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SHAPE FIBRATIONS AND FIBER SHAPE
EQUIVALENCES, 1
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Hisao KaTo

0. Introduction.

In [6], Coram and Duvall introduced approximate fibrations and Mardesié and
Rushing [11] generalized this and defined shape fibrations. For compact ANR’s,
shape fibrations agree with approximate fibrations. M. Jani, analogous to fiber maps,
defined fiber morphisms and fiber shape equivalences [8]. In [4], Chapman proved
the Complement Theorem, ie., if X and Y are Z-sets in the Hilbert cube @, then
X and Y have the same shape (i.e., Sh(X)=Sh(Y), see [2]) iff Q—X and Q-Y
are homeomorphic.

In this paper, we define notions of fiber fundamental sequences and fiber
shape equivalences and prove that if a fiber fundamental sequences between
approximate fibrations is a shape equivalence, then it is a fiber shape equivalence.
Also, we prove the following: Let £, £/ and B be compacta in the Hilbert
cube @ and let £, £'CQ be Z-sets. Then a map p: F—~B over B is fiber shape
equivalent to a map p':E’—B over B if and only if there is a homeomorphism
h:Q—-E=Q—F such that for each beB and each neighborhood W’ of p'~%b4) in
@, there is a neighborhood W of p~'(b) in @ such that A(W—E)c W’ —E".

All spaces considered will be metrizable. If » and y are points of a metric
space, d(x,y) denotes the distance from x to y. A proper map p: E—~B between
locally compact, separable metric ANR’s is an approximate fibvation [6] if given an
open cover U of B, a space X and maps 4: X—FE, H: XxI—B such that ph=H,,
then there is a homotopy H :4 XX I—E such that 170=/z and H and pﬁ are ¢J-close,
where H(z)=H(xz,t). Let E=(K;, ¢;;) and B=(B;, ;) be inverse sequences of com-
pacta and let p=(p:) be a sequence of maps p;: £;—B;. Then p:E—-B is a level
map if for any ¢ and j=i, pigi;=rip;. A map p: E—B between compacta is a
shape fibration [11] if there is a level map p: E~B of compact ANR-sequences with
hm[ E, hmB B and hm p=p satisfying the following property; for each ¢
and e>0 there is j=i and 0>>0 such that for any space X and any 4:X—£E;
H: XXI—B; with d(p;h, Hy)=sup (d(p#(x), Hy(z))|ze X} <5, there is a homotopy
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1 XxI>E; such that d(H,, gi;i)<e and d(p:H, ri;H)<e Such (E;3) is called a
lifting pair for (£, 2).

1. Fiber fundamental sequences.

In [8], M. Jani introduced the notions of fiber morphisms and fiber shape equi-
valences. In this section, we conveniently give the following definitions (compare
[8, Definition 4.1, 4.2 and 4.3]). It is assumed that £, /" and B are compacta con-
tained in the Hilbert cube @ and maps §:Q—-Q and ' :Q—Q are extensions of
maps p: E—B and p’: E'—B, respectively.

DeriviTion 1.1, A fundamental sequence (see [2)) f={fn E, E'}q.q is a fiber
Jundamental sequence over B if for any >0 and any neighborhood U’ of E' in @
there is a neighborhood U of E in @ and an integer n, such that for each nzn,
there is a homotopy H: UxI-1UV satisfying

1) Hy=fnlU and H.=f,|U,
2y dp'Hx, b), fx))<e, zel,tel.

ReEMARK 1.2. Definition 1.1 is independent of the choices of the extensions p

and p’ of p and p’, respectively.

DerinviTioN 1.8, A fiber fundamental sequence f={f., I, £’}q. over B is fiber
homotopic to a fiber fundamental sequence g=/{g., I, £'}q.q over B (f __"\E-i g) if for
any ¢>0 and any neighborhood U’ of £’ in @ there is a neighborhood U of £ in
@ and an integer n, such that for any nz=n, there is a homotopy K:UXI-U’
satisfying

(1) Ky=folU and Ki=¢.|U,
@) dp' Kz, 1), pla)<e, xeU,tel.

