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ON THE NEUMANN PROBLEM FOR SOME LINEAR
HYPERBOLIC-PARABOLIC COUPLED SYSTEMS
WITH COEFFICIENTS IN SOBOLEV SPACES

By

Wakako DAN

Abstract. We prove a unique existence theorem of classical solu-
tions to some Neumann problem of linear hyperbolic-parabolic coupled
systems with coefficients in Sobolev spaces and energy estimates
are also obtained. This paper gives a preparation for solving some
nonlinear hyperbolic-parabolic coupled system with Neumann bound-
ary condition.

§0. Introduction.

Let £ be a domain in an n-dimensional Euclidean space, its boundary [’
being a C= and compact hypersurface. Let x=(x,, ---, x,) and ¢ denote a point
of R" and a time, respectively. For differentiations we use the symbols d;=
0/0t and 0;=0/0x; (j=1, .-, n). In this paper, we consider the following
problem :

An)[4]=031 n(t)—0,(AY (1)0,1 () — A3$)0:0: 1 (1)

— AFE 09 e(0)=1 at) in 0, THX2,
Ap()[1] = Ap()0,1i p(t) —:(AF ()81 p(t)) — AP (1)0,1k p(1)

AY 5(1)8:0,1h u(t) — AP n(£)9:0: 2 ()= F p(t) in (0, T)x2,
N) B[ U]=v; AY®)0;4 u(t)+ BEF Ol p(t)+ By )01 n(t)

=gn(t) on (0, T)X 1",
Bp(t)[#] =v: AP ()01 p(1)+ BEr()0:h (1)
+ Bba(t)0: u(t)+Bp () p(t) =8 #(D) on (0, T)X T,
Up(0)=tim, 0Hn(0)=%m, #Up0)=ir in Q.
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Here and hereafter T is a positive constant and #i=(iiy, i) is a real vector-

valued function: g ="(um, -, Unmy), Up=%upy, -, Upmp) (‘M means the
transposed of M). wvi(x) (#=1, ---, n) are real valued functions in CP(R™ such
that v(x)=(,(x), -+, v.(x)) represents the unit outer normal to I” at x=[.

The functions are assumed to be real-valued. The sub and superscrips i, /
take all values from 1 to n. The sub or superscripts 7 and ; (resp. %) refer
to all integers from 1 to n (resp. from 0 to n+41). Below, [ will always refer
to a closed interval containing [0, T] strictly, say I=[—rz, T+7] (z>0). And
K will always refer to the fixed integer =[n/2]42, which represents the order
of regularity of solutions and coefficients of operators JAg() and Be@) (E=
H, P). We assume that

(A.ly) A¥Y®)=A%a, x), AYH)=A%¢, x) and B4({)=B%({, x) are myXmg ma-
trices, AFE1(t)=APA(t, x) and BFE@)=BY(, x) are myXmp matrices,
Ap@t) = AR, %), AR®)=AEQ, x), APVO=AP"(@, x) and BE(t)=

2+, x) and BRT(t)=B2*(t, x) are mpXmp matrices, and A¥, )=
A8y, x), Birt)=Bix({, x) and Bhy(t)=Bpy(t, x) are mpX my matrices.
A, and A2 are decomposed as follows: A% =A¥ .+ Al s and Al=
AR+ Abs where Ay, Aboc B°(IX2) and Ay, AdscY X 0YI: Q).
Bh,eYE-tiuy[. ", Here E, Le{H, P} and subscripts HH and PP
mean H and P, respectively.

BX(G) denotes the set of bounded functions in C¥(G) whose derivatives up to
K are also everywhere bounded in G. For any interval J and Hilbert space X,
L=>(J:X) and Lip(J;X) denote the set of all X-valued functions which are
measurable and bounded everywhere in J and Lipschitz continuous in J in the
sense of the strong topoloy of X, respectively. Put H7(G) denotes the usual
Sobolev space over G or order r<R with norm ||-|,.¢.

X4T(] 5 6)= 2 CHJ 3 H*THG);

Z17(] 5 ©)=CHJ ; H™XOIN\ CHJ 5 HTHG))
Yor(J; Q=L ; H(G);
Yir(J, Q)= @)X (] ; O)|dluiye L= ; H*7(G))
ALip(J; H#T9(G))  for 0<j=i—1)
for (=0 integer, yr=R.

For any function space S, we denote a product space SX --- XS by also S.
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Put ||-l,.0=l-ll, and [-llb=]-. (,) denotes the usual inner product of L*&)=
H°(8). We assume that

(A.2p) 'AY=A} (E=H, P), 'Aj=AY, 'Ap=Ap, ‘'By=BY;
(A.3;; there exist positive constants d,, d; and J, such that
(A 1)0;tig, 0:1m) 28, Upli—dllis|* (E=H, P),
2, %)=20:Lnp

for any tel, x&2 and #z=H*®), where F,, is the identity matrix
of mpXmp;

(A.4)) B(;I—%D,A;'?;o for any (¢, x)eIXI.

When we solve a Neumann problem of quasilinear hyperbolic parabolic coupled
systems, the present problem appears in the linearized problem, so that we
shall prove a unique existence theorem of solutions to (N) and energy inequalities.
The equations (N) contain a model of a linear thermoelastic equation as a
physical example. In proving the existence, our argument is parallel to Shibata
[2]. This paper is organized as follows. In §1, we state our basic notation,
define the compatibility condition and state main results. In §2, we explain
the method of getting the first energy inequality briefly. §3 is devoted to the
proof of the existence theorem for some elliptic boundary value systems. In
§4, we derive the energy inequalities of higher order. In §5, we prove an
existence theorem of solutions to (N).

§1. Notation and main results.

First, we shall explain our notations. Let L and M be integers =0.
Drg™i=(0102%, j+lal <L+M, j<L);
Dro"u=(0{0s1, j+|a|=L+M, j=L).

For any integer (=0 and ¢<(0, 1), put B °(G)= {vE BYG)| [V]w 1+0.6<},
where
[V]ew,1,6= 23 sup [0%v(x)];

laisl z€G

0], 140,6= V] w,1,e+ 21 SUD @ﬂm——aL(y)lf

4 Y
laj=l x.rg;/&EyG Ix y‘

We write || - Heo,Ha.G:i o400, |0 loo, 140, 1= * [0, 140, I x2 and <'>oo,l+a.I:l “loo, 140, 1T~
We define the norm of Y%(J; G), s&R, as follows:
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vlos.r.¢=sup lv@®lls, ¢ ;
ted

IUI Le Gzlulo Las G+ i}l su ”aévv(t)_agvv<s)“L+s—N—l,G

L
for L=1.
N=0 t,sE€ [t—s|
t+s

If v()eX%(J; G), then
0l 1ss.6= 33 SUp 9500 asor.c -
k=0 ted

Hence we also use |- s.¢ as the norm of XX5(J; G). Inthe same way, we
use |*lr-isss.0+1087  15o1,0.6 as the norm of ZE*(J;G). Put |ul,,,=
[%]z,5.0.2 and <W>rs.s=|v|Lss.r. We denote the norm of H™(I") by ||, r=
(-)» and {-)e=(-). <,> denotes the inner product of L*I")=H*I"). But,
when n=1, {-), stands for the absolute value |-| for any r&R. Let us use
the same notations to denote various norms of vector or matrix valued func-
tions. For the operators Ag(t) and Bz@) (E=H, P), we use the following
notation :

