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COMPACT CARDINALS AND ABELIAN GROURS

By

Katsuya EDA and Yoshihiro ABE

Some properties about abelian groups are known to be related to large cardinals.
Among them a certain property of the radical Rz i.e,, Rz(AD=nN {Ker(h) : he
Hom (A4, Z)} for an abelian group A, has been known to be related to the exist-
ence of a compact cardinal and a measurable cardinal. To state it more precisely,
let RII(A) =31 {R,(B) : Bis a subgroup of A of cardinality less than #}for a cardinal
£. The radical R, satisfies the cardinal condition, if there exists a cardinal # such
that R;(A) =R¥I(A) for every abelian group A. M. Dugas and R. Gobel [4]
proved that if there exists no measurable cardinal, then the condition does not hold.
On the other hand M. Dugas [5] showed that if there exists a strongly compact
cardinal, then the condition holds. Using subgroups of Zs/Z<r(=ZB?), which
itself was also used in [5], B. Wald [15] got some result relating to a weakly
compact cardinal.

In the present paper we show that their results can be unified under the notion
of A-L,,.,-compactness and using it we improve their results, e.g. the radical R:
satisfies the cardinal condition iff a strongly L.,.-compact cardinal exists, where
the last property has been studied by J. Bell [2].

First we state definitions. Z is the additive group of integers and N is the
set of natural numbers. In this paper « always stands for an infinite cardinal and
in most cases is regular. The word “of cardinality <2” is an abbreviation of “of
cardinality less than or equal to 27. L,, is the infinitary language which admits
a-sequences of disjunctions and conjunctions and S-sequences of quantifiers for a<p
and B<v. See [3] for a precise definition. A cardinal # is 4-L,-compact, if the
following hold: For a set T of L,.-sentences of cardinality 2, if any subset of
T of cardinality less than # has a model, then T itself has a model. « is strongly
L,.-compact, if & is A-L,-compact for any 2. P.2 is the set of all subsets of 2
whose cardinalities are less than #. Let Uy={yeP.d: 2Cy} for € P2 and F.1
={xCP.2: U,CX for some z€P.2}. Then, F.2 is a &-complete filter on P4 for
a regular cardinal #. Let B.; be the quotient algebra P(P.2)/F... (We use filters
instead of ideals when constructing quotient algebras, differing from [13].) Then,
a filter on P.2 which contains Uz for all z& P2 corresponds to a filter of B.x.
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Moreover, a countably complete ultrafilter on P.4 which contains Uz for all ze
P4 corresponds to a countably complete ultrafiter of B.,. In case that & is regular,
by B., we denote the «-complete quotient Boolean algebra P(x)/F., where F.—
{XCr: le—X|<#}. A r-complete Boolean algebra B is r-representable, if B is
isomorphic to the quotient algebra of a «-complete field of sets modulo a #-complete
filter [13, §29]. (Note that “s-complete”, “x-representable” and so on in [13] mean
our “c*-complete”, “s*-representable” and so on.) The symbols \/, A, 7 denote
least upper bound, product, complement respectively. For a countably complete
Boolean algebra B, Z‘® is the Boolean power of the group of integers Z, i.e.
ZPB=\f:f: Z-B & Vmez f(m)=1 & f(m) Af(n) =0 for mn} and (f+g) (m)
= Am=n+k f() Ag(k). An abelian group A is torsionless, if A is a subgroup of
Z! for some I. It is equivalent to the property that for any nonzero ac A there
exists 2 homomorphism %: A—Z such that A(a) %0.

Now we state the main theorem.

THEOREM 1. Let & be an uncountable regular cardinal and A<s=2. Then,
the following propositions are equivalent :
1) & is A-L,,u,-compact ;
(2) x is 2-L, .-compact ;
(3  Any r-complete k-representable Boolean algebra of cardinality 2 has a count-
ably complete ultrafilter ;
@ If Ais an abelian group of cardinality<2, then R.(A) =REI(A) holds;
(®) If A is an abelian group of cardinality<2 and any subgroup of A of car-
dinality less than & is torsionless, then A itself is torsionless
(6) Any subgroup of ZB¥ of cardinality<2 is torsionless
(7)  For any subgroup S of Z'B¥ of cardinality<i, Hom(S, Z)%0;
(8 For any k-complete k-representable Boolean algebra B of cardinality <2, Hom
(Z®, Z)=x0.

