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TITS SYSTEMS IN CHEVALLEY GROUPS OVER
LAURENT POLYNOMIAL RINGS

By
Jun MoriTA

0. Introduction.

Qur aim is to show that the elementary subgroup of a Chevalley group over
a Laurent polynomial ring has the structure of a Tits’ system with an affine
Weyl group (as for Tits’ system, see [2]).

We let denote £ the rational integers.

Let 4 be a (reduced) root system (cf. {2], [4]). Then there is a finite dimen-
sional complex semisimple Lie algebra L=L(4), unique up to isomorphism, whose
root system is 4. Let p be a finite dimensional complex faithful representation
of L.

Let G be a Chevalley-Demazure group scheme associated with L and p (as for
the definition, see [1], [8]). Since G is a representable covariant functor from the
category of commutative rings with 1 to the category of groups, we get a group
G(R) of the points of a commutative ring R, with 1. We call G(R) a Chevalley
group over K. For each root aed, there is a group isomorphism of the additive
group R' of R onto a subgroup X. of G(R) (cf. [1], [8]). The elementary sub-
group E(R) is defined to be the subgroup of G(R) generated by X, for all aed.

If 4 is of type A; and p is of universal type (cf. [4]), then G(R)=S5SLi.(R) and
E(R) is the subgroup Ei:(R) of SLi.(R) generated by /i.i+aey; for all eeR and
1<ixj<i{+1, where [y, is the (J+1)X(/+1) identity matrix and e;; is a matrix
unit (1 in the 4, j position, 0 elsewhere).

If R is a field, then E(R) has the structure of a Tits’ system associated with-
the Weyl group of 4 (cf. [9]}. If R is a field with a discrete valuation, then E(R)
has the structure of a Tits’ system associated with the affine Weyl group of 4
(cf. [5]). Let K[T, 7-'] be the ring of Laurent polynomials in 7" and 7 with
coefficients in a field X. In this paper, we will show that E(K[T, T-']) has the
structure of a Tits’ system associated with the affine Weyl group of 4. Let Lz
be a Chevalley lattice in L (cf. [4]) and set gx=K[T, 77 1QzLz. Then gx is iso-
morphic to a Euclidean Lie algebla (cf. [6]). Thus, if p is of adjoint type, and if
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char K=0 or >5, then our result correspons to the special case of [7].

Let = and y be elements of a group, then the symbol [z, ¥] denotes the com-
mutator zyz~'y~' of x and y. For two subgroups G, and G; of a group G, let
[Gz2, Gs] be the subgroup of G, generated by [z, y] for all zeG, and yeGs. We
shall write Gi=G,-G: when a group G, is a semidirect product of two groups G,
and G, and G, normalizes G,.

The author wishes to express his hearty gratitude to Professor Eiichi Abe
for his valuable advice.

1. Characterization of affine Weyl groups.

Let 4 be a (reduced) root system of rank /, W the Weyl group of 4, and W*
the affine Weyl group of 4 (cf. [2], [4], [5]). Let T={a, -, ey} be a simple sys-
tem of 4, and 4* (resp. 4-) the positive system (resp. negative system) of 4 with
respect to /7. Let a and § be in 4, then we abbreviate 2(8, a)/(a, ) by B, ay,
where (,) is a scalar product (cf. [4]). For each aed, w, denotes the reflection
with respect to a. Set 4,=4XZ, then an element of 4, is represented by «™,
where aed and neZ. For each a™ed,, let w™ be a permutation on 4 defined by

WP R = (10,) 8 2™

for any p™ed,. Let W, be the permutation group on 4, generated by w™ for
all a™ed;. We shall identify W with the subgroup of W, generated by w®
for all aed. Set A" =w™wP"' and let H, be the subgruop of W generated by
A for all a™ed,.