[As)p-n, P]:m 3 SR o o [0 AYO -0

.L=H,
[ A0 Be@o-nlsrn= 3 { 2 3 (10t ARsOlres-
l=0 E.L=H,P i,k

(Ot BE L R st -1 -12) + 0L ABs) | Rasr—1} -
Let M..(K), Ms(K) and H(l+y, ) be constants such that
= ngeLwioo.K,z'F\Agmlm.K,IEMw(K);

E,L=H.P i.k

> 4 (| Akrsl K—1.1.1+<B%L>K—1.J/z, Dt Aps ko 1 SMs(K) ;

E,L=H,P i,

2 2 (| AEJ]ZL Ioo, 1+/1.J+<B§:L>oo.1+,u,.f)+ [ Alov’loo,ny,l ékﬂ’t(l‘}“ﬂ; j)

E.L=H,P i,k

for p<[0, 1). C=C(---) denotes various constants depending essentially on the
quantities appearing in the bracket. Let us define the first energy norm
E(t, i(s)) for the operators Ag(t) and Bx(t) (E=H, P) by

B(s, #0) =100 a®)*+ [0+ |20
E(s, )= 10 10+ [iLn® 310+ 260 o
+ D)z e+ ol

where
Wi a5 sy =(AH($)58 1 (®), 04 1))+, w(B)I|?;
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e, =(Ap(s)ip(), Up(D)).
For the space of solutions, we put
EXN]; Q={uinc X" (] ; D|0FD'igs LY(] ; H I}
X {lipe ZE (] Q)|oF upe LX) ; HH(Q)}.

As the norm of E*(J; ), we put
W(l)mx:HD‘ﬁH(t)H“rHﬁP(Z)H”-S(<<D‘?7H(é) 2uetlue(s)Dds ;
@)= | DP i a0 +10F " Tp®)]*+ | D it ()3
+S:(<<55L'1§‘l7H(S)>>31/z+Haf”‘ﬁp(S)H?)dS for L=2.

Now, we shall explain the compatibility condition which #z,, %, iip, /& and
gr (E=H, P) should satisfy in order that solutions to (N) exist. For a moment,
we assume that a solution #=(ig, #p) to (N) exists and that

1.2) ne EX[0, T); for 2 LK.
Put
(1.3) Upgy=0:in(0) 0=M=L), Upy=01p0) (O=MZL-1),

which are represented in terms of initial data, right members fu, frand their
derivatives. In fact, for 0<M<L—2,

x M » R ) N
=3 (1) )OO AR O3ty + 0L AR B
+0t Aty p(0)05 por i} +a‘z"f11(0> ;
M ,
o= AN0) [2 (7] ) 0@t AF st ) +0t AL Ot
FAE (0003058 1y 1 +-0F AP (0)0: 8 113 41 -1}
M . o
+5 ( )AL} +0ET50)|
=1
Since @psX>0, T); ), ipsZ ([0, T); 2),
(L4) aysHY @) 0=MsL);
lpyH () O=M£L-2), idp€L¥8).
Moreover, we see that

(v AY 0,0+ BEF )i p+ By (0 m)e CU([0, T) ; HY(Q));
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oY (vi AF )01 p+ B3 u(®)0:t u+ B (08,8 n+ BE ()i p(1)) = C([0, T) ; HX(2)),

for 0SM<L—2, which follows from (1.2), AY¥ and A¥eXEX-2(]; 2) and B%Y,
Bg, Bpy and BizeXX-*Y¥[;]"). In view of the trace theorem to the bound-
ary, the boundary condition in (N) requires that

1.5) 0¥ (v; AY(W)04 r+ BEF ()i p+ By (1)0cti 1) | 1=o=0§u(0)  on I,
0¥ (v AF ()0l p+ BYu(t)0,4 u+ Bpu(t)0:8 1
+ B0 pM) | 1=e=01Fs0) on I,

for 0SM<L—2. Such conditions are also represented in terms of initial data,
right members fE, Zr (E=H, P) and their derivatives. When (1.5) holds, we
say that #gy,, %y, fp and gr (E=H, P) satisfy the compatibility condition of
order L—2 to (N). For the sake of simplicity, by D%(J) let us denote the set
of all systems (%, G, Lpo, fu, fp, Gu, &p) of data for (N) satisfying the con-
ditions:

(1.62) UpnsH" M) 0=M<L,
UrysHM(2) 0sM<L—2, ip,,eL¥Q),
FeeXP2]; @), geeX'UJ; 1) (E=H, P);
(1.6b) Hfee L] LNQ),  oF'geeLXJ; LX) (E=H. P);
(1.6¢) U sro, Uy, Upo, j—"E and gg (E=H, P) satisfy the compatibility
condition of order L—2 to (N),

where / is a time interval containing 0 and contained in /. We shall state our

main results.

THEOREM 1.1. Assume that (A.1)-(A.4) are valid. Let L be an integere
[2, K. Then, for a given system (g, fhyg, fip, [z, 8r, =n.p)= DE[0, T)) of
data for (N). (N) admits a unique solution 4=y, ip)c EX([0, T); Q).

THEOREM 1.2. Assume that (A.1)-(A.4) are valid. Let L be an integer
€2, K] and d=(dg, ip)=E*[0, T); 2). Let p be a small number <(0, [n/2]
+1—-n/2) for n=2, and 0 for n=1. Put f5@)=Ap®[4®)] and Gx()=Be)[%@)]
(E=H, P). Assume that

(L7 G fee LU0, T); LXQ), 9k 'gwsLX[0, T); HVXI") (E=H, P).
Then, there exist constants

Ci=C(T,0,,0,,0,, I', HA+p, D)) and Cr=C(T, 8,8y, 8.1, Mc.(K), Mg(K))
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for L=2 such that the following two inequalities are valid for any t<[0, T):

(1.8a) @< Cec2* {Illﬂ(O)III%-FEH% P( F el ot (@) a0,

+.3 [ 00 F o) P +@:ga(oNtmds) ;
=H,PJo

(1.8b) NNz =< Cr Oz + %:H( Ijlfi % s0c0, 1T <8EV -2 172,00, 11)

+ 3 {Gor 7o) @ geoMtds) for L=3;

(1.9 E(t, 0F () < e {E, oFu(0)+RE(®)} .

Here and hereafter,

RHO=Co{ {5 (105 Falo) (0 Ex(s)e)

| DL ()24 |05 1 p() |24 | DE 2 p(5) 13
o2 p(s) |2 DO () 2ue} ds  for LZ2.

§2. The first energy inequality.

The purpose of this section is to prove the following theorem.

THEOREM 2.1. Assume that (A.lp), (A.2;), (A3, and (A.4;) are valid.
Let g be a small number (0, 1) for n=2 and 0 for n=1. Let U=y, Uip)E

EX[0, T); Q). Then, there exists a constant C depending only on T, dy, 01, 0, I’
and M(1+p, I) such that the following two estimates are valid for te[0, T):

@D B ae)=CIEO, 50)+, 3 | (s [+ B[ D ds)

(2.2) E(t, u(t)Ze®{EQ, #(0)+R'®)},
where
R(O=C| {5 (17 s +(Ze(oNt 1A+ D () 2uel ds -

The following theorem was already obtained in [1].