To prove the theorem, we state some lemmas.

LEMMA 2. ([7, Theorem 1)) Let B be a countably complete Boolean algebra.
Then, Hom (Z®, Z)=@Prer Z, where F is the set of all countably complete
ultrafilters of B. Consequently, Hom(Z®, Z)+0 iff a countably complete ultra-
JSilter of B exists.

LEMMA 3. ([13,29.3]) Let B be a x-complete k-representable Boolean algebra.
If 6#0 and Vmen bam=1 for a<p where p<r, then exists an fe*N such that
{0, bascwy s @< p} satisfies the finite intersection property.
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PRrROOF OF THEOREM 1. Our proofs go on according to the following diagram :

(1)%(3)%(3)9(8)
(4)—=(5)—>(®6)— (7)”>(i)

(1)—(2): trivial
(2)—(8): Let 7 be a r-complete field and F a «-complete fiter of 7 and B=
F|F. By the assumption of cardinality of 4, we can take a x-complete subfield
F’ of F cardinality 2 such that B=5"/F NF. Let '=(P::£<2) and T be the
set of the following L.,.-sentences:
(a) P:(o) if P.eF:
(b) VX (AnenPu(x) ©P(x)) if NapenPea=P:;
(¢) Va(P(a)o7Py@) if Pi—P:,

Since F' is #-complete, any subset of T of cardinality less than & has a model.
Hence T has model #. Let P:eF iff #=P;(c). Then, F extends 7' NF and is

a countably complete ultrafilter of 7’/. Consequently, B has a countably complete

ultrafilter.
(3)«>(8): Clear by Lemma 2.
(2)—(4): To prove it by absurd, suppose the negation of (4). Then, there
exists an a*€R;(A) such that a*&R;I(A). Let T be the following set of Lu,.-
sentences :
(a) a#da for a+d’, a,a’€A, atb=c for a+b=c, a,b,ceA;
(b) The axiom of abelian groups;
(¢) VzVae:(Hn(x) & Antm, nez/ Ha(x)) ;
VZ, ¥ Vmnkez, min=k(Hn(x) & Hn(x) & Hip(z+3)) ;
VmxoHn (@®).

Let 77 be a subset of T of cardinality less tank x#. Then, there exists a
subgroup B of cardinality less than £ such that B contains a* and if a appears
in T’ then a belongs to B. Since a*GERg‘](A), there exists an hAeHom(B, Z)
such that 2(a*) 0. Now, the group B with the homomorphism % is a model of
T’. By (2) there exists a model « of 77. Then, A is a subgroup of the domain
of # and Hn(me Z) defines a homomorphism to Z which maps a* to a nonzero
element, which is a contradication.

(4)—(5): It is clear, since A is torsionless iff R,(A)=0.

(5)—>(6): It is enough to show that S is torsionless for any subgroup of Z¢B<
of cardinality less than #. Let s* be a nonzero element of S, then s*(m)+#0 for
some m#0. By Lemma 3, there exists a map h: S—Z such that {s(h(s)) : s&€S}
satisfies the finite intersection property and A(s*) =m=0. If s+t=u for 5,t,ucsS,
then uw(h(s) +h(@)) >sh()) At(h(®))+#0. Hence wu(h(s) +h(@®)) Aulh(@))+0 and
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so h() +h(@)=h(@). Now, We’'ve gotten a desired homomorphism.

(6)—(7): Trivial.

(3)—(1) and (7)—(1): The property (1) is reduced to the existence of a
countably complete ultrafilter of #-complete subfield & of P(P.2) which extends
F.[1, pp. 76-77 ; or 14, pp. 64-65]. By Lemma 2, both of (7) and (3) imply the

existence of such an ultrafilter.

COROLLARY 4. The radical R, satisfies the cardinal condition iff there exists
a strongly L. ,.-compact cardinal.