ReMmaArk 1.4, If f:E—E is a fiber map over B (ie. p'f=p), f induces a
fiber fundamental sequence f={fa, £, E'}q.¢, Where fo= 7 Q-+ is an extension of
f. Also, we can easily see that the composition of fiber fundamental sequences
over B is a fiber fundamental sequence over 5.

ProrosiTioN 1.5, Let p: E—B, p': B and p’’ . E''—B be maps over B and
let fi={fi.n, E, E'}0.0 and gi=\yin, £', E'"}g.q (i=1,2) be fiber fundamental sequences
wer B. If fi= fr and g, 7~ g», then g f1 = gs fo.

B - - n -

7T

DEFINITION 1.6. A map p: BB over B is fiber shape equivalent to a map
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P’ E'—B over B if there are fiber fundamental sequences over B f={fu E, E'o.0
and g={g., £’, E}¢,¢ such that gf%lg and _fg__’;:’_lgr, where 1z denotes a fiber
fundamental sequence induced by the identity 1.:%—E. Such [ is called a fiber
shape equivalence over B.

ProposITION 1.7. If a fiber fundamental sequence f={f,, E, F'}g.q over B is a
Jiber shape equivalence over B, then for any compactum B, B the restriction Sflp~(By)
={fn, b B, ' U Bla.q is @ fiber shape equivalence over B..

A map p: E—B between compacta is skape shrinkable if p induces a fiber shape
equivalence from p: £—B to the identity 1z: B—B. Let p:5'x5'—-S! be the same
as [6, p. 277, Example]. Then it is easily seen that p is fiber shape equivalent to
the projection g:p'(b)xS'—>S' for beS', but p is not fiber homotopy equivalent to
the projection ¢.

2. Fiber shape equivalences.

In this section, we shall show that if a fiber fundamental sequence from a
shape fibration to an approximate fibration is a shape equivalence, then it is a fiber
shape equivalence. By using this result, we see that a map p:LE—B between
compact ANR’s is shape shrinkable if and only if p is a CE-map.

We need the following lemma.

Lemma 2.1. Let E,E' and B be compacta and let p:E—~B and p': E'—B be
shape fibrations. If a fiber fundamental sequence f={f., E, E'}q.q over Bis a weak
domination (see [7, p. 8]) in shape category, then f is a fiber weak domination, i.e.,
Sfor any >0 and any neighborhood U’ of E' in Q, there is a neighborhood U of E
in Q and an integer n, satisfying the conditions of Definition 1.1 such that for any
>0 and any neighborhood W U of E in Q there is a neighborhood W< U’ of E'
in Q, @ map g: W—W and a homotopy R: W' X I-U" such that

(1) d(pge), pleN<y, e'eW’,

(@) R(e\0)=¢", R, 1D=fu0¢’), e¢’eW and

(8) d(PR(e, ), p'(eN<e, /W tel.

Proor. Since f={f. E, E'}q ¢ is a fiber fundamental sequence, there is a
neighborhood U of £ in @ and an integer x, such that for each #=u, there
is a homotopy Fuy.:UXI-U" such that Fy a(e,0)=fr(e), Fu,nle,1)=rale) and

(P’ Fuy.ale, 1), pe))<e/2 for eeU,tel. Let »>0 and W be any neighborhood of E
in @ with WcU. Since p:E—B and p':E’~+B are shape fibrations, by (11,
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Theorem 1], inductively we can find compact ANR's £;, £/, B; (:=1,2,3) and &>
0, 6;>0 (=1,2) and an integer n,=#, such that

1) WokiDE:DE:DIntg FyDFE, UDE/DESDEDIntyg By DE,
BioB,DB:DIntg By B and HE)CB;, p(E/)C B (1=1,2,3),