THEOREM 2.2. Let I'=[—1/2, T+1/2). In stead of (A.ly), we assume that
(A.1}) Akt x), A, x)eB=(I'XQ), B, x)€ B(I'XI").

In addition, (A.2;), (A.3; 4) and (A4,.) are valid. Let p be a small number
=(0, 1) for n=2, and 0 for n=1. Then, there exists a constant C=C(T, d;, 01,
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Oz, MA+p, 1), I', ) such that (2.1) and (2.2) are valid for any %=(iiy, ipc
E¥[0, T); Q) and t<[0, T).

Using Theorem 2.2 and the following lemma concerning an approximation
of the coefficients of the operators Jg(t) and Bz (E=H, P), we can prove
Theorem 2.1 in the same way as in [[2] p. 295-p. 296].

LEMMA 2.3. Assume that (A.1;), (A.2)), (A.3;,5) and (A.4,) are valid. Then,
there exists a number X,>>0 and sequences of matrices:
{Afrec, {Aboot CB™I'XRQ) {Affisel, {Apsos CC=(I; HY)),
{BY . CC=(I"; HXI)), where I'=[7/2, T+1/2] and o= (0, X,),
having the following properties:

(a.l) }Tmol [ AR o— Aol o, -1, 1 =0, HH(} | Atrso—As| x_2.1,1+=0,
- T —

ﬁno] | Apog—Abeol o, k-1, 1 =0, lirg) | Apse—Apsl k2,1, 1=0;
g— O

(a.2) }Tlifol {Biro—Bhrox-s.112,1:=0;
(b.1) FLZ:k VAR ol k. 17 | Abug ook, 1 SCM(K)
2 | Afsol xco1 10+ | Absol ko0, 1 SCMs(K) ;
(b.2) E%)k {BEroyk-1,1. 0 SCMs(K) ;
(b.3) E.L.i,k(|/1;}kLo’|w.1+;t,I'+<B’I§La>w,l+/ﬁ.1’>+ | Abgleo1ap, 1

SCHA+p, I) for any o<(0, 2,).

(¢) there exists a sequence {k(0)} of positive numbers which tends to zero as
d—0 and has the following property: if we put

ARot, 2)=Alwslt, )+ Afso(t, X)—k(@OWi(x) Iy,

then AR, x) and By,(t, x) satisfy (Ad;) for any 60, 3,);
(d) if we put
AR, )= A(t, x)+ Afslt, x) (E=H, P),

then there exist constants 8;, 0] and &; depending only on &, 8, 0, M.(K)
and Ms(K), and independent of ¢ such that Ag,@t, x) and Ad, x) satisfy
(A.3;:.5) for any o<=(0, X,);

() AY, AR, Ab, and BY, satisfy the (A.2;.) for any o=(0, 3,) and 7, 1=1,

, n.
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ProOF. On the coefficients of the boundary operators, using the local
coordinate systems, we reduce the approximation process to the half-space case
(x,>0), and then we mollify the coefficients by means of the usual Friedrichs
method with respect to (¢, x’), x’=(x,, -+, X,-,). Since the coefficients of Ax(t)
and Ap(t) are defined on IX £, we extend them to IXR™ by well-known Lions’
method, and then we mollify them with respect to (¢, x). In this manner, we
obtain the required approximations. For details, see the proof of Lemma 2.3
in[2]. =

§ 3. Elliptic boundary value problem.

When we prove the further regularity of solutions to (N), it is a key the
existence theorem of the following problem:

1)”0(1)’ ............ , ﬁIIMJrl(t)

3.1x) ﬁluuz(f)—le(l‘)[
bpo(t), -+, Vpu(d)

:|+ZHM7}HM(t):fHM(t>
in JX@Q,

51100)’ ............ s 1‘;‘1“[“(;)
ARDIpu()— Ppu(t) [ }

Upo (), -+, Upn(t)

'}"ZPMﬁPA‘l[(t):fpy[(t) in ]X ..Q,

5H0(t), ............ s 5}”1“(;)
Quu(®) =Zuu(t) on XTI,
Dpo(t), -+, Dpu(t)
7777102 NERERRRIERRE , Daar () ]
Qp_}[(t) B B :gPM(t) on jx Iy:
Upo(t), -+ Vpult)

for 0SM<N,, where JCI, N, is an integer [0, K—3], and

t
‘J:PgM(t)[Z)HO(t); oy Umaraa(t)]

+PEn@OLp@®, -, Tpn®)];

po (D), -+, Vpu(t)

1}H0(t); """""" , 7)HM+1(t)

Upo(t), -+, Upu(@)

QEM(t)[ }:QEMO)[Z}HO(Dy o, Bawa®)]
QBB -, Ben(®)]
(E=H, P);

Pﬁ;{(i)[i)no(l’), DY i)IIM+1<t):|

x /M » .
= 31 (1, )[R 0104+ AAROI D1 (D] ;
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PEOLm(0, -, 5ou®]= 3 (AR O0 w101

PEyO[0we®), -+, Dawa:®)]

n M o ;
=2 (', JIB AR 0B84 O+ A OB s (D]

PEx®[0po(t), -+, Bpu(®)]

= 3 ()0.@ AR W 54 0) + 35 AL D]

k=0

M
- sz%( b )a}fA?’(t)ﬁPMn—k(l‘) ;

At OTom0), -+, D01 35 (3 Vvt AFOOs5ma-s 0
F 5By ()0 mr1-2 )] 5

b0, ., Dou®1= 35,1 I BEH Or 10

M
Pn@OL0m®), -, U (O]= 2‘{ ( b >[alfB?’H(l‘)5HM+1-k(t)
=0
+0tBhu(t)0:0ny-11)];

QOTes(D, -, 1= 33 (3 vt AF 501
+0EBE ) dpau 1 (1)].

Unn,+1, VHN, v2, UPN, 41, F s, Fru, Buw and gpy (0SM<N,) are vectors of given
functions. uo(t), =+, Pun, (), Vr(?), ---, Vpn,(t) are vectors of unknown func-
tions. We shall prove the following theorem.

THEOREM 3.1. Assume that (A.1)-(A.3) arevalid. Let N, and N, be integers
such that 0N, <K—3 and N,+2<N,<K. Then, there exist constants Agy, Apx
(0E£M<N,) having the following properties: Let t be any fixed time in J. If
Frw, Fon€HYM4Q), Zuy, Bou € HY %) OSMEN)), by, € HY N 101(Q)
[=1, 2, opy, ., €HY"N17Y(Q), then (3.1) admits a unique system [, -, vy, ]
HY2(DX o« X H¥> YYD (D3 =Oun, Upy)) of a solution having the estimate
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Ny
(3.2) MZ_O(HT:'HMH No-utHPpuling-sr)
<C{ z§1 10an +il vg-ny—iH10py a1l vg-ni-2

N - -
+ Mz (17 sl yst—ot I P oaell vy

4B ru) Ny-sr-sr2 T LB Pu) Ng-r-32)}
where C=CQuo, -+, Auy,, Apo, =, Apxy, 01, 0o, M(K), Ms(K)). Furthermore, in
addition to what we have assumed, we assume that N,+3<N,<K. If fHM(t),
Fou®EX N[ ), Buult), Gou®EX Y245 ) (OSMEND, Gnypi)
Xt NeNitmi(] - Q) [=1, 2, Upy, QS Z Ve VN[ 2), then (3.1) admits a uni-
que system [By(), -+, Oy, ®]EX ¥ ([; @)X - XXV M12i([ 0 Q) of a solution
having the estimate:
Ny

(3.3 MZ= O8Ol wy-rr—r+ 0% pac ()| 3y -3~ 2}

[

Eooe
SC ANty i vy-n -t-nTN0FDpn 31Dl vy 21

h=0 [=1
N o N
+z 132 F 13O g2+ 182 F el gt -2

+(OrB ) wy-rr-n-si2 OB D g -n-s2)}
fo any t= ] and k=0, 1,
where C=C(4n,o, -, 'zII'le Apo, ;tPle 01, 02, M (K), Ms(K)).

