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CORINGS AND INVERTIBLE BIMODULES

By

Akira MASUOKA

Introduction.

Let SCR be a faithfully flat extension of commutative rings (with 1).
Grothendieck’s faithfully flat descent theory tells that the relative Picard group
Pic (R/S) is isomorphic to H(R/S, U), the Amitsur I-cohomology group for the
units-functor U, We consider the non-commutative version of this fact in this
paper.

Let SCR be (non-commutative) rings and denote by Invs(R) the group of
invertible S-subbimodules of R. Sweedler defined the natural R-coring struc-
ture on R®sR. We define the natural group map I': Invg(R)—Autg-co( RQsR),
where Autg-co(R®sR) denotes the group of R-coring automorphisms of RQsR.
When is I an isomorphism ? The answer presented here is as follows (2.10):
If either

(@) R is faithfully flat as a right or left S-module
or (b) S is a direct summand of R as a right (resp. left) S-module and the

functor —QsR (resp. R®Qs—) reflects isomorphisms,
then I' is an isomorphism. Indeed we consider some monoid map I%(R)—
Endz-co-(RQsR), which is an extension of I We have two applications (3.2)
and (3.4), both of which are concerned with the Galois theory.

§0. Conventions.
Let T, Q be arbitrary rings with 1. We write
U(T)=the group of units in 7.

All modules are assumed to be unital. A (T, Q)-bimodule means a left 7T-
module and right Q-module M satisfying (tm)g=t(mgq) for t€T, meM and ¢Q.
A T-bimodule means a (T, T)-bimodule. We denote by

Tﬂ, a_‘MT and Tgﬂ’lQ

the category of left T-modules, of right 7T-modules and of (T, Q)-bimodules,

Received May 9, 1988.



354 Akira MASUOKA

respectively. For Me My,
MT={meM|tm=mt for all iT}.

Throughout this paper, we fix a ring R with 1 and a subring S of R with
the same unit 1. For arbitrary S-subbimodules I, J& R, we define the product by
IJ={3:x:y(finite sum)|x;€I, y.€J}(CR)

and denote by m the multiplication map:
m: IQs]— 1], mxRQy)=xy.

With respect to this product, S-subbimodules of R form a monoid with unit S.
I4(R) (resp. Is(R)) denotes the submonoid consisting of S-subbimodules /CR
such that

R®sI=R (resp. [QsR=R) through m.

Invg(R) denotes the group of invertible S-subbimodules of R.

§ 1. Preliminaries.

1.1. PROPOSITION. We have the following exact sequence, the first five terms
of which can be found in [4, PROPOSITION 1.6, p. 25]:
1 —U(S®) —> U(R®) ———> Invg(R) —> Pic (S) —> [rMs]
u— Su=uS -1 RQs—
where Pic(S) denotes the Picard group of S and [gMs] denotes the isomorphic
classes [M] of MErMs with a distinguished class [R].

Exactness at Pic (S) means that, for any invertible S-bimodule J, RQsJ=R
in g iff J is isomorphic to some I<Invg(R), which can be verified easily.
Needless to say, we can get another exact sequence from the above one by
replacing the last map with Pic(S) :@; [sHMz], defining [sMz] similarly. In
particular, we have

(1.2) MRINIG(R)DInvg(R) .

An R-coring is a triple (C, 4, &), where Cer Mg, and 4: C—CQRRC and e:
C—R are maps in Mg satisfying the usual co-associativity and co-unitarity.
Let C be an R-coring. Denote the monoid of R-coring endomorphisms (resp.
the group of R-coring automorphisms) of C by

EndR—cor(C) (resp’ AUtR—cor(C)) .

If an automorphism f of C in .Mz commutes with 4, it commutes with e auto-
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matically, since e-f=(eQe)°(dRf)4=¢e° [ (1dRe) (fQf)d=ef - (idRQe)°4°
f=e. Denote the set of group-likes [6, 1.7, Definition] in C by Gr (C):

Gr(C)={geC|4(8)=2Qrg, e(g)=1}.
R®sR has the following R-coring structure [6, 1.2, p. 393]:
4: RQsR —> (RRsRQr(RQsR)=RQsRQsR,
4xQy)=xQ1Qy,
e: RQsR—> R, e(xQy)=xy.