(2) (EY,d,) is a lifting pair for (E\/, &) and (FE,, d:) is a lifting pair for (£, &),
(3) any 2z-near maps to B, are ¢-homotopic and

(4) a<ef2, e<Minf{ye/2} and fo(E)cCE’ (i=1,2,3),
(i(ﬁ'fnll s, D1 ) <8, and d(ﬁ’fnllEz,ﬁlEz)<52-

Since f is a weak domination in shape category, we may assume that there is a
neighborhood W’ of E’ in @ with W/cFEyY, a map ¢’: W—FE, and a homotopy
H: W xI—-Ey such that

(5) He\,0)=e¢, He 1)=fog'(e), ecW.

By (4), d(Bg’(e’), p'Hle', 1) =d(pg’(e’), P'fn,9'(e')) <82 €’€ W’. By (2) and [11, Proposi-
tion 1], there is a homotopy H: W' xI->E, such that

®) He', 1)=g'(¢’y, e¢'eW' and

() dbH, P H)<e, .
Define a map ¢g: W—FE,cW by

©®) ge)=He, 0, eew.
By (4),(5),(7) and (8) we have

9) d(bg(e"), p'(e"))<e<Min {n, ¢[2}.
Define a homotopy L : W x[0,2]—-F, by

1,

[IA

fIA

He',s), e'eW, 0=s

faHe,2—s), eeW, 1

MIA

10) L(e’,s)={
s=2.
Then L(e’,0)=¢’ and L(e/,2)=fn9(¢’), €€ W. By (4),(7) and (10),

(1) dF'Le’,s), b'Lie’, 2—s)=d(B' Hie', s), p'fu, (e, 5))
=d(p'He',s), pH(e’, ) +dBH (e, ), B'fa (€', 5))
<Eg“{“€g:2€2, O;_’-:Sé].

By (3), there is a homotopy K: W’ X[0,2]x[0,1}-»B, such that
(12) K(e',s,)=p"L(e,s), t=l—s or f=s—1,
(13) d(p’(e”), K(e',5,1)) <, O0=s=2.
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Define a map L’: W' x(0x[0,1]U[0,2]x0U2x%[0,1])~E, by
L', 0), s=0, 0=t=1,
14) L'e',s,t)={L(e',s), 0=s=2, =0,
Le',2), s=2, 0=t=1,

Then p/L/'=K|W x(0x[0,11U{0,2]x0U2x[0,1]). By (2), there is a map K:wx
[0,2]x[0,1]—~£)" such that

15) RIW’ x(0x[0,1]U[0,2]x0U2x[0,1)=L" and
16) dp'K,K)<e .

Define a homotopy G: W’ x[0,2]—E,’ by
17 GE,s)=K(',s,1).

By (4),(13),(16) and (17) we have

(18) d(p'Gle’,s), p'eN=d(p'K (e’ 5.1), K(e', s, 1) +d(K(e', 5, 1), B(e"))
<erte<e.

Then G(e’,0)=¢" and G(¢',2)=fn0(e’), ¢’'e W’. Define a homotopy R: W’ x[0, 3]-U"
by

G’ b, 0=t=2,
19) R(e’,t)z{

Frg g€, 3—8), 2=t=3.
Then R(e’,0)=¢', R(e',3) = fog(e’) and d(F' R, 1), p'(e’)<e for e’ e W', te[0,3].
Hence f is a fiber weak domination.

CoRrROLLARY 2.2. Let p:E—B and p': E'—~B be shape fibrations between com
pacta. If a fiber fundamental sequence f={f., E, E'}q.q is @ weak domination in
shape category, then for amy compactum B,C B, the restriction

S (BI={fa, b7Y(B0, b (Ba.o
is @ fiber weak dominatian, hence we have the following.

@) If p By is movable (see [3]), then p'~(B,) is movable.
(2) If p~Y(B)eAC” (see [3)), then p'~'(B)eAC™

(3) If p7X(By) is an FAR (see [3]), then p'~(By) is an FAR.
4) Fd(p'(B))zFd(p'(B)) (see [3]).