ProOF. By induction on N,, we shall prove the first assertion. Assume
that N;=0. Let N be an integer <[2, N,]. We consider the following equa-

tions :
(3.4) { #ai<Ag(t)aﬂ}H0>+2H07}i10:F:UO in 0,
3. Vi A§)959m0=GC no on I

If FueHY-%Q) and G o= HY-¥%I"), by Theorem 3.6 in [2] we see that there
exists a Agz,>0 depending only on 8, d,, M(K), Ms(K) and independent of t< ]
such that for any A=1g,, (3.4) admits a unique solution ¥z, H¥(2) and

(3.5) 13m0l ¥ SC U F 0]l w-s (G 1) w312} »

where C=C(d, 9, 8o, M.(K), Ms(K)). Assume that vp, belongs to H¥(£).
Since P = HY2"4(Q), applying (Ap.1) and (Ap.3) in [2] with a=K—1, f=r=
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N—2 or a=K, f=r=N—1, we have

1ARs@0:01:[l v -2 = CHAR sl k-Gl s 5

I AFED3:0p0 | v 2 = C AFE WD k-2 1p0ll -1 5
(BEF V) v -01s = CABERW) k112l Dpoll w1 ;

CBEOVm ) N-22 = CABY OV k1r2ll0m1| 3y -

Therefore, Let 04%=05%(0p,) be a solution to (3.4) with F o= A¥#()d:0p, and
GHOW—BH B(Upy, VH=0F0m) a solution to (3.4) with Fy=ARd:9x, and
G ny=—BYO)bm, and 0fo=050(f o, Gmo, Trz) a solution to (3.4) with Fuo=7 e
—¥y, and énozgﬁo. In each case, FHO and 5;10 belong to HY %) and
HN=3%(]™), respectively. Since the equations are linear, the uniqueness of solu-
tions implies that %} and #%% are linear maps from HY-'(2) to H¥(2). More-
over, they satisfy the following inequalities:

105 @) | v =Clivmlly -1, 1055@p)| ¥ = Cllips -y,
185001y < CCI P atoll -2 4-CG o) v s Bl o).
Here C=C(An,, 0., 6y, M(K), Ms(K)). Using these solutions, we consider the
following equation:
—0 AR O3;000) — Al (O3:0,05(Bp0)— AP (035 0+ Araipo
96 J =T o0 AODr Afn (00,0 + OO )+ AR 30 i 2,
vi AZ(0)0;0py+ Bhn(1)0;05(5p0)+ BE ()0 o
\ =8pro—Bhu()0:(0}10+ 0550 m))— Bpuv on [,

where vp, is regarded as a vector of unknown functions. Employing the same
arguments as above, by Theorem 3.6 in [2] we see that there exists a Ap,>0
depending only on 4, d,. M.(K), Ms(K) and independent of {=] such that
for any A=2p,, (3.6) admits a unique solution Tp,=HY2(£2). Let us denote a
solution to (3.6) with fro=gr,=0 (E=H, P), =0 (i.e. 9%,=0) and 9p,=0 by
08d=98/(0m). And let us denote a solution to (3.6) with #;5,=0 by #5,=
956(f 110, B 110, fpo, Bro, Ume, Up;). They satisfy the following inequalities:

10 @) v S Clloml w1 ;
1950(F 10, G120, F o, Brv, Bara Up)
<CIF mollw a1 F poll v o CB o) w—ar2 B ro) x—1/2

F1op Iy e+ 0 mal ot .
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where C=C(dy,, Apy, 01, 6o, Mo(K), Ms(K)). Put
Urro=055+05%+05, ,
RENOm) =055+ 05005,
Ri=R}o(F 1o, G0, o, thre, s, Gp) =030+ 55050,
RENGr)=0%, Rpo(Fmo, Fro, o, Epo, Vo, 9p)=0F0 ,
Dp=RE+ R}, ,
then op, satisfies the equations (3.6), and
(3.7) IR Foll w41 REoll v < C {1 F ol o1 7 poll v o+ (@ rro) v -s10
+{@po) 2ot | Busll w0t | 9pil v s,
IRHl v+ REH 5 < Clloama - -
(3.8) 150l w1820l v < C {1 Brte]| w18 [ 302+ 15l v

1 F wtoll s+ Fpoll v -2 (8 oD —s10- (B pod v —ae) -

Moreover, Rf, and R}, satisfy (3.1,) with #4,=0. RZ! and RE} satisfy (3.1,
with fp=8p=0 (E=H, P) and éy,=ip=0, b, and ip, satisfy (3.1,).

Assume that 1<N,<K—3 and that the first assertion is valid for smaller
values of N,. Let N be a integer such that N,+1<N<N,. Then it follows
from induction assumption that for any FrycHY -%Q), ey SHY-M-32(),
Oy, €EHY VD), Dyy € HY "N (Q) and dpy, €HY-V1(Q) there exist constants
Ago, *+, Agy,-1>0 independent of Few, Ben, Uzy, and ¥y .1 such that the equa-
tions (3.1y) admit a solution vyy, VpysHY #(Q), where M=0, ---, N,—1 and
E=H, P. And also by induction assumption we known that (3.2) holds by
replacing N, with N,—1. Let us denote a solution to (3.1y) (M=0, .-, N,—1)
with fey=Fpu=0 (M=0, -+, Ny—1, E=H, P), tyy,..=0 and #py,=0 by REY:
=REN(@un) and REJ1=RE1(5xy,). And also let us denote a solution to
(8.1y) (M=0, ---, N;—1) with Uuy,=0 by

5
R;{M:R}:IM(UHN1+1; Upny, fEn, BEn, B=0.P, M=1,, Ny-1);

R;I’I:R;’}ll(ﬁHNl+1, ﬁPNI, _?EM, e, g=m, P, M=1,~~,N1—1)~
Each REY:(0ny,) (E=H, P) is a linear map from HY~¥(2) to HY-¥(Q), and
satisfy the following estimates:
Ni-1

3.10) 2 (IREF@un )y w+HIREY @y Niv-s) SClloun lv-v,;
M=0
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-1

Ny
(38.11) S IREullw-ut+IRPal 520

M=0

Nqi-1
{

S 2 (U Feslv-u-stCBeudn-r-ssz)

M=0 E=H,P

<C

Foan,all v HlBen Il v-v,} -

Here, C=C(Ago, ***, AEN,-1, £=H.P, O1, 0o, M(K), Ms(K)). The general solutions
to (38.1y) (M=0, ---, N;,—1) can be written as follows: dgy=RE5'+Rinu, Ipu=
REN1L-REy. Substituting dmy, vpw (M=0, ---, N;—1) into the equations (3.1x)),
we have the equations for unkown dgy,:

REY1(0un), -+, RENI((Pun)), Dun, O .
(3.12)  —Pay, ) ) v Oy, =Fa,
REM Oy, -+, REF L. (uw), O
Rgé\r‘(ﬁfuvl), -, REN1.,(@un), uy, O
Qun, ) . =Gu,
REM(@uw,), -+, REN:@uwy), O
where

. R, -, R;nvl—n 0, Urn,
FH=fHN1_UI1N1+z+P11N1 ;

. .
Po, 1, RN -1, Tpw,

. R;ioy Ty RIT!Nl-b 0, ﬁHN:-fl
Gu=guy,—Qun, . .
REq, -, RIT’NI—I; Upn,
Here, dgy, . €HYV17Y(Q), Uy +2(Q)EHY"V17%(Q) are given, and especially we
assume that dpy,€H"2"V17(Q). First, we shall prove the existence of a weak
solution dxy,H'(2) by the variational method.
Let us consider the following variational equation:

(3.13) V#(@y, in)="Fy, in)+<{Gu, #xgy for any ixcH' @),
where
(3.14&) Vﬁl[l—)y, ﬁH:‘:Bf[t, 73}1, ﬁH]—i‘C{i(t, 6;1, il'}{)‘*‘cf(t, Z)H, ﬁy),

(3.14b)  BY[t, o, &nl=(AYt)0,0n, Oillw)+A(Vx, in);

(3.14¢) CH(t, Oy, ig)=—(Pay

Rgévl(l)ﬁ>: Ty R‘;’i%%—l(ﬁfl)y 0’ 0 N
- , Um)

| REN(5n), -, REF L, (5m), O

—N:((0. AR®)0s0n, Un);
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o REV(6m), ., REMAGm, 0, 0]
(3.144d) CE#(t, vg, im)=<{Qnn, - Un

RgONl(ﬁH)r ) RPNll—l(ﬁH)y 0
+NK(0:By)om, Uny.

To estimate C, and C,, we use the following facts: Let L be an integer
e[1, N,—N,1. If sy HXQ), then

» [REYW(0n), -+, RENI1(Fm), 0, O
(3.152) (@ AR0:iD -1+ Paw, i i L1
REM(Bm), -, REN1L:(0m). O
=Cloalr;
-Rgli)vl(le); ) Rgx%—l(ﬁ}])’ 0’ 0
(3.16b)  (@:BH)0uYr-1/2H{Qun, ) L-1/2
| REN1(0m), -+, REFL.(Dm), O
=ClonlL.

Here and hereafter, we use the same letter C to denote various constants de-
pending on Az, -, Agn,-1, (E=H, P), 8,, 6, Mu(K) and Ms(K). In fact, since
N,+1<N,+L<K, by (3.10) with N=N,+ L we know that

Ni-1
3.16) 3 (IRE @ vy 2-uHIRED @) v 4 2-3) = Cllmllz

M=0

Hence, letting 1<k<N,, applying (Ap.1)-(Ap.3) in [2] and using (3.16), we
have (3.15). Noting that |B¥ [y, gl <C|0al.#x]:, by (3.15) with L=1, we
have

3.17) \VE by, iu)| SCl0all|8ull,  for all 95, psHYD).
By Schwartz’s inequality and (3.15), we have for any ¢>0:
(3.18a) |CH@, u, 0n)| =Cloulilvnl sellonli+C(e)onl*;
(3.18b) |CE(t, v, 9m)| =Clon] (D) sellonli+C(on]" .

Noting that | BY¥[t, vu, 9u]|=00x/? for 2>d, and taking ¢>0 so small, we see
that there exists a A% >0 depending only on Ago, -, Aen,-1 (E=H, P), 0, &,
M(K) and Mg(K) such that

(3.19) VELom, 9112 2 ol

for any 9z H Q) and 21>2Y. From (3.17) and (3.19), we see that V{ is a
coercive bilinear from on HY ()X HY() for A>A}’. On the right-hand side, we
have the estimate:

(3.20) 1Pl vg-ny et LG udny-n -2 =C A.
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Here and hereafter, we put

2
A= ZN0uy il vg- ey F10px I vy-ny1
l=1

Ny-t N
+ 2 2 (I emlmy-n-at8eudny--s2)
M=0 E=H.P

+ ”fHNIHNZ—N1~2+<<§HN1>>N2—N1—3/2 .

In fact, from (Ap.1)-(Ap.3) in [2] and (3.11) with N=N, we have (3.20). In
particular, since N,—N,—2=0, applying the Lax and Milgram theorem to (3.13),
we see that there exists a unique @y satisfying (3.13) provided that A>A{.
Furthermore, combining (3.19), (3.20) and (3.13) with # ;=3, we see that ||7x],
<C/A. Employing the same argument as in a proof of Theorem 3.8 in [2], we
see that there exists a Apy,>max(2{, §,) depending only on &, 8, M.(K),
Ms(K), Ago, -, Apy,-1, (E=H, P) such that for any AZAun, 0rlyy-n,<CA
and dpeHY"V1(Q). For any ipy,cHV2"¥1-Y(Q), A=2ny,, this is a solution
Vgy, to (3.12). Summing up, we see that the equations (3.1,) M=0, ---, N,—1
and (3.12) can be solved when duy EHY> V1" Q) (I=1, 2), Upy,, Vpy €
HV2-V1-1(), fEMEHNz-Mﬂ(‘Q), Gy HNe~ 234"y (M=0, ---, N,—1, E=H, P),
Fav, €HY"¥1-%(Q) and guy,&HY+=¥1-35]", and that

Nqi-1
3.21) 2 (B3t g 1 patll vy s0) 15103, L,y C A

Hence, we denote a solution to (3.1) (M=0, ---, N,—1) and (3.12) with Uny,=
'DIIN1+2:0; fEll:O; Zen=0 (M:O, ey Nl—l, E=H, P) and fHNIZEHleo by
SEN=SEN (9py,) and SEf1=SEN1(9py,) (M=0, -, N;—1). And we denote a
solution to (3.15) (M=0, ---, N;—1) and (3.12) with Upy,=0 by
Shu=Shiu@un s, 1=1,2 Fun, Buw, 5= p, M=0,., Ny-15 fHNl, Zuny);
S;]&[:S;M(ﬁHN1+l, 1=1,2, fEM, 8eM, E=H,P, M=o, Ni-1 fmvl, gHNI)-

From the above facts, we have

Ny-1
(3.22) Mgo (N4l ¥yt HISEN vy )+ IS EF 3 o= S CllOpw |l wy-n o1 3
Ny-1
(3.23) = USEaul vy +ISEull 5y-a)+ISEN Iy,
2 Ny-1 N
SC{ S avllyy-vm+ 2 2 N eallwyrr 2t CBEs) v y-r-2s2)
=1 M=o E=H.P

+ |]f11N1f| PRSP (<579 IIRYTY SO IR
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Using 9y, and opy (M=0, ---, N, M'=0, ---, N;—1), we consider the equations
for unknown vpy,:

N .
SEX (Bpy ), woreeeeeeeeeens L SEN@ex), 01
(3.24) —Ppy, i e ) +2pn Opy,=Fbp,
SE W (@pwy), -, SENI ey ), Upy,
[Sf}lg‘(ﬁpm), ........................ , Sﬁx{(ﬁpnl), 0]
1 =Gp,
R N .
S,’;évl(val), o, SEN1(Dpy ), Upy,
where
Siro, oo ’ S;nvv Z}HNﬁ»l
Fp= fPNl PUPAIH—FPPM 5
7 e ST 0
PO y OPNy-1,
o Shrg, rorreereeeees , Shyy Uaw e
GP:ngv,_QPN1 . . .
SPO; Ty SPN1—1, 0

We consider the following variational equation :

(3.25) VE[op, ip]=(Fp, ip)+<{Gp, ipy  for any dpesHY(Q),
where

(3.262) Vilop, p)=BL(, vp, ip)+CL(, Up, Up)+Cslt, Up, Up);
(3.26b) BX(t, vp, iip)=(AF(t)050p, 0itip)— (AP (1)0.0p, Up)+A(p, ilp);

(3.26c) C@, vp, Up)=N((0.Ap1)Vp, tip)

SEN(p), weeveeeermnininens , SEN@p), O
+(PPN1[ ) J, up);
P@p), -, SEN1L.(0p), 0
SENI(§p), worveervrernneannns L SEN@R), 0]
3.26d) C%(, vp, ip)=<{Qpv, . ' » Upy;
SEY o), -, 55)%{—1(%’); 0
Let L be an integer [2, N,—N,]. From (Ap.1)-(Ap.3) in [2], we have
) SEN (D), +reveerererneeennns , SEN(p), 0
@.27) @ Apt)opllL1+Pey,| flz-1
SEY1(wp), -, SEN1I_1(9p), 0
=C'|[vpllz-1;
SENI(fip), woveveneneinannns , SEN@p), 0
<< PN, . . >>L—1/z§cl-inHL-1:
E1(0p), -, SENI_L(UR), 0

provided that s, HZ (). Here and hereafter, C’ means various constants
depending on 2;{0, ey, ZHNI’ /2)30, e, ZPNIAD Mm(K), MS(K), 51 and 50. BY (3.27)
with L=2, we have
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(3.28) (VELop, p]| C'|Upl:l2pl, .

From the fact that BY[dp, 6p]1=0,/2|0p|3 for any A>4$’ and Schwartz’s in-
equality, there exists A=A such jhat

(3.29) V2[ip, z)p];%‘]lz)pﬂ% for any vpeHY(2) and A>AP.

Combining (3.28) and (3.29) implies that V¥ is a coercive bilinear from on H'(2)
XHY) for A>2¥. Using (Ap.1)-(Ap.3) in [2] and (3.23), we have:

(3.30) [Fpling-w-2F(GrYwy-n -2/ =C/ A,

where

2
A= ZZ_}I “ﬁywﬁzn NZ—N1—1+ ||77PNX+1|IN2—N1—2

Ny o
+ 3 2 Ufesllyg-s-st{Grudny-n-sre).
M=0 E=H,P

Applying the Lax and Milgram theorem to (3.25), we see that there exists a
unique ¥p satisfying (3.25) provided that A>2, and [|0p|;<C’A’. Furthermore,
we see that there exists a AP =2 such that d,cHY>""1(Q) and [|Up|n,-», =
C’A’ for any 2=2§’. If we put Apy, =2, then sp=10py is a solution to (3.24).
Therefore the system [#x,, ---, duy,, Upo, -+, Upy,] is a solution to (3.1), so that
we have the first assertion of theorem. The second assertion can be proved
by employing the same argument as in the proof of Theorem 3.8 in [2]. This
completes the proof of the theorem. &

To prove the existence theorem in E*[0, T); £), we meet the following
problem:
(331 —3u(AYO)0 ) — AFE O0slptAutin=Ff u in 2,
—0:(AY(1)0Lp) — AYy (10,01 g — AP ()T p+ Aptip=Fp  in £,

vi AY(0;8 p+ BE (i p=Fn on [,
viA¥ 0,1 p+ Bhu(t)0:ll u+ B ()i p=2p on [,

for fixed tJCI. Existence and estimate of (3.31) follows from Theorem 3.1
with N,=0 and dx.=04,=0, 9p,=0. Namely we have the following theorem.

THEOREM 3.2. Let L be an integer <[2, K]. Assune that (A.1)-(A.3) are valid.
Then, there exists a A, depending only on 8, 8, I', M(K) and Ms(K) essentially
such that for any Au, Ap=2, and given fEeHL‘Z(.Q) and gg=sH*¥¥I") (E=H, P),
(3.31) admits a unique solntion =(iiy, ip)SHHX Q)X HYQ) for any t=] and
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(3.32) lirlg+1ap13<C 2 (1Feli-st(EENE-0r2),
E=H.P

where C=C@8,, 8,, I, M.., Ms(K)).

§4. The energy inequalities of higher order.

We shall prove Theorem 1.2. Since we can prove the theorem in the same
way as in §4 of [2], we shall give an outline of the proof. Put 2<L<K.
We assume that #eC>(J; HX(Q)) where J=[0. T—e] and ¢ is any number
=(0, T). First, let us consider the case that L=2. Differentiating (N) with
respect to ¢ and applying (2.1) to the resulting equations we have

@) B aam)sCUEQ, 0a0)+ 31 [ 1075+ @)t

+62S:<||D%7H<s>||2+uatamﬂu”a,,(s)ng)ds}

and (1.9). Here we have used (Ap.1)-(Ap.3) of [2]. Applying Theorem 3.2
to the equations (N) and using (Ap. 1)-(Ap.3) of [2], we have

4.2) lEa@®le a0l =C{ 2 P(Ilfz(t)ll +{Ze®)1r2)

+|10%% 5O+ 1108 n@) 1+ 110:4 B},
where C=C(d,, 6, I, #({, I)). Combining (4.1) and (4.2), we have
(4.3) NEOWE<C llzOM+ = (1 fzld.0 0. 00H<{88>8. 1/2.00.00)

E=H,P

3 (0. £55) 1"+ (@ugs() s+ Cu s lids)

Applying Gronwall’s inequality to (4.3), we have (1.8a). Using the mollifier
with respect {, we can remove the additional assumption: #eC*(J; HL()) in
the same way as in §4 of [2].

Let L be an integer =3. We may assume that #C>(J; H%({)), because
by using the mollifier with respect to ¢ we can remove this additional assump-
tion. Differentiating (N) L—1 times with respect to ¢ and applying (2.1) to the
resulting equations, we have

@y B #ae)sCLEQ, 37 u0)
+Col {1DM () + 08 22(5) P+ | DE L AS) 8 ds

+ 3 [ 0087 5(5) P +(@F 2a( )51 0]

=H,P.
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and (1.9) for any t=/J. Here we have used (Ap. 1-(Ap.3) of [2]. To get the
estimate of higher derivatives with respect x, differentiating (N) / times with
respect to ¢ for 0</<L—2, applying Theorem 3.2 to the resulting equations
and using (Ap. 1)-(Ap.3) of [2], we have

4.5) N0 ()| 1o+ 10k 2(D)]| 1
<Cu{ 3 P(Ha%fgmuL_z_l+<<aég*E<t>>>L_a,z~l>

+ 31O H O] ot + 108 D] s
I D215 g ()| + 110822 o)+ D 21 p(1) | o}
for te ], 0sI=L—2. Note that [7®)|*<|#(O)*+2] [3:i(s)|*ds and the fact
4.6)  HU+p, DEMAAK)+Ms(K)  for pe(0, [n/2]+1—n/2) and n>2:
M, DEMAK)+Ms(K)  for n=1.