The natural identification
(RQsR)®=End, 4,(RQsR)

makes the left-hand side into a ring with.the following product:

1.3) Zix:®yq) 2, Qw ) =221, ;2;%:Q Y W
for Sux:®y:, 2ziQw,=(RR®sR)S. Then we have the identification
(1.4) (RQsR)*NGr (RQYsR)=Endg-cor(RQsK) ,

U(RQsR)*)NGr (RQsR)=Autg-cor( RQsKR)
as monoids and as groups, respectively.

REMARK. The product (1.3) is related closely to Sweedler’s Xs-product [7].
Indeed, the ring (R®sR)S equals Rx R in [7, Section 3].

§2. Main results.
We define the monoid map
2.1 I': I§(R) —> Endz-co( RQsR) .

Let IeI4(R). Define I'(I) to be the composition

R®sR ———> RQsIQsR ——> R®sR
m'QRid 1d@m

Explicitly, if 3:ix:®Qy:€RQs] goes to 1R through m,
Ir'(I(a@b)y==ax:Qy:b
for aQbeRRsR. Clearly, e-I'(I)=e. We have
;xi@)l@yi:%xi@yixj@yj in RYsRQsI,

since these go to 3};x:®y:€ R®sR through RQQsRRsI T:é" RR®sR. Hence I'(I)
m
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commutes with 4. Thus I'(l)€Endz..o.(RQsR). It is easy to see that I' is a
monoid map.

2.2. THEOREM. If either

(@) R is faithfully flat as a right S-module
or (b) S is a direct summand of R as an S-bimodule,
then I': I5(R)—Endg_ .o (RQsR) is an isomorphism.

Let
2.3) J@)={xeR|2(xR@=1Rx}

for g€Endp-co.( RQsR). In case (a) or (b) holds, we show the map g—J(g)
gives the inverse of I'.
Define the maps d,, d;: R3RQsR by

di(x)=1Qx, dx)=xR1 for xR.

2.4. LEMMA. Fix ge€Endp_cor( RQsR) and write
¢=inclusion: J(g) —> R, 0=d,—g-ds: R—> RQsR.

(1) The following is an exact sequence:

¢ 0
0—>J(g)— R—> RRQsR.
(2) The following is an exact sequence:

g"dz 2d®5
0 — R —> RQsR ——— RQsRQsR.

Moreover, we have
me(geds)=idr, (gods)-m+(mQide)(dr@d)=idregr -
(3) If R is flat as a right S-module, then J(g)=I5(R).

PrROOF. (1) is a restatement of (2.3).

(2) is verified directly.
(3). 'This follows from the following commutative diagram with exact rows:

id®e id®o

0 —— RRsI(2) R®sR — RRQsRQsR
2.4.1) m | IR I
. d
0 R—8% | por 9% roR@:R,

where the upper row is exact, since Ry is flat. Q.E.D.
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2.5. LEMMA. Let g,¢, 0 be as in (2.4). Assume S is a direct summand of
R as an S-bimodule. Then we have:

(1) There exist #: R—J(g) and ¢: RYsR—R in s Ms satisfying
(251) ' TE°[=idJ(g) R (°7l'+§b°6—"—‘idg .

(@) JHHeIsR).

PrOOF. (1). Let p: R—S be a projection in s<Ms and take =, ¢ as follows:

d, g p®id pRyid
7: R —> RQsR —> RQsR ——> R, ¢: RQsR —— R.

We show #(R)CJ(g). Assume 3;x:Qy;=Gr (RQsR) corresponds to g in (1.4).
Then, for a=R,
n(a):?p(axi)yf

and

g(r(a)R)= ;jp(axz-)ym@yj
=2ii->(axi)®yi (since 2x:Qy:ix;Qy,;=2x:Q1Ry:)
=1Qn(a).

Thus #n(a)=J(g). The remainder is verified easily.
(2). This follows, since by (1) the sequence (2.4.1) is exact in case
SSS@SRS; too. Q E.D.