THEOREM 2.3. Let p: E—B be a shape fibration from a compactum E to a
compact ANR B and let p':E'—B be an approximate fibvation between compact
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ANR's. Then a fiber fundamental sequence [=({f., E,I'\gq over B is a fiber
shape equivalence if and only if it is a shape equivalence.

Proor. It is enough to give the proof of sufficiency. Since £’ and B are
ANR’s, we may assume that there is a neighborhood U of E in @ and an extension
p:Q-Q of p: E—B such that fu(I)cE for all #n and H(U)cB. Let ey >ea>e> -,
be a sequence of positive numbers with lime;=0. Since p is a shape fibration,
inductively we can find a sequence UDE 1D E 41, DFE; D Fyy,3D--, of compact ANR’s,
an increasing sequence £, <ky<ks<---, of natural numbers and a sequence 6,>8d,>
83> -+, (6;<<e;) of positive numbers such that

(1) Inte EDE and N\ E=E,

2) (Eivi,,20:) is a lifting pair for (I, &/2), i=1,2,--+, and

(3) for each k=k;, there is a homotopy Fy,.x: £ X I—E’ such that Fi, x(e, 0)=
fki(e), Fki,k(e, I)ka(e) and d(p’Fki,k(e, f), ]5((8))<5“ QGE‘i,tGI.

Since p’: E’—B is an approximate fibration, there is a sequence d,">8)' >8>,
(8:" <8;) of positive numbers such that (E’, ;") is a lifting pair for (£’,d;). By Lemma
2.1, we may assume that there is a map g¢:: E’—FE;.1,. and a2 homotopy R;: E/ X [—
E’ for each ¢ such that

(4) d(pgie), p'(e") <o, e'el’,
(5) Rile’,0)=e’, Rye',1)=fr0ie’), e¢’e£’ and
6) d(p'Rile’,1),p'(e"N)<er, el tel.

Since f is a shape equivalence, by the construction of ¢; (see the proof of Lemma
2.1) we may assume that there is a homotopy Li: EiiXI—Ei1,, with Lie, 0)=e,
Lie,1)=gifx,,,(e), e€Es1. By (4), we have

(1) d(PLie, 1), p'fx,, (e)y=d(pgifu,, (&), D'fr;, ()<, e€Eisy.

Hence, by (2) and the same way as the proof of Lemma 2.1, there is a map
Siiy B> and a homotopy M;: i X I-+E; such that

8) d(P'fey, i), Ple)<di, eekiyy,
9) Mie,0)=e, Mige,1)=g:fi,, (e), ecki and
(10) d(pMi(e, 1), fe))<ei, e .

By (8),(5) and (9), we can define a homotopy Gi: FiiX[0,3]=F" by
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Ri(fiy,,(e),t), 0=t=1
A1) Gye, ty=7 fi,Mi(e,2—¢), 1
Fioy 1y, (e, 8-2), 2=t=3.

By (3),(6),(10) and (11), we have

(12) Gie,0)=1%,, (&), Gile,3)=fk;,,(e), e€Ei and

(13) d(p'Gile,t), ple)) <2, ecEi,, 0=t=3.
By (12) and (13), we obtain a fiber fundamental sequence f* over B induced by
{fi;: Ex;/~E’} such that _f’QBi f. By (5), (9 and (12), we can define a homotopy
Sit E'X[0,5]—-E; by

Mi(giri(e’), 1), 0=t=1,
(14) Sie’, )=1g:Gilgir ("), t—1), l=t=4,
giRici(e’,5—1),  4=i=b.

Then Si(e’,0)=gi:(e"), Sie’,5)=gie"), e’eL’. Also by (4), (6), (10), (13) and (14), we
have d(pSie’, 1), p’(¢')) < 4e; for e’eE’ 0=t=5. Hence we obtain a fiber fundamental
sequence g over B induced by {g:: E’—E:}. By (9) and (10), we conclude that
gf:B: gf’_"_}" le. Also by (5) and (6), fg_if\_/lp;,. Hence f is a fiber shape equi-

valence over B.

