(^~1and let TJj be the subgruop of Wi generated by

M"> for all fy^cA,.

Lemma 1.1

(1) Let aw and /3(m)be in Jj. 7%ew

(2) iJi fs≪ /Vee abelian group generated by h!i＼for all a&Il.

(3) Le* ≪(K)flw^ ^S(W)fte m Ji, ≪wJ se/ ^=w.jft. Then

Proof. (1) and (3) are confirmed by direct calculation. We will show (2).

Set a*=2aj(a,a) for each ≪ei, then J* = {≪*;aeJ} is also a root system and /7*=

i{co*; ai£TI]a simple system of J*. Let a be in 4 and write a*― 2 ^≪i* (CiGZ),

then we have h^^hifhif―h^. On the other hand, h = ($?)*. Hence #i is gene-

rated by h% for all l<i<L Next assume h(fll)---h^i)= l (m^Z, !<;</). This

yields TKp,aj}mj=Q for all /tei. Thus Wy=0 for all j. q.e.d.
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Proposition 1.2 Let W, W*, Wi and Hx be as above. Then Wi=Hi-W. In

particular, Wi^W*.

Proof Lemma 1.1 implies Hi<＼Wi and H＼f]W=l. For any ≪(B;eJi, w =

tifhvfzIhW. q.e.d.

Lemma 1.3 Let a(OT)be in Ax and w in Wu and set pm=wa°n＼ Then

Proof We can assume w = wf> for some j-a) Ji. For any dmsAi, we have

w^w^wf-W** =wfW'> by the following formula:

<<5,y} + (wawrd, j} + <<5,wra}(a,y) = 0.

q.e.d.

Let J = J(1)uJ(2)U---U#r) be the irreducible decomposition of A (cf.[2],[4]),

and set FI^ ―A^ n/7 for each j (l<j<r). Let fa be the unique highest root of

A<s> with respect to II<≫ for each j. Set //＼= {-a?＼ pf; 1 <*'</, l<j<r} and Y=

Proposition 1,4 Let Wi and Y be as above. Then Y generates Wi.

Proof We can assume J is irreducible. Let X be the subgroup of W＼

generated by Y. If A has only one root length, then w^eX for all at A by Lem-

ma 1.3. Thus ha'eX for all aeJ, and X=Wi. Assume that A has two root

lengths. Then we can choose a and p in II such that a is short, p long, and

<a, py~―I- By Lemma 1.3, ivf)w{≪)wf)~'l―w'ru£X,where j = w^a. Hence w(aneX

for all aQA, which yields X=Wi. q.e.d.

When we Wi is written as WiW2---u>k(wjcY, ftminimal), we write l(w)= k: this

is the length of w. Set At =(A+ XZ>0) U (A-X^>0) and A'1=Al-At. For each w TF,,

set r(w) = {≪(M)eJ1+;wa(n)eJr} and N(w)=Card r(w). We will show N(w)=l(w).

The following proposition is easily verified.

Proposition 1.5 Let am be in Ui and w in Wi. Then:

(1) r(w )= {am},

(2) w?＼r(w) - {am}) = r(ww )
~{am},

(3) ≪(n)is in precisely one of F(w) or I＼ww ),

(4) N(ww?))=N{w)-l if awer(w), N(ww )=N(w) + l if am$r(w).

Lemma 1.6 Let t be in Z>x and am in IJ^ Let wj be in Y (j = l, 2, ■■■,l ―l]

and set wt=wf). Suppose W＼w2 ･･･iVt-xa^ is in A±. Then Wi---Wt= w1---ws-iWSil--'

Wt-i for some index l<s<t ―1.

Proof Write jk'~ujk<,iWk+-i---tVi-iain')(Q<k<t―2), jt~i―am- Since ^eJr anc
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Yt-i^^i, we can find a smallest index s

so fsGfli. Thus Ws―wf*, where j(-m―js.

･■･wgn),which yields the lemma, q.e.d.

for which js£dt- Then MV/'*= ?'*-iGii,

By Lemma 1.3, w,=(w!ir"M'(-iW^-i

Corollary 1.7 If w ―WiWr--tot (wjgY, l<j<t) is a reduced expression (i.e.

l(w)―f),and if Wt―w'f for some ≪(W)e//i,then wa(n}£Ai.