LEMmmA 1.1
1) Let a™ and B™ be in 4,. Then

h‘(,")ﬂ(m) = ﬁ(m Hp, R

(2) Hiis a free abelian group generated by hY) for all asell.
() Let a™ and B™ be in 4:, and set y=w,p. Then

wi hgP wm = [,

Proor. (1) and (3) are confirmed by direct calculation. We will show (2).
Set a*=2a/(a, @) for each aed, then A*={a*; wed} is also a root sybtem and I7*=
{a*; a;ell} a simple system of 4% Let « be in 4 and write a¥= Zcza, (c:€Z),
then we have AP =hSPhP--hEP. On the other hand, 4™ =(h®)™ Hence Hy is gene-
rated by R for all 1<i</ Next assume A AP =1 (myeZ, 1<j<l). This

yields Z. {B, ajym;=0 for all ped. Thus m;=0 for all j. q.e.d.
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ProrosiTiON 1.2 Let W, W*, W, and H, be as above. Then Wi=H,-W. In
particular, Wy~ W*.

Proor Lemma 1.1 implies H;<]W, and H,nN W=1. For any «™ed,, w®=
PwPe HVW. q.e.d.

LemMA 1.3 Let a™ be in 4, and w in W, and set 8™ =wa™. Then
wwSwt =i,

Proor We can assume w=w® for some ;®ed,, TFor any 6“e4d,, we have
wEWMw® 1§ =03 by the following formula:

<9, 7> +<waw76’ 7> +<0, w,a><a, 7> =0.
q.e.d.

Let 4=4VU4®y---U4" be the irreducible decomposition of 4 (cf. [2], [4]),
and set [I9=49nN1I for each j (1<j<7r). Let ; be the unique highest root of
49 with respect to /I for each j. Set I,={—aP®, g§; 1<i</, 1<j<r} and Y=
fwi; a™ell ).

PropoSITION 1.4 Let W, and Y be as above. Then Y generates W,.

Proor We can assume 4 is irreducible. Let X be the subgroup of W,
generated by Y. If 4 has only one root length, then w®eX for all aed by Lem-
ma 1.3. Thus APeX for all aed, and X=W,. Assume that 4 has two root
lengths. Then we can choose « and f in /T such that « is short, 8 long, and
{a,p>=~1. By Lemma 1.3, wfuwPwP '=wPeX, where y=ws. Hence w®eX
for all aed, which yields X=W,. q.e.d.

When we W, is written as wuw,-+-wy (w;e Y, k minimal), we write J(w)=Fk: this
is the length of w. Set 4} =(4*X Z-)U(d-XZ+o) and 47 =4,—4;. For each we W,
set I'(w)={a™ed}; wa™edl} and Nw)=Card I'w). We will show Nw)=/(w).
The following proposition is easily verified.

ProOPOSITION 1.5 Let a™ be in I, and w in W.. Then:
O Iw)=(a},
) wd((w)—{a™h=I"ww)—{«™},
3) a™ is in precisely one of I'(w) or I'(ww™),
4) Nuww®)=Nw)—-1 if a™el(w), Nww®)=Nw)+1 if a™¢l(w).

LemmA 1.6 Let t be in Z., and o™ in II,. Let w; be in Y (j=1, 2, -, {—1)
and set w,=w(. Suppose wyws - w, 1™ is in 47. Then w, - w, =Wy We—y Wsy1--
wi—y for some index 1<s<t—1.

Proor  Write je=wi.i sz twia™ (0<k<E—2), re-i=a™. Since yo€d; and
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vi1€df, we can find a smallest index s for which y,ed/. Then wips=rs€47,
so 7s¢ll,. Thus w,=w, where y™ =y;. By Lemma 1.3, we= (w1 We)We(Wi—1

weyy), Which yields the lemma. g.e.d.

CoroLLARY 1.7 If w=w,ws-w, (w;eY, 1<j<1) is a veduced expression (i.e.

Hw)=1), and if we=w® for some a™ell,, then wa™cdy.
ProrostTiON 1.8 Let w be in Wi. Then Nuw)={w).