CorOLLARY 24. Let p: E—B and p’: E'—B be approximate fibrations between
compact ANR’s. If a fiber fundamental sequence f={f.F, E'}q.q over B is a shape
equivalence, then it is a fibev shape equivalence. In particular, if a fiber map f: F—
E over B is a homotopy equivalence, it is a fiber shape equivalence.

The next result follows from Vietoris-Smale theorem, [10, Lemma 2.3 or 11,
Theorem 4], Corollary 1.7 and 2.4.

COROLLARY 2.5. Let p: E—>B be a map between compact ANR's. Then the

Sfollowing are equivalent.

(1) p is a CE-map.

(2) p is a homotopy equivalence and an approximate fibration.
(3) p is shape shrinkable.

(4) p is a hereditary shape equivalence.

3. The Complement Theorem of fiber shape equivalences.

In this section, we prove the following theorem.
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THEOREM 3.1. Let E,E' and B be compacta in the Hilberi cube Q and let
E,E'cQ be Z-sets. Then a map p: E—~B over B is fiber shape equivalent to a map
P E'—B over B if and only if there is a homeomorphism h:Q—E=Q—FE such
that for each beB and each neighborhood W' of p'~*(b) in Q, there is a neighborhood
W of p72(b) in Q such that (W—-E)c W —FE'.

COROLLARY 3.2. Let E,E' and B be compacta in the Hilbert cube Q and let
E,E'cQ be Z-sets. Then a map p:E—B over B is fiber shape equivalent to a map
P E'->B over B if and only if there is a homeomorphism h:Q-—-E=Q—FE' such
that for any extension P’ :Q—Q of p' theve is the extension p:Q—Q of p such that
PQ—E=ph.

CorROLLARY 3.3. Let E and B be Z-sets in the Hilbert cube Q. Then a map
p:E—B is shape shrinkable if and only if there is an extension f:Q—Q of p such
that p|Q—E:Q—E=Q—B is a homeomorphism.

Tet 9J be a collection of subsets of a space Y. A map f:X—-Y is Q-close
to a map ¢: X—Y if for each xeX, there is UeJ such that {f(z),¢(x)lcU. A
homotopy H: XX I-Y is qJ-limited if for each ze X there is UeqJ such that H({x} X
DcU. Aclosed subset A in a space X is a Z-set in X if for each open cover U/
of X there is a map of X into X—A which is ¢J-close to the identity 1x. A map
f:A-X is a Z-embedding if f is an embedding and f(A) is a Z-set in X.

The proof of Theorem 3.1 is analogous to one of Chapman’s [4], but much
sharper results will be used. We need the followings.

LemMA 34 (see [1, Theorem 3.1] or [5, Theorem 11.2]). If (A, Ay) is a com-
pact pair and i A—Q is @ map such that f|A, is @ Z-embedding, then for any open
cover U of Q there is a Z-embedding g: A—>Q such that glA,=flA, and g is U-
close to f.

LemMa 3.5 (see [1, Theorem 6.1] or [5, Theorem 19.4]). Let M be a Q-manifold,
A be a compactum and let F:AXI>M be o map such that F, and F, are Z-
embeddings. If F is U-limited for an open cover U of M, then there is an isotopy
H: MxI->M such that Hy=id, HiF,=F, and H is U-limited.