Proposition 1.8 Let w he in W＼. Then N(w) ―l(w).

Proof Proceed by induction on l{w). If l(w)=-0, then w = l, so N(w)=O. As-

sume I(w)>0, and write w~iv1w2---Wt as a reduced expression, where WjgY, l<j

<t. For some ≪(re)e/71(wt = w . By Corollary 1.7, wa zd; and am^r(w).

Thus N(unu )= N(w)-l by Proposition 1.5(4). On the other hand, l(ww )=l{w)

―1. By induction, Niww^^^liww ), which implies N(w)=l(w). q.e.d.

2. The statement of Main Theorem, some basic results.

Let A be a (reduced) root system of rank / and Il~{au ■■■,at] a simple sys-

tem of A (cf.[2],[4]). Let L~L(A) be a finitedimensional complex semisimple

Lie algebra whose root system with respect to a Cartan subalgebra I)of L is A,

and let p be a finitedimensional complex faithfulrepresentation of L. Let G be

a Chevalley-Demazure group scheme associated with L and p (as for the definition;

see [1],[8]). Let {hitea; l<i<l, a£d} be a Chevalley basis of L (cf.[3]). Then

i
we have a Chevalley lattice Lz= S Zhi+ 2 Zea in L. Let CU be a universal

enveloping algebra of L and c[Jz the subring of c{) generated by 1 and e＼＼k＼for

all azd and keZ>0. Then L^ is a HJz-module. Let F be the representation space

of
(o,
A the weights of F with respect to f),and V=Hp^aVpi the weight decomposi-

tion of V. Let Mbe an admissible latticein V (cf.[4],[9]),and set M^Mf] Vr

Let K[T, T"1] be the ring of Laurent polynomials in T and T~l with coefficients

in a fieldAT. Set M' = K[T, T~r]RzM and M',= K[T, T^<%ZM,. For each fetf,

≪eZ and aci,

exp tTnp(ea)=l+tTnp(ea)ll I+t2 Tinp{eafj2!+

induces an automorphism of M' under the following action:

(tkTknP(ea)kjkl)(fRv)= (tkTky)(^(p(ea)klkl)v,

where /gK[T, T^1] and veM. Then X≪= <exptTnp(ea); UK, neZ) is a subgroup

of G(K[T, T^1]) and isomorphic to the additive group of K[T, T"1]. Let

£"(^[7;71"1])denote the subgroup of G(K＼T, T"1]) generated by Xn for all ≪eJ.

We shall write xin＼t)-exptTnp(ea) for each ≪eJ, hgZ, and ZeiT. Let A"* be the

multiplicative group of K. For each ≪ J, neZ, and t^K*, we write
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wl*＼t)= x (t)xtan＼-t-l)x (t),

h<*＼t)= wljl＼t)wit＼l)-1.

Let U be the subgroup of E(K[T, T~v＼)generated by xf＼t) for all am£At and

teK, Ho the subgroup generated by h^＼t)for all aeJ and tsK*, B the subgroup

generated by U and Ho, and N the subgroup generated by win)(t)for all ≪(n)ezfi

and / #*.

Theorem 2.1 {Main Theorem) Notation is as above. Set E=E(K[T, I^1]) and

let Y be as in §1. Then {E, B, N, Y) is a Tits"system.

The proof of Theorem 2.1 will be completed in §4.

Lemma 2,2 Let avn> and fiin>be in Au and assume a-f/3^0. Then

VxT＼t),x^{u)} = Ex(i^jft){cijtiui)

for ail t,ueK, -where the product is taken over all roots of the form ia+jfi, i,jeZ>e

in some fixed order, and Cijis as in [9, Lemma 15],

Proof Let f and rj be indeterminates, and let a and ftbe in A such that

a + ft^Q, then we have

[exp £ea,exp j^] = 11 exp a&if eia+n in 'iJzllz,y]],

where djtZ (cf.[9, Lemma 15]). The representation p induces a map, also de-

noted p, of cUz to End(M) because M is admissible. Following this with the map

(p-M&tgxp of End(M) to End (Af) yields a map, again called p, of CIJz to End(M').