Combining (4.4) and (4.5) and noting (4.6), we have (1.8b) by Gronwall’s in-
equality. This completes the proof of Theorem 1.2.

§5. An existence theorem of solution to (N).
In this section, we shall prove the following theorem :

THEOREM 5.1. Assume that (A.1)-(A.4) are valid. Then, for any system of
data:

(U 70, U gy, Upy, fE, 8, e-n,PEDY[0, T)),
(N) admits a unique solution i=(ly, iip)= EX[0, T); Q).

Our proof is essentially the same as in Shibata Theorem 5.1 of [2]. As a
main step of our proof of Theorem 5.1, we shall prove the following lemma.

LEMMA 5.2. Let ¢ be any number (0, T) and put J=[0, T—e]. Assume
that (A.I)—(A.4) arevalid. Let (1—21-10, 1—2}11, ﬁpo, ]—ZE, EE, E=H, P)EDZ(_]) such that ﬁHl
E€H¥Q). Then, there exists a unique i=(ily, ip)c EXJ ; Q) satisfying the equa-
tions:

GRY AuOEO]=Fr@®), ApOLEOI=Fp) in JXQ,
BaOLEBO]=2a®), BpOLEG]=gp) on JXTI,

i g(0)=1 o, 0. ()=l g1y, #p(0)=1p, in Q.
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Assuming that Lemma 5.2 is valid, we can prove Theorem 5.1 by using the
approximation of initial data in the same way as in [[2], p. 331-p. 332].

ProoOF OoF LEMMA 5.2. Using the assumption: # 5, H*(2), we shall reduce
(5.1) to the problem with zero Cauchy data and fx(0)=0, fp(0)=0 on I. Put
Un(t) =ttt m, Upl)=ilpy, UO=(Ux(t), Up(t)), Fpt)=Fet)—A=O)[U®)], Gx(t)
=ge()— BeWOUW], E=H, P. Then, (0,0,0, Fg, G, z-wr, )ED*(J). If 9(t) is
a solution to the equations:

Au[0)]=Fu(t), ApOWOI=Fpt)  in JX2,
BuO®]=GCGut), BeOLVO)]I=GCpt) on JXTI,
UH(O):GLUH(O):O, vp(O):O in .Q,
then #()=U(t)+u(t) satisfies (5.1). From this observation, we shall prove the
existence of solutions to (5.1) in the case that (0,0, 0, fz, Gz r-n p)ED*J).
The uniqueness of solutions follows from Theorem 2.1. Let A%(¢) and BE{)
(E=H, P) be operators having the coefficients defined in Lemma 2.3. Corre-
sponding to A%(#) and B%(t), we should approximate fE, gr (E=H, P) by smooth
functions in ¢, Employing the same argument as in [[2], p.333], we construct
/4 and gy (E=H, P) such that
(5.22) [EECUR; LX), d.fpeLXR; LX),
GreCUR; HVXI)), 6. 8psLXR; H(I") (E=H, P);
(5.2b) FrO=Fet), Es0), 8e)=gslt) t] (E=H, P).
Furthermore, without loss of generality, we can assume that
(5.2¢) fu=0 for t&[—T, 277, gp=0 for te£[0, 2T] (E=H, P).
(Since gz(0, x)=0, we can put gz, x)=0, t<0, E=H, P.) Let «(t)eC3({1, 2])
such that £(¢)=0 and Sx(t)dt:l. Using k(), we mollity fg and g (E=H, P)

with respect to f, and we put them f‘;, and g% (E=H, P). From the way of
making these, we have

(5.3) g%(0)=0 on /" for any ¢>0 (E=H, P);
(5.4) faeCs(R; L), gutHeCyR; HVX(I") (E=H, P).

Furthermore, we have
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(5.5) S U 1%l00rH<8%0. 112, R)
E=H.,P

+{, .3 U0 /501 +@as0Nd=C  for any e, X,
where Y, is the same as in Lemma 2.3. Now, let # be solutions in E*[0,7]; £)
to the equations for each a=(0, 2)):

(5.6.2) O OI=FH0), ABOLEOI=/$0)  in [0, TIXQ,
(5.6,b) BuO[U°0)]=841), BWOU'W]=g%®) on [0, TIXT,
(5.640) 1%(0)=0,4%(0)=0, u%0)=0 in 2.

Existence of the solutions to (5.6,) is guaranteed by Theorem 2.1 of [1], be-
cause the compatibility condition of order 0 is satisfied. Furthermore, using
Theorem 1.2 with L=2 to (5.6,) and noting (b) of Lemma 2.3 and (5.5), we
have

.7) | DGO+ 18501+ | 75(0)
+{ s 1tas+ [ (Dadis(snipds=C

(5.8) E?(t, 0.u°)1))< e {E(0, 0.7 (0)+R° (D)},

where

R@®)=C St 25 (10: A5l 1*+(0: BEL77 i) ds

+ [ Iaasltds +{ (Do) 2ds
+ [ aDsas o 1+ 18asl+ 1as)19ds)

for all t[0, T], E° is the energy norm for the operators A%(t) and B%({) (E=
H, P) and C denotes various constants indendent of ¢. From now on, we shall
prove that the limit of #“ belongs to E*J; ). To this end we need the fol-
lowing lemma

LEMMA 5.3. Put J'=[0, T]. Assume that (A.1)-(A.4) are valid. Let 4°=
(U4u%) be functions in E*J'; ) satisfying (5.6). Then, there exists a U=
(g, dpEY L (J' s QYXY O] ; Q) such that D'o.iin(t)e LX(J' ; H-V¥I)), 0:ilp(t)
eL¥J" ; H'(2)) and

5.9 Lin.}(‘\ﬁ%_aﬂ‘].o,.ﬂ""|ii‘;"“ﬁl’|o,o,.}'):0;
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(5.10) Ug(0)=0,uxg(0)=0, UpH=0 in Q;

(5.11a) 5@ — () weakly in H¥Q) as 0—0 for all te]’;
(5.11b) 0% (t) —> 0,il y(t) weakly in HY(2) as ¢—0 for all te]’;
(5.11¢) 15(t) —> Up(t) weakly in HX Q) as 6—0 for all t€]’;
(5.12a) BrO[u)]=gut) in the sense of HY*(") for all ZE]';
(5.12b) Bp)[U)]=8p1) in the sence of H'*(I") for all t<]'.