The proof is clear by the equivalence of (2) and (4) of the theorem.
Another characterization of the strongly L.,.-compact cardinal has been given in
[2, Theorem 23. As noted in [2, Theorem 4], the existence of a strongly L.,.-
compact cardinal is strictly stronger than that of a measurable cardinal. However,
we do not know whether it is strictly weaker than the existence of a strongly
compact cardinal. (See the last remark.)

Under the assumption that & is inaccessible, many conditions are known to be
equivalent to the x-L.,-compactness of #. An observation of the proof of [14,

Theorem 17 gives us

PROPOSITION 5. Let £ be an infinite cardinal, then the following proposi-
tions are equivalent :
(1) k—®% (See [14] or [12] for the definition.) ;
(2) & is 2<e-L,,-compact ,
(3) & is regular and any k-complete k-representable Boolean algebra of cardi-
nality <2<t has a k-complete ultrafilter ;
(4) & is regular and any k-complete subalgebra of B. of cardinality<2<+ has
a k-complete ultrafilter.

PROOF. Since £—>(k)% implies that # is inaccessible, 2<¢=x and hence (1)
—(2) is clear by [14, Theorem 1.13]. It is known that the £-L.,-compactness of
& implies that # is regular [3]. Hence, (2) implies that 2<fr=#<+, The proof of
implication (2)—(3) is similar to that of (2)—>(3) of Theorem 1. The differ-
ence is to take ()’ instead of (b), where (8)’ is: Vx(Ae<pPea(x) =P:(x)) if
Na<uPea=P: for p<x. After this change the cardinality of the set of sentences
does not exceed 2<+. Therefore, we can prove similarly as before.

The implication (3)—>(4) 1is clear. Though Silver’s proof [14, p. 64] is
essentially a proof of (4)—(1), we present the proof for reader’s convenience.

Suppose the negation of (1), then there exists f: [£]?—2 such that there exists
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no homogeneous set of cardinality #. Let F be the minimal £-complete subfield of
P(r) generated by all singletons and U’(={8: f({af}) =i}) for a<x, i<2. Then,
the cardinality of ¥ is 2<r. Let 7: P(x)—>B.(=P(x)/F.) be the canonical map.
Then, =(¥) is a t-complete subalgebra of B. of cardinality 2<r. Let F be a
x-complete ultrafilter of #(F), then z(U) eF or a(U}) € F. Construct a sequence
a;(6<k) and ¢: £—2 such that a.e ﬂq<eU¢(”’and rc(U""“)eF then we can get
homogeneous sets {a;: ¢(§) =0} and {a:: ng(E) 1}. One of them must be of

cardinality &, which is a contradiction.

As noted in [1, Corollary], if « is less than the least measurable cardinal and
2<x.L, ,-compact, then « is 2<#L,,-compact. Any &-complete subalgebra of a k-
comlete r-representable Boolean algebra B is also #-representable and any restric-
tion [0, b](={xeB:0<x<b}) for nonzero b&B is also a k-complete £-represen-
table Boolean algebra. Hence, Theorem 1, Lemma 2 and Proposition 5 imply

COROLLARY 6. (B. Wald [15]) Let & be an uncountable regular cardinal
which is less than the least measurable cardinal. Then, the following are equiv-
alent :

(1) r—(&)% holds;
(2) If A is an abelian group of cardinality 2<%, then Rz(A) =Rr4);
(3) If a subgroup S of ZB® is of cardinality<2<¢, then Hom(S, Z) #0.

REMARK : It is known that some results are restricted under the lest meas-
urable cardinal and they do not hold beyond it [11, p. 161; and 5, Theorem 2.7].
However, we did not know whether the class of Fuchs-44-groups were closed under
arbitrary direct products [8]. Here, we show that it is not. To treat such things
it is convenient to use elementary embeddings of the universe [5, Remark 2; and
10]. Therefore, we use notions about elementary embeddings [12]. Let « be the
least measurable cardinal, F a normal ultrafilter on # and Mp the related transi-
tive universe. For an fe+<V, [ f]r is the element of Mr corresponding to f.
Let A,(a<k) be the abelian groups such that A.=(@.Z)B® if « is a regular
uncountable cardinal and A,=0 otherwise. Since B, has no countably complete
ultrafilter, A, is a Fuchs-44-group for each « [8, Corollary 3; and 9]. Since F'is
normal, [{A.: a<k)]r=(P.Z) B> holds in Mp. Since B.=(B)¥p, ll.<.A./F=
(®.Z)B>. On the other hand, B, has a countably complete ultrafilter and hence
there exists a surjective homomorphism from T.<.A./F to @.Z. This implies
that IT.<.A. contains a direct summand isomorphic to @.Z. Hence, II.<.A. is
not a Fuchs-44-group.