Next, map clJM,v＼ to End(M') as follows: (for t,u£K, and Uij£cUz)

where In general, if feK[T, T~vl{/eEnd(M') then fg is the element in End(M')

which is "firstact by g and then left multiply by /." Then our lemma is estab-

lished, q.e.d.

Lemma 2.3 Let am and f/m) be in di and set r=wap. Then:

(1) w?Xl)hfXt)w?＼l)-1=h (f)for any teK*.

(2) w(anXl)xflXt)wiJlX^yi=^m~^"'yn)(ct)for any teK, where c is as in [9,Lemma 19].

(3) hTXt)xTX^VC＼tyi^xfi^B-a>7!＼t<^aht)for any teK* and ueK.

Proof These follw as in [9, Lemma 20].

Lemma 2.4 (cf.[3],[9]) Let a be in A, ?n and n in Z, and t and u in K*. Then:

(1) h?Xt) ^ts as multiplicationon M£ by t<ft-"W-a>n.

(2) hTXtW:i＼u)^hT+nXiu).

(3) wTXt^wtfX-t-1).
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Let No be the subgroup of E(K[T, 71-1])generated by wf＼t)for all ≪<=J and

tsK*, and H the subgroup generated by hf＼t) for all aweii and £eif*.

Lemma 2.5

(1) B=U-H0.

(2) Ho ≪wd iJ are normal subgroups of N.

(3) N= HN0 and Hf] No=Ho.

Proof (1): Any element of U Is a superdiagonal unipotent matrix of Infinite

degree and any element of II0 Is a diagonal matrix of infinitedegree with respect

to an appropriate choice of a /f-baslsof M'. Hence UC[HO = 1. By Lemma 2.3(3),

Ho normalizes U. Thus B= U-Ho. (2): By Lemma 2.3(1), we see that TV normalizes

Ho and H. (3): For any ≪(n)Jx and tzK*, we have w^＼t)^hf＼t)w^＼l)£HN0, so

N-HN0. Clearly FIf]N02ff0. Conversely we take A Hf)N0 and write h=Uh(^＼tj)

(≪j /7, wy Z, tjzK*). Then A maps Kf&zM,, to itself and hence, by Lemma

2.4(1), Z,(u,aj}mj=Q for all weights /j of the module. Thus we have m,-=0,

which implies heH0. q.e.d.

Theorem 2.6 Notation is as above. Then NjH0―Wi.

Proof By Lemma 2.5, we have NIH^{HlH,)'{N,jHn). Since Hlth-Ih and

JVo/Ho~PF, our theorem is establishedby Lemma 1.1(3), Proposition 1.2 and Lemma

2.3(1). q.e.d.

We sometimes identify an element of Wi with a representative in iV of NjH0

through the isomorphism in Theorem 2.6.

3. The case of rank 1.

In this section, we assume A is of rank 1, i.e. d~{±a}. Then we have dr―

＼a^＼-≪w; neZ} and Jt = {a<-m＼-≪w; ntzZ>0, nzZ>0}. Set E=E(K[T, T'1}),and

for each /3(m)Ji let Xf° be the subgroup of E generated by xf＼t) for all teK.

We identify w'f (resp. wi0) in Wi with wio)(l)(resp. ^"'(l)) in N, and simply

write Wi―wix) for ^=0, 1. Set Sx= B＼jBwxB. Our purpose in this section is to es-

tablish the following theorem.

Theorem 3.1 Notation is as above. Then Sx is a subgroup of E for Z~0, 1.

The proof of Theorem 3.1 is given by the next proposition.

Proposition 3.2 Let ; = 0, 1. Then WiUwr^Sx.

We shall give the proof of this proposition after Lemma 3.7.

Lemma 3.3 The following statements hold.
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(1) WoX^Wo1=X≪£eg if n> 1.

(2) WoX^Wo^XT'QB if n>＼.

(3) WoXliw^^X^&So.

(4) wiX*>w?=X?;≫^B if n>2.

(5) WtX^w^^XT^QB if n>Q.

(6) WiX?w?=XL"0 S 6＼.

Proof (1), (2), (4) and (5) are clear. (3): For any UK*,

xif(t)=x(≫i(t-1)w≪l(~t-1)x (t~1)zS0, hence WoXmiw^=X^cSo. (6) is similarly

shown, q. e.d.

Definition Let x be in E.