2.6. DEFINITION. The functor RQs— (resp. —Qs R) reflects isomorphisms,
if a map f in g (resp. in Ms) is an isomorphism whenever (dpQsf (resp.

fRsidg) is such.
If this is the case, ICJ for I, JeI5(R) (resp. €I%(R)) implies I=].

2.7. LEMMA. Let g, h€Endg_o( RQsR), I€I5(R).

1) I(Ih)TI(gh).

@) If J(@)sIk(R), then I'-J(g)=g.

Q) Icy-r{I). Hence, if J-I'I)eI§x(R) and RQs— reflects isomorphisms,
then I=J3-I(I).

Proor. (1). This holds, since, if x=J(g), y=JI(h),
di(xy)=d(x)y=gdx(x)y=g(ds(x)y)=

g(xd\(y)=8(xhody(y))=g°h(xdo(y))=geh-ds(xY).

(2). This follows from the following commutative diagram :
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R®sR

m'gid | \
r.J RQsJ R
(8) . Qs DRs W RQsR
1d®ml g l
RQsR ——= RRsR.

(3). Assume 3};x:Qy:€ RRsl goes to 1= R through m. Then, for e<l,
ShaxRy:i=1®a in RQsI, since both sides go to a through m. This implies
Icy.r(I). Q.E.D.

PrOOF OF (2.2). Under (a) or (b), RQs— reflects isomorphisms. Hence, by
(2.7) we have only to show J(g)eIi(R) for any g=Endg-co.(RQsR). This is
shown in (2.4)-(2.5). Q.E.D.

Symmetrically we have the anti-monoid map
2.8) Ir’: Is(R) — Endg-cor( RQsR) ,

defining I''(I), II3(R), to be the composition

RRsR —— > RQsIQsR ——> RQsR.
id®@m-! mQid

Let S°CR° denote the opposite rings of SCR. By the natural idetification
5(R)=Ik(R%), RQsR=R°QsoR® (x®y < y°®x°),

we can identify the I'’-map (2.8) with the I'-map for S°C R°. Hence (2.2)
yields the following:

2.9. THEOREM. If either

(a) R is faithfully flat as a left S-module
or (b) S is a direct summand of R as an S-bimodule,
then I'': I5(R)—Endg-co(RQsR) is an anti-isomorphism.

The inverse J’ is given by

J(@)={x€R|xQ1=g(1Qx)} (§EEndr-cor(RQsK)).

The I'-map (2.1) is restricted to the group map Invg(R)—Autz-co(RQsR),
which is called I', too.

2.10. THEOREM. If either
(a) R is faithfully flat as a right or left S-modnle
or (b) S is a direct summand of R as a right (resp. left) S-module and the
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Sfunctor —QsR (resp. RQs—) reflects isomorphisms,
then I': Invg(R)—Autap_co(RRQsR) is an isomorphism and

SRINIKR)=Invs(R).

Proor. If IcIy(RNIKR), I'I)e Autp-co(RQsR). Hence, by (2.7) we
have only to show J(g)cInvg(R) for any g€ Autg-co.(RQsR). In case (a) this
holds by (2.2) or (2.9). Concerning case (b), considering S°C R°, we have only
to show the following: :

2.11. LEMMA. Assume S is a direct summand of R as a right S-module.
Let geAutp.cor(RQsR). Then we have:

(1) J(@dregr)=S.

2) I@eIs(R).

(3) If —Q®sR reflects isomorphisms, J(g)Invs(R).

Proor. (1). Easy.
(2). This follows from the following commutative diagram with exact rows,
the notation being the same as in (2.4).

0 — J(@QsR z®idA RQsR 5®idA RQsRQsR
lm Slg Slid@g
0 > R ——— R®:R 57> RO:R®:R

Commutativity is verified easily. The lower row is exact by (1). Modifying
the proof of (2.5) (1), we have that there exist =, ¢ in Mg satisfying (2.5.1),
so the upper row is exact.
3). If —QRsR reflects isomorphisms, by (2) and (2.7)(1) we have J(g)J(h)
=J(gh) for any g, h€Autg-cor(RQsR). This, together with (1), implies (3).
Q.E.D.

§3. Applications.