Proor Proceed by induction on I(w). If {(w)=0, then w=1, so Nw;=0. As-
sume Aw)>0, and write w=w,w,--w, as a reduced expression, where w;e Y, 1<j
<t. For some a™ell;, w=w™. By Corollary 1.7, wa™ed; and a™el'(w).
Thus Niow™)=Nw)—1 by Proposition 1.5(4). On the other hand, {ww(”)=1Iw)
—1. By induction, Niww)=L[ww™), which implies N(@o)=I{w). q.e.d.

2. The statement of Main Theorem, some basic results.

Let 4 be a (reduced) root system of rank ! and /7={ay, -, a;} a simple sys-
tem of 4 (cf. [2], [4]). Let L=L(d) be a finite dimensional complex semisimple
Lie algebra whose root system with respect to a Cartan subalgebra §) of L is 4,
and let p be a finite dimensional complex faithful representation of L. Let G be
a Chevalley-Demazure group scheme associated with L and p (as for the definition,
see [1], [8). Let {A, e.; 1<i<], aeA} be a Chevalley basis of I (cf. [3]). Then
we have a Chevalley lattice Lgz= Zl/?, , Z/eu in L. Let 97 be a universal
enveloping algebra of L and Uz LhQ %ubrir‘g of 9J generated by 1 and é¥/k! for
all eed and keZ.,. Then Lz is a 9Jzmodule. Let V be the representation space
of p, A the weights of V with respect to 9, and V=II,,V, the weight decomposi-
tion of V. Let M be an admissible lattice in V7 (cf. [4], [9]), and set M,=Mn7V,.
Let KIT, T-'] be the ring of Laurent polynomials in 7" and 7' with coefficients
in a field K. Set M'=K[T, T-'1®zM and M,=K[T, T-'1®zM,. For each leK,
neZ and aed,

exptT"ple) =1+t ple)1 1+ T ple)* 21 -+
induces an automorphism of M’ under the following action:
(T p(ea) [ RS @w) = T*"f )R plea) R,

where feK[T, T-'] and veM. Then X,.={exp?T"ple.); teK, necZ) is a subgroup
of GWKIT, T-'1) and isomorphic to the additive group of K[T, 7-']. Let
E(K[T, T-']) denote the subgroup of G(X[T, T-']) generated by X, for all ae4.
We shall write 2™(#)=exp 17 "ple.) for each aed, neZ, and teK. Let K* be the
multiplicative group of K. For each aed, neZ, and (e K*, we write
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W) = 2O~ D)),

AP = Ewd(1) .

Let U be the subgroup of E(K[T, T'-']) generated by z™@) for all a™ed;} and
teK, H, the subgroup generated by A%(¢) for all eed and ¢¢K*, B the subgroup
generated by U and H,, and N the subgroup generated by w(@) for all a™ed,
and te K*.

TueoreM 2.1 (Main Theovem) Notation is as above. Set E=FE(K[T, T-')) and
let ¥ be as in §1. Then (E, B, N, Y) is a Tits' system.

The proof of Theorem 2.1 will be completed in § 4.
Lemma 2.2 Let o™ and p be in 4., and assuwme a+8%0. Then
[47(8), ()= T B0 (s o)

Sfor all t, uc K, wheve the product is taken over oll voots of the form ia +7B, 1, j€&.s
in some fixed order, and c;; is as in [9, Lemma 15].

Proor Let & and y» be indeterminates, and let « and 8 be in 4 such that
a+B=0, then we have
lexp &ea, exp pes) =1 exp ci6%7 einsjs in U €& 7],
where ¢;;6Z (cf. [9, Lemma 15]). The representation p induces a map, also de-
noted p, of Uz to End(M) because M is admissible. Following this with the map
p—id®g of End(M) to End (M) yields a map, again called p, of ¢z to End(#’).
Next, map 9 #&, 7] to End(M’) as follows: (for ¢, ueK, and #;;€ U z)

where in general, if feK[T, T7], geEnd(M’) then fg¢ is the element in End(M’)
which is “first act by g and then left multiply by £.” Then our lemma is estab-
lished. q.e.d.