(1) x is called a (QS, 0)-element if x can be written as

x≪l(fixfMxfrXt!) ■-x^k＼tk)x^a (v),

where $m->0 J1+-{-~≪(0)},̂ eZ>Oj ^, ≪, tlt ―, /& ii:, and y iT*.

(2) a; is called a (QS, V)-element if a; can be written as

x§($)x^＼u)xXl＼h) ■~x%*>(tk)x (v),

where /3f-'")ezf1+-{acl)}>^eZao, ^ u, tlf ･■･,4eK, and vzK*.

(3) a; is called an (S, 0)-element (resp. (S, Y)-element) if a; is a (QS, 0)-elemenl (resp.

(QS, l)-element) with 2^= 0.

Lemma 3.4 Le^ x be in E and ^=0, 1. If x is an (S, X)-element, then

WxXWi~l£Sx.

Proof Set ^=0. We proceed by induction on k. If /=0, clearly Wqxw^gSq

by Lemma 3.3. Assume f#0. If ^ = -acm＼ m>0, then

Woxw^=wox^a {t)x (t1)x^(h)---x^k＼tk)x(°l(v)w;1

= wQx (tjx (t)x^＼h) ■~x%*>(tk)x<!!l
(v)w^x XT'So=So.

If ^=a(-m＼ m>0, then

woxwol = x{j>＼- /)ar^J(- ti)xa-~xkx?＼- v)

=x (-t-l)w≪!>a(t-l)x^(~-t-1)x'-InJ(-t1)x2-･■xkx(-v-1)w (v-^x^K-v-1)

Bwox (-t-^x^Ji-h)xi･ ･-xkx≪l{-v-1)w^B^BS,B=S,,

where Xj = woxfji)(tj)Wo1, 2<j<k. The case when X―l is similarly shown, q. e.d.

Lemma 3.5 Let x be in E.

(1) If x is an (S, 0)-element} then

Woxw^eBwoX X^w'o1.

(2) If x is an (S, l)-element, then

WiXW^eBiViXyXt" wT1.

Proof Proceed by induction on k as in Lemma 3,4. Then we have (1) and
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(2). q.e.d.

Lemma 3.6 Let x be in E and 2 = 0, 1. If x is a (QS, X)-element, then

Proof Set 2=0. If t=Q, clearlytv0xWoleS0 by Lemma 3.3. Assume t*?0. Then

woxwol=x (-trl)w(l＼{t~l)x{≫i(-t-^x (-w)

Xx1---xkx (-v-1)w (v-1)x (-v-1)

Bwax(≪＼(-t-1- u)x1■■■xkx{2＼(- v-^WoB c BS0 B=So,

where xj―Woxffi^ljjWo1,l<j<k. The case when 1= 1 is similarly shown, q.e.d.

Lemma 3.7 Let x be in E.

(1) If x is a (QS, Q)-elementfthen

Woxw^eBwoX XT to;1.

(2) If x is a (QS, !)■-element,then

iihxu)-xlBwiXyXtfwT1.

Proof Lemma 3.5 implies this lemma, q.e.d.

Proof of Proposition 3.2 Set 2 = 0 and let x be in U. We can assume x =

xy-Xk, where xj is an (S, 0)-element, l<j<k. If k = l, Woxw^eSo by Lemma 3.4.

Assume k>l. By Lemma 3.5, WoXiW^gBwqX^IX^Wo1. Thus we have ivaxixzw^

^IhWoV-zWo1, where b^B and y2 is a (QS, 0)-element. By Lemma 3.7, wo^i^2^3?a7!

= hwoysiv^＼ where h?J^B and ?/.,Is a (QS, 0)-element. Recurrently we have w<>xw?

= bw0ywo＼ where beB and y is a (QS, 0)-element. By Lemma 3.6, Wo^w^'gSo.

The case when 2 = 1 is similarly shown, q.e.d.

4. Proof of Main Theorem.

Notation Is as in §2. A quadruple (G*, B*, N*r S*) consisting of four sets

G*, B*, N*, and S* is called a Tits' system if the following axioms are satisfied

(cf.[2]):

(TT) G* is a group, and B* and N* are subgroups of G* such that G* is gener-

ated by B* and N*, and B*f＼N*<＼N* ;

(T2) S* is a subset of the group N*/(B*r＼N*) consisting of involutions and gen-

erates N*l(B*nN*);

(T3) For any aeS* and weN*l(B*nN*), wB*aQB*wB*UB*woB*;

(T4) For any <tgS*, oB*o£B*.