Proor orF THeEOREM 3.1. Let 2:Q—E=Q—FE’ be a homeomorphism satisfying
the condition as above. Note that for each beB’and each neighborhood W of p~'(d)
in @ there is a neighborhood W’ of p'~1(b) in @ such that A~(W' —E)c W~E. In
fact, suppose, on the contrary, that there is a sequence {#:'}i=1,»,... such that xi'e
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Q-F, Iim z/=x'€p'"(b) and A '(x/)eQ— W for each i. Choose a subsequence {2}
of {z;'}) such that hm/z "(zp)=xcE—-p(b). Let Wy and W,’ be neighborhoods of
(b)) and pY( p(x)) in @, respectively, such that W,'n W, =¢. Since there is a
neighborhood W of p~'(p(z)) in @ such that A(W,—E)C Wy —E’ and A (xn,) e W,
for almost all 7, A(h~'(a},;))=ux,,€ Wy!, which implies the contradiction.

Since FcQ is a Z-set, there is a homotopy F:QxI-Q such that F(g,0)=q,
Flg,t)eQ—F, for geQ, 0<¢=1. Similarly there is a homotopy G:QXI—Q such
that G(g,0)=¢, G(g,)eQ—FE", for geQ, 0<¢t=1. Define maps f»:Q—Q and g,: Q—
Q for each integer n by fu.(g)=h(F(g,1/n)), g.(@)=h""(G(g, 1/m)), for geQ. Consider
S={fn E,E'}q.q and g={gn, £, E}g.o. Then we shall show that f and g are fiber
fundamental sequences over B such that gf ~1g and ¢gf g lg. Let p:Q—Q
and §":Q—Q be extensions of p and p’, respecnvely Let U’ be a neighborhood
of £/ in @ and lete>0. For each beB, choose a neighborhood Gy of b in @ such
that diam Cy,<¢/2. Then there is a neighborhood W, of p~'(b) in Q such that
MWy—E)c[U'n ﬁ"l(Cb)] E’ and p(W,)cC,. Choose a finite collection {Ws,, Way, -,
Wy} such that U Wi, D E. Also choose a neighborhood U of E in @ and an integer
N, such that F(U/<[0 1N ch (U —E)UE and for any qeU, F(g}x[0,1/N,]))c
Wy, for some i. For each #=N,, define a homotopy H: UX[1l/n+1,1/n]-U" by
[](q, 0=mF(q, 1), for ge U, 1/n+1=i=<1/n. Then Hg,1/n+1) =freilq), Hlg, 1/n)=F.(q)
and d(f(g), p’Hlg, t))<e, for geU, ln+1=t=1/n. Hence f is a fiber fundamental
sequence over B. Similarly, ¢ is a fiber fundamental sequence over B. To see
that ¢f _f;; lg, choose a neighborhood U of £ in @ and ¢>0. By the same way
as above, we can choose a neighborhood V7 of £’ in Q and ¢, >0 such that YV —
E)CU—E and 4'G(q, e U, for qe V’, 0<t=e, and d(ph='G(g. &), p'(@)) <¢/2, for ge V7,
0<t=e. Choose a small neighborhood V of £ in @ (Ve U) and &>0 (s,<e,) such
that 4F(g t)e V', for geV, 0<t=<e, and d(p'hF(q, 1), (q))<e/2, for geV, 0<t=e,.
Also, we may assume that d(pF(q, ), f(q))<e/2, for geV, 0=t=e. Let N, be an
integer sucn that &>1/N,. Then for each n=N, we can define a homotopy
H:VxXI-U by

A'GhE(g, 1n),1/n—8t), geV, 0=t=1/n,
Hg,t)= ‘
g, t—=1)/1—n)), geV, ljn=t=

Then Hig, 0)=g./q), Hig,1)=q for ge V d(p(g), fH(g, t))<e, for geV, tel. Hence,
af ? 1z, Similarly, fg :Eilﬁ Thus p is fiber shape equivalent to P’ over B.
Conversely, we shall construct a homeomorphism %:Q—-E=Q—E’ satisfying
the condition of Theorem 3.1. Let $:Q-Q and 5 :Q—Q be extensions of p and
P, respectively. Let f={fn, E, E')g.q and g={ga, E', E}g.q be fiber fundamental
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sequences over B such that gf :B;-’_ 1z and fg_f;_/lgr. Let {z.} be a decreasing

sequence of positive numbers such that i en<<0o. We inductively construct se-
n=1

quences {U,} and {V.,} of open sets in @ and a sequence {%.} of homeomorphisms

of @ onto itself satisfying the following properties.