Lemma 2.3 Let a™ and g™ be in 4, and set y=w.p. Then:
&) WA OwP Q) =) for any te K*.
(2) wPMxfOw (1) =u™ ™ (cf) for any teK, where ¢ is as in [9, Lemma 19].
(3) APDxFP(wh() =gt s b oy for any te K* and ueK.

Proor These follw as in [9, Lemma 20].

LemMa 2.4 (¢f. (31, [9]) Let a be in 4, m and n in Z, and t and u in K*. Then:
(1) K@) acts as multiplication on M), by T 9",
(2) BSOS ()= h™ ().
@ W O=ws (—1.
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Let N, be the subgroup of E(K[T, T-']) generated by w{(#) for all ac4 and
te K*, and H the subgroup generated by 2M(f) for all a™e4, and teK*.

Lemma 2.5
(1) B=U-H,.

(2y M, and H are normal subgroups of N.
(3) N=HN, and HNNy=H,.

Proor (1): Any element of U is a superdiagonal unipotent matrix of infinite
degree and any element of H, is a diagonal matrix of infinite degree with respect
to an appropriate choice of a K-basis of M’. Hence UnH,=1. By Lemma 2.3(3),
H, normalizes UJ. Thus B=U-H,. (2): By Lemma 2.3(1), we see that N normalizes
H, and H. (3): For any a™ed, and teK*, we have w{({6)=hI({t)w(1)e HN,, so
N=FHN,. Clearly HNN,2H,. Conversely we take 2e /NN, and write /z:f[ Rt ;)
(a;ell, meZ, t;eK*. Then h maps K®zM, to itself and hence, bs;:lLemma
2.4(0), ZL}</¢, a;ym;=0 for all weights g of the module. Thus we have m;=0,
which in;{plies heH,. g.e.d.

THEOREM 2.6 Notation is as above. Then N/Hy=W,.

Proor By Lemma 2.5, we have N/H,=(HJH,)-(No/H). Since H|H,=Il, and
No/Hy= W, our theorem is established by Lemma 1.1(3), Proposition 1.2 and Lemma
2.3). q.e.d.

We sometimes identify an element of W, with a representative in N of N/H,

through the isomorphism in Theorem 2.6.

3. The case of rank 1.

In this section, we assume 4 is of rank 1, i.e. 4={xa}. Then we have 4,=
(@™, —a™; neZ) and 4} ={a™, —a™; meZ,, neZz). Set E=EK[T, T']), and
for each g™e4, let X§® be the subgroup of FE generated by xi™(f) for all {eK.
We identify w® (resp. w) in W, with w®(1) (resp. w(1)) in N, and simply
write w,=w?® for 1=0,1. Set S;=BU Bw;B. Qur purpose in this section is to es-
tablish the following theorem.

THEOREM 3.1 Notation is as above. Then S, is a subgroup of E for 2=0, 1.
The proof of Theorem 3.1 is given by the next proposition.

ProrosiTiON 3.2 Let 2=0, 1. Then w,Uw;" <S;.

We shall give the proof of this proposition after Lemma 3.7.

LeMMA 3.3 The following statements hold.
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1) wXPwi'=X"c B if n>1.
2) weXWwi'=X"CB if n>1l
B) wXQwr'=X"CS,.

4) i XPuw'=X""2CB if n=>2.
B) wXWw'=Xr2CB if n=0.
6) wiXPuw'=XPcS,.

Proor (1), (2), 4) and (5) are clear. (3): For any teK*,
2O@) =2 S (— Yz (¢-1)eS,, hence weXOuw;'=X"CS,. (6) is similarly

shown. q.e.d.