As we have referred it before, Dugas and Gobel proved that the radical Rz
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does not commute with a measurable direct product [5, Theorem 2.7]. Here we
show,

PROPOSITION 7. Let £ be a cardinal less than the least measurable cardinal.
If the cardinality of As is less than & for every i€l, then R;(Ilic1A:)=1I;cr
R:(As) holds.

PrOOF. Since R,(IT;e1A:) Tl ierRz(A:) clearly, we show the other inclusion.
Homlie1A+, Z) =@Prey Homl:c1As/F, Z) where F is the set of all countably
complete ultrafilters on I [6, Corollary 2] and hence what we must show is that
hemr(f)=0 holds for fe ll;e1R;(A:), he Hom({l;e1A:/F, Z)and Fe ¥, where gz :
IIie1Ai—1Il;e1A;/F is the canonical homomorphism. By the fundamental theorem
of ultraproducts [12], VI/FE=VheHoml:iciA:i/F, H:Z|F) (h(zr(f))=0).
Since the cardinaity of II;e;A:/F is less the least measurable cardinal and
II;Z|F ~ Z, h-ny(f) =0 for each heHom (Il ;c;A:/F, Z).

ADDED IN PROOF
1. There is another radical R, i.e. RJPA=3{X<A:Hom(X, Z)=0}. The
purpose of this addendum is to answer a question in [17]. Therefore, we use
their notion.

We show,

ProPOSITION 8.
(1) The radical R satisfies the cardiual condition (iff Ry is a singly generated
socle) iff there exists a strongly L., ,.-compact cardinal.

(2) RZ is not a singly generated radical.

ProoOF. First observe the following fact: For a cardinal & of uncountable
cofinality, A=Y {X<A: Hom(X, Z) =0 & |X|<x¢} iff A=Y {R,X: X<A & |X| <x}.
This can be shown by a closure argument. If there exists a strongly L.,,,-compact
cardinal, let # be a regular strongly L.,,-compact cardinal. Suppose that R7A =
J{R7 X: X<A & |X|<«x}. Since R7’Y is the largest subgroup X of ¥ such
that Hom(X, Z) =0, R7A+#X{R,X: X<R}7A & |X|<x} by the above fact.
Hence, there exists an a*e R} A such that a*€¢ R, X for any subgroup X of RTA
of cardinality less than £. As the proof of (2)—>(4) of Theorem 1, we get a
nonzero homomorphism R}'A to Z, which is a contradiction.

Suppose that a regular cardinal « is not strongly L.,,.-compact. Then, there
exists a 4 such that A=4<¢ and & is not A-L,,,-compact. By Theorem 1 (7 ) and
a fact in the proof of (5)—(6) of Theorem 1, there exists a group S such that
RZ7S=S and 2{X<S: Hom(X, A)=0 & |X| <x}=0. Hence, the cardinal condi-
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tion does not hold. Another equivalence is easy to show.

(2) (The same reasoning as [17, Proposition 2.87) Suppose that R} is a singly
generated radical, i.e. R7PA=RrA=nN{Ker(h): heHom(A, Y)}. Then, R} =
RyY=0. Let a be an ordinal such that R;Y=0. By [16, Corollary 3.10] (due
to Mines), there exists a group A such that R7A=0 and R;A+#0. Since A is
isomorphic to a subgroup of the direct product Y7 for some I, RIASRIYI< (RIY)!

=0, which is a contradiction.

2. Recently, G. Bergman and R. M. Solovay [18] announced a similar result to
Theorem 1, i.e. The class of all torsionless groups is characterized by a set of
generalized Horn sentences, iff there exists a strongly L.,.-compact cardinal. They
also commented that M. Magidor had shown that the existence of a strongly L.,.-
compact cardinal is strictly weaker than that of a strongly compact cardinal, which

answers our question after Corollary 4.
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