Furthermore, if we put
(5.13) va(t)= f& (O +0(AY(1)0,7 x(t)+ AR®)0:0:1 () + Al ()01 p(1) ;

Up(t)= AT b +0:(AZ )04 p(t)) -+ A b1 p(2)
+ A (00:0,;1 u(t)+ APy )0:0:4 u(1)}

then

(5.14a) 4% (1) ——> vu(t) weakly in LXQ) as 6—0 for all te]’;
(5.14b) Q) —> vp(t) weakly in L¥Q) as 60 for all t€]’;
(5.15) HigM=0p@) 04pt)=0vp(t) for almost all t€]’;
(5.16) lim {ou(®)— FaO)*+ 92— ARO " 20) 5 )

+10cil u®) 50y T 17 2O I3+ 1205} =0

PROOF OF THEOREM 5.3. Subtracting (5.6,) from (5.6,) and applying (2.1)
to the resulting equation, we have

(5.17) g —udg 30,0 H1UP—UE (50,00

([(AG(s) = AZ (sNLE7 ()P BE(s)— BE (sNLE () e

J' E=H.P

=c|

+117%(s)— f% ()P +(g%(s)— 8% () 0)ds .
Using (5.7) and (a) of Lemma 2.3, we see that {(i%, u%)} is a Cauchy sequence
in Xt°(J': QX X(J’; 2). By the completeness of X°(J; QxX"(J'; D),
we can conclude that there exists a limit =g, dpeX (] ; DXX"(]"; 2)
satisfying (5.9). Combining (5.6,¢) and (5.9) implies that (5.10) is valid. More-
over, employing the same argument as in [[2], p. 336-p. 337], we see that
(5.11) and following facts are valid:

(5.18) 12 n@lle+10: 2 n@®Ol A+ e, <C  for all t€]’;
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(5.19a) 7 4(t) and %p(¢) are continuous on J’ in the weak topology of H*(Q);
0 i x(t) is continuous on J’ in the weak topology of H(Q);

(56.20) 2 g(t) = n ()1 4108 5 () — 0.8 ()| + 18 () — T p(s)]]
<Cl|t—s]| for all ¢, s ]’;
(6.21) ugtye L=(J"; HQ)NLip(J'; H(2));

Qi &)= L s HN@INLip(J'; LXQ);
int)E L] ; HX@)NLip(J'; LX),

We have also

5:22) [ 1ais(o)ids +{ (D92 (s pds = C

for any teJ’ (=[0, T]). In fact, (5.9) implies that for any e>0 there exists a
constant 2 such that

t t
(5.23) Soliﬁn~ii‘},ﬂ%ds—kgoflﬁp—ﬁ‘,’,H?ds<e for any <2,
For any ¢, x)eCH(0, )X 2),

t

\S:(ajatap, P)ds|=

(p—ith, 30:9)ds| +| | @iy, §)ds|

H/\

0

_L_

\
(Vrae—asleas ) ([ 1aplsas) ™
(

(1 oasitas) ([ 1 ieas)”;

]

) <Dit, pds | <([ Jan—nlitas) (] Dagras) "

0

+() Dadsyinds) ([ @hads )"

Considering (5.7) and (5.23), we have (5.22). Combining (5.21) and (5.22) implies
that €Y XY % J’; Q) and D'@,ax(t)= LY’ ; H-V¥I")), oiip(tye L2(J ; HY(Q)).
In the same manner as in [[2] p.337-p.338], we can prove (5.12), (5.14) and
(5.15). Furthermore noting that A2(¢)"' is continuous on J’, we have the fol-
lowing fact, toor.

(5.19b) Un(t) and Up(¢) are continuous on J’ in the werk topology of L*).

Finally, we shall prove (5.16). To this end, employing the same argument as
in [[2], p.339] and noting that 6, #x4ll}< x| 36, < Clinl?, colipll*<(AXS)ip, tip)
=C|upl* for any upsHW(Q), ipc LA Q), s€l, C=C(MLK), Ms(K)), we see
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that our task is only to prove that
(5.24) Jlim 18 m(®18e8 1Ol 3oy 1O 50y =1 F 1O+ [ ABO) ™ F (O o
From (5.19a, b) we have
(5.25) 17 2O+ 1 AB0) 2 7 p(0) | 300

élig}uipf oa@®1*+18p0) 5 o) +10:8 a5 o) -
Hence, to obtain (5.24) it is sufficient to prove that
(5.26) lim sup Uaa®I> 18O F o) + 108 2] 5 0)

<7 u(O)2+1 A0 £ (O] Sy -

By (5.7), we see that
(5.27) |E@, d°(t)—E°(t, 9.0°) | =CU(t);

IE@, 0.4°()—E(0, .’ =Clti,
where

UW)=[ A%t~ ApDp=1r. pJoo, k -1+ [ AZE) —Ae®) | BEE)— Be(O)g=r.Pls. x-2.1-

435

Noting that E(0, 9.#°()=/103u%(®)]*+10:8% |5 o) +10:85D §oy, from (5.8) and

(5.27) we have
025 O+ 10:2% ] 5 o) + 108D F oy

<eCE(Q, 0, 4°(0)+CU(B)+S°(1).
where S?(t)=e®*R°(t)+C|t|. Since
[(F5(0), A3, (0)7 FH(0)—(F p(0), AR(0)™*F p(0))]
< F3(0)— F(O) [ A, (0)7 FH(0) |+ 1(F p(0), 3:H0)—55(0))],

by (5.14b) E°(0, 3,°(0)—| F u(O)I>+ [ A%0) F (0)| 30y 28 6—0. Therefore,
have
(5.28) lim sup (18325 (0> + 195 O] o> + 10O o))

<4 F (01241l AR0) F o013 0)+SE) ,
where S(t)=eCtR*t)+Clt| for te]. By (5.11b) and (5.14a, b)
(5.29) 19 R@OIF+10:3 @) F o)+ 52| F0oy
=liminf (|08% @) 1*+ 10:8% O <) +10: 42§ o)

Combining (5.28) and (5.29) implies that

we
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(5.30) 12 2O +10:8 a5 0 +106E F 0r
< (| F O+ AB0) 7 F (O] G 0n)+S(2) -

Since ¢“’—1 and S(t)—0 as t—0-+, (5.26) follows from (5.30), which completes
the proof of Lemma 5.3. ®

From (5.13) and (5.14) we see that
(5.31a)  Ax)[#(t)]=F4() in the sense of L) for almost all t<J’;
(5.31b) Jp(t)[ﬁ(t)]:f;(t) in the sense of L%§) for almost all t=J’.

If we prove that Z€E*J; ), we see that # satisfies (5.1). To this end, we
use a mollifier with respect to t. Let p(f) be a function in C5([—2, —17) such

that Sp(t)dtzl. Put pst)=08""p(07"), #st, x)=Sp,;(t~s)?¢(s, x)ds. Note that

useC=(J; H¥(9)) provided that 0<d<e/2. Using (5.12) and (5.31) and applying
(1.8a) to #;—iy, we have

(5.32) (25— 325 YOME< C {2 5— 25 YONE+ L5,5}
for t=J and 0<4, 6'<e/2, where

L= 3 {1(F0s—F e 1500 +BRs—(Be)s Y2 1/00
E=H.,P

+ (07501 +@:25e) ) ds
+ I Rpsll— R k15,0, +<{Spsth—Sgs U5, 1/2.0
[ (10 Rusit()— R NP+ @S 5o (0)— S BON )t}

Rpsti=Agliis]—(Ap[41)s, Spsti=Bgltis]—(Belii])s (E=H, P).
By Lemma 4.1 of [2] we see that [;5—0 as 4, 6’—0. In the same manner as
in [[2], p.335], by (5.16) we can prove that
(5.36) (s — s )OI —> 0 as 4, 6'—0.

Letting 0, 6’—0 in (5.32), we see that {iis} is a Cauchy sequence in E¥J; £).
This implies that #;,—i in E%*J; &), which completes the proof of the Lemma
52. =

Using Theorem 1.2, Theorem 3.1 and Theorem 5.1, we can prove Theorem
1.1 for L=3 in the same manner as in §6 of [2], so that we may omit the
proof.
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