DerinrTioN Let z be in E.
(1) = is called a (@S, 0)-element if x can be written as
O, O @) () a2 (),
where piPedf —{—a®), keZxo, t, u, 1, -+, tse K, and ve K*.
(2) =z is called a (QS, 1)-element if x can be written as
2RO T () (81) - 280t )P (),
where gPed! —{aW), k€Zx, t, u, t1, -, ke K, and veK*.
(3) x is called an (S, 0)-element (resp. (S, 1)-element) if x is a (S, 0)-element (resp.
(QS, 1)-element) with u=0.

LEMMA 3.4 Let z be in E and A=0, 1. If x is an (S, 2)-element, then

Wx; JESx .

Proor Set 1=0. We proceed by induction on & If (=0, clearly woxw;'€S,
by Lemma 3.3. Assume ¢x0. If gf™=—a™, m>0, then
woxwy =wox™, )z (E)x? (bs)- - 2hP (L) 2 (0)wy !
=wx™ (£)2% Oz (L) - 2P (L) w0 (0)ws ' € XIS, =S;.
If pm=a™, m>0, then
wozwy = aP(— )L (—t) s e (—v)
=20(— D (D29, (— )™ (— t)@e - 2p s (— 0w (072 (—v7Y)
€ Bwox®, (— )z (—t)xz 212 (— 0w BE BSoB=S,,
where x;=woxf}’ (¢ Jws!, 2<5<k. The case when A=1 is similarly shown. q.e.d.
LemMA 3.5 Let x be in L.
(1) If x is an (S, 0)-element, then
woxwy '€ B, X% X Pw;t.
(2) If x is an (S, 1)-element, then

wlxwfle Blef.”X(_;‘) w,“.

Proor  Proceed by induction on % as in Lemma 3.4. Then we have (1) and
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(2). q.e.d.

Lemma 3.6 Let z be in E and 1=0, 1. If x is a (QS, D-element, then
wxwi e S, .

Proor Set 2=0. If =0, clearly woxw;'eS, by Lemma 3.3. Assume 750. Then
worwy;' =z (— WS (N2l (— 12 (~2)
Xy 20—, (02D (—0-1)
€Buw O (=i )z, 2520 (—0 YW, BS BS,B=5,,
where x;=woefj?()ws', 1<j<k. The case when 1=1 is similarly shown. q.e.d.
Lemmva 3.7 Let x be in E.

L) If z is a (QS, 0)-element, then

worwy' € Bug X' X Ow;.

(2) If = is a (QS, D-element, then

wizw;' € Bun X X Pwi.
Proor Lemma 3.5 implies this lemma. q.e.d.

Proor or ProposiTION 3.2 Set 2=0 and let  be in U. We can assume z=
x1---ap, where xz; is an (S, 0)-element, 1<j<k If k=1, wyzw;'eS, by Lemma 3.4.
Assume k>1. By Lemma 3.5, worwi'e Buw, X XPw;'. Thus we have woz,r05"
=bwoywi', where bye B and vy, is a (QS, 0)-element. By Lemma 3.7, wozizaza0;"
=gy, where D3¢ B and ys is a ‘(QS, 0)-element. Recurrently we have woxw;*
=bwyyw;', where beB and vy is a (@S, 0)-element. By Lemma 3.6, wrw;'eS,.
The case when i=1 is similarly shown. q.e.d.

4. Proof of Main Theorem.

Notation is as in §2. A quadruple (G*, B*, N*, S*) consisting of four sets
G*, B¥, N*, and S* is called a Tits’ system if the following axioms are satisfied
(cf. [2D):

(T'Y) G* is a group, and B* and N* are subgroups of G* such that G* is gener-
ated by B* and N*, and B*N\N*<]N*;

(T'2) S*is a subset of the group N*[(B*(\N*) consisting of involutions and gen-
erates N*¥[(B¥*NN¥*);

(T'3) For any ¢eS* and we N*[(B*N\N*), wB*s < B*wB* U B*wos B*;

(T'4) For any 6eS*, o B*o & B*.