To prove Theorem 2.1 we proceed in steps. For each am£jlf let X be

the subgroup of E(K[T, T"1]) generated by x?Ht) for all /e/l. Let ≪(m) and Bm
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be in Ai such that ≪+ /3#0. Then, by Lemma 2.2,

(4.1) [AT', Xf^(X ＼r = ia+j^A, k = im+jn, i,J Z>0}.

For each a£d＼ set Pa = <AT＼ X^; msZ>9, n£Z>0) and Qtt= (Xf*, Xf'; peJ+

―{a},ni Z>0, nzZ>o). Then (4.1) Implies

(4.2) U^PaQa.

Let a be in Y.

coincides with wi~an)

We can write o=w<*) for some ≪gJ+ and nzZ because w≪l)

Then, by Theorem 3.1 and (4.2),

aBa-l=a{PaQaHo)a-1

= {aPaa-1){aQaa'l){aH,a-1)

CZ(BUB0B)BFIO

=BuBoB.

Hence

(4.3) BijBaB is a subgroup of E.

We see that E{K[T, T~rj)acts on qk=K[T, T~l]RzLz naturally, i.e.

x^(t)(f(g>v)^(eKp ad tTne,t){fRv),

where am£Au teK, fsK{T, T'1] and veLz. For each /3(W)J,, set <?f>= r%,

h? = ＼ehe-p] and hfl)= Tmhfi in flA-. Let g be in f/ and acn) in IIu and set/fJ

S/j<≫)6i1+-(≪'n>]^m).Write ge(_-")=≪f<_-")+W)-Caei")+ 2, where C AT and 2G/f}.

Let 61?' be a map of U onto /T defined by ^n)(j/)=C As {/^^A^-^ei^ + s'

{z'^Ja0) and gjf)!^jf＼ the map C} is a group homomorphism of f/onto the addi-

tive group A~+of K. Let i)iw)be the kernel of the homomorphism din). By (4.3),

For any x£DT＼ {w xiv -l)e = e + z" (z"ejin)), so w xw ~1can not be in

Bwf'B. Thus,

(4.4) w^DfWp-^B.

If g is in U, ac"3e//, and ^n)(flr)=C,then gxi")(-C) l>i"). Hence,

(4.5) U=D -X?＼

Let a(B) be in //i and k≫in Wi, and set a^w^'K If N(wo)>N{w), then (4.4) and

(4.5) imply

(BwB)(BoB) = Bw(X D H0)oB

= B(wX'*'>w-x)wo(o-lDT)o)(o-lH<p)B

-BwoB,



50 Jim Morita

Assume N(wa)<N{w). Set w'=wo, then N(WV)>N{w'). Thus,

(BwB)(BaB) = {Bw'oB)(BoB)

= (BwfB)(BaB)(BaB)

&(Bw'B)(BuBaB)

=-(Bw'B){J(Bw>BBaB)

= (Bw<jB)＼J(BwB).

In general, we have

(4.6) (BwB)(BaB) c (JBwoB) U (Bw).

By the definition,BC＼N^H0. Conversely let x be in Bf]N. Then xqWi,

where x is the image of x under the canonical homomorphism of N onto N/

Ho. Since x is in B, xAt&dt, hence N(x)=0. Thus 5 = 1 and xgII0. This implies

(4.7) Bf)N=Ho.

These facts show that (E, B, N, S) is a Tits' system.

Remarks

1. There exists a canonical group homomorphism of the group Gk defined by

Moody and Teo (cf.[7]) onto our group E under the following conditions: (1)

Gk is defined over a 1-tiered Euclidean Cartan matrix, (2) char ^=0 or>5, (3) p

is of adjoint type.

2. If the scheme G is simply connected (i.e.p is of universal type), then G{K[T,

T~l])= E(K[T, 71-1]).

3. The group E(K[T, J1"1])is not simple. Congruence subgroups, for example,

are normal subgroups.

4. For 2-tiered or 3-tiered Euclidean types, the corresponding groups would be

the twisted Chevalley groups over K[T, T"-1].
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