Put Z=RE, the center of R. The Miyashita action (see [3, p. 100] or [9,
pp. 137-8])
Invg(R) — Autz_.1(R5)
decomposes as follows:

@1 Invy(R) - Autp-cor( RQsR) —> Autz-aig(R?)
£

where « is the anti-group map induced from the “clipping”
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(RQsR)S —> Enda,(RY), 2x:Qy: —>(a— Zx:ay;).

By using (2.10) we can prove directly Corollary (6.24) in Doi and Takeuchi [1].

3.2. COROLLARY [1, (6.24)]. Assume that R is an Azumaya algebra over a
commutative ring Z and that S is a subalgebra of R such that R is a progenerator
as a left or right S-module. Then, the Miyashita action Invs(R)—Autz_ . (R¥)
is an anti-isomorphism of groups.

PROOF. By symmetry we may assume that gR is a progenerator. Condi-
tion (a) in (2.10) being satisfied, I" in (3.1) is bijective, and so is &, as will be
shown soon. It is easy to see that RSQ;R=Endg«(R). Applying Hz(—, R) to
this isomorphism, we have RRsR= MR35, R), so

R@sRQsR=Mz(R®, R)QsR=Mz(R®, RQsR)
= MARS, MRS, R)=M(R5QR,R5, R).
Taking ( )5, we have
(RQsR)S=Ends,(R®), (RRsRQsR)*=MAR5QzR%, R%)
and consequently Endz-_co(RQsR)=Endz-.4(RS)

through the “clipping” maps. Therefore & is bijective. This completes the
proof. Q.E.D.

From now on, we assume that SCthe center of R. Hence S is commuta-
tive, and R and RQsR are S-algebras.

3.3. LEMMA. Any g=Gr (RQsR) is invertible in RQsR.

PrROOF. Let g~ be the image of g under the twist map xQy—yRQx, RRQsR
—R®sR. Then g~ is the inverse of g in RQsR, since

g8 =d,om(g)=1R1=d,-m(g)=g"g. Q.E.D.

Lemma does not assert Endz.cor(RQsR)=Autz. co.(RRsR), since the usual
product in Gr (RQsR) comes from that in R°®@sR (1.3). By (3.3) or (2.2), it
holds that

Endz-coll RQsR)=Autz-co RQsR),
if one of the following holds:

(1) there exists an S-algebra anti-automorphism of R,

(2) R is finitely generated projective as an S-module,

(8) S=F is a field and (#) R*=R™ in M (or in HMg) for any n, meN
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implies n=m,
where R™ denotes the direct sum of n copies of R. In particular, if (3) holds,
then by Proposition (1.1)

Gr (RQ:R)={u"'Que RR:R|ucU(R)}.

If R is left (or, respectively, right) Artinian, it satisfies condition (#) (cf. [8,
p. 4607).

Here we can prove the following theorem announced in [2] without proof.
A bialgebra H over a field % is called a Galois bialgebra of an algebra R, if
(R, p) is a right H-comodule algebra and if the S-map

B: RRQ:R —> RR:H, BxRy)=(xQL)p(»)

is bijective.

3.4. THEOREM. Assume that a cocommutative bialgebra (H, 4, €) over a field
k is a Galois bialgebra of such an algebra R that satisfies condition (#). Then
H is necessarily a Hopf algebra, i.e., it has the antipode.

ProOF. The cocommutative bialgebra H has the antipode iff the monoid
Gry(L®.H) of group-likes in L.H is a group for any finite extension L/k of
fields. Since L®.H is Galois bialgebra of L&,R which satisfies condition (#),
it is sufficient to see that Gr (H) is a group.

View RQ.HerzMr via x-(a@h)- y=(xaQh)p(y) for x, y&R, aQ@he RQ:H.
As is verified easily, RQ,H is an R-coring with the structure

id®4 1dRe
R@:H ——> RQ: HR: H=(RQ: H)Qr(RQ:H), RQ:H-——>R
and the S-map is an isomorphism of R-corings.

Let gGr (H). Since 1®QgeRQH is a group-like, there exists ue U(R)
such that f(u'®u)=1®g by assumption on R, so p(u)=u®g. Hence g should
be invertible and p(u#™)=u"'®g*. This completes the proof. Q.E.D.
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