To prove Theorem 2.1 we proceed in steps. For each a™ed;, let X™ be
the subgroup of E(K[T, T-'7) generated by z™(#) for all feK. Let a and p™
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be in 4 such that «+§=0. Then, by Lemma 2.2,
(4.1) (X, XeC(XW ; y=ia+jfed, k=im+in, i,je L.
For cach aedt, set P.=(X™, X9 meZ.,, ned-oy and Q.=<X§, X{; ped+
—la}, meZ.,,, neZ.yy. Then (4.1) implies
(4.2) U=P.Q..

Let ¢ be in Y. We can write s=w( for some acd* and neZ because w™
coincides with w';°. Then, by Theorem 3.1 and (4.2),

o Bo ' =0(P Q. Hy)o™?
= (0P )00 ™) (o Hoo ™)
C(BU BeB)BH,
=BUBsB.
Hence
(4.3) BUPBsB is a subgroup of E.
We see that E(K[T, 7)) acts on gxg=K[T, T-']®zLz naturally, i.e.
O Qw)=(exp ad tT"e)(f@v),

where «a™ed,, teK, feK(T, T-'] and velz. For each g™ed;, set ef=T"¢,,
hy=leg, ey] and A§®=T"hs; in gx. Let ¢ be in U and a"™ in /7,, and set J&
21 amgy v, Kef™,  Write gelP =0+ —Pe™ +2, where {eK and zef™.
Let 6% be a map of U onto K defined by 6™(g)={( As ghl®=h®—2e 42
(27eJ) and ¢/ <], the map 0 is a group homomorphism of U onto the addi-
tive group K* of K. Let D be the kernel of the homomorphism 6. By (4.3),

wDPw® S BUBw®B.
For any xeD{, (wi zw( e =e+2" (27€J), so w!Paw™ ' can not be in
Bw™B. Thus,
4.4) wP DPwC B,
If g isin U, a™ell, and 05(g)={, then gz (—{)eD{. Hence,
(4.5) U=Dm. X0

Let a“ be in /[y and w in W, and set o=w. If NMwo)> Nw), then (4.4) and
4.5) imply
(BwB)(BoB)=Buw(X® D™ Hy)eB
= BlwX P w Ywe(e D®e) e Hyo) B
=Bwsk,
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Assume Nwo)< Nw). Set w’=we, then Nw’'s)>Nw’). Thus,
(BwB)(BoB)=(Bw'sB)(BsB)

=(Bw'B)(BoB)(BsB)
C(Bw’' B)(BU BoB)
=(Bw’B)U (Bw' BBsB)
=(BweB) U (Bwhb).

In general, we have

(4.6) (BwB)(BeB) & (BweB) U (Bw).

By the definition, BNN2H,. Conversely let x be in BNN. Then zeW,,

where Z is the image of z under the canonical homomorphism ~— of N onto N/
H,. Since x is in B, z4;7 €4}, hence N(#)=0. Thus #=1 and xeH,. This implies

4.7 BNN=H,.
These facts show that (E, B, N, S) is a Tits’ system.

REMARKS

1. There exists a canonical group homomorphism of the group Gx defined by
Moody and Teo (cf. [7]) onto our group £ under the following conditions: (1)
Grx is defined over a 1-tiered Euclidean Cartan matrix, (2) char K=0 or>5, (3) ¢
is of adjoint type.

2. If the scheme G is simply connected (i.e. ¢ is of universal type), then G(K[7,
T-)=EK[T, T).

3. The group E(K[T, T-']) is not simple. Congruence subgroups, for example,
are normal subgroups.

4. TFor 2-tiered or 3-tiered Euclidean types, the corresponding groups would be
the twisted Chevalley groups over K[7, T-1].
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