Q) E=\U, and U, cU,, for each n=1,
n=1

2) E’:-F\ V, and V,.cV,, for each n=1,

n=1

(3) Ay -hhi(Up)C Ve, for iz2n-—1,

(4)  hi--hohi(Up)D Vary, for iz2m,

(5) hl@Q—V,=id, for iz2n,

(6) hi|Q—han--hoh(Un)=id, for i=2n+1,

(7) d(p'hdq), P'(q))<4en, for qe@, i=2n,

(8) d(P' hie--habn(2), )< 2, for beB, zep~'(b) and iz=2n-1.

First, we will construct a homeomorphism 4, :@—Q. Let V, be a small neigh-
borhood of £ in Q. Since f is a fiber fundamental sequence over B, there is an
integer N, and a neighborhood E: of E in @ such that for m=zn=N, there is a
homotopy Fum: EsxI-V, such that Fyn(q,0) = fu(@), Fan(gl)= fm(qg) and
AP Fo nlg, D), (@) <eif2, for geE,, tel. By Lemma 34, there is a Z-embedding «,:
—7V, such that there is a homotopy H:EXI—V, such that y=«a, and Hi=fx |E
and d(p'H(q, 1), B(q))<e[2, for geE, tel. By Lemma 35, thereisa homeomorphism
51 Q—Q such that 4 |E=«,. Since V; is an ANR, we may assume that there is
an extension 2 E,x IV, of Hsuch that Ho=h|E, Hi=f,|E: and d(§'f(q.), $(q))
<& /2, for qekE,, tel

Next, we will construct a homeomorphism /%, : Q—@Q. Let U,cE, be a small
neighborhood of E in Q such that 4(U,)C V.. Since g is a fiber fundamental se-
quence over B, there is an integer N;=N, and a neighborhood Ey of E' in @
such that for m=n=N, there is a homotopy G m : E\' X - U, such that Gy (g, 0)=
9@, Co.m(q )=0m(q) and d(BGn.u(q,t), D'(@))<e)[2, for geEy, tel. By Lemma 34,
there is a Z-embeding a,: E'—U, and a homotopy K: £ XI—U, such that Ky=a,
K, =gn,|E’ and d(pK(q, 1), p'(9))<z:/2, for ge ', tel. By choosing N, sufficiently large,
we may assume that there is a homotopy L :E'XI— V, such that Le=fr,on,lE,
Li=id and d(}'L(q,?), '(@)<e, for geE’, tel. Define a homotopy M:FE'XI->V:
by
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hiK(q,48), qeF’, 0=t=1/4,

Hgw, (@), 4-1), geE’, 1/4=t=1)2,
Mg, )=+

FNpNg(Q”z(Q)! 4t—2)7 qu/; 1/2_.—<_t§3/4,

L(q,4t-3), geE, 3j4=t=1.

Then My=/ue., My=id and d(p' Mg, ), p'(q))<e, for qely, tel. By Lemma 3.5,
we may assume that there is a homeomorphism 4.’ : Q—Q such that A,/|E’ =has,
k' |Q—Vi=id and d(§'h.'(q), F'(g))<e,, for geQ. Let hy=(hy')".

Also, we will construct a homeomorphism 4;: Q—@Q. Since (U)) is an ANR,
there is a neighborhood E.’ (EycE)) of E’ in @ such that E'cEy Choh(U,) and
there is an extension K : £y X I-h(U)) of hK such that Ko=4y|Ey, B =gy, Ey
and d(p'K(q, D), p'(q)< e, for geky', tel. Let V; be a small neighborhood of E’ in
@ such that V,cV,, VoCEy. Since f is a fiber fundamental sequence over B,
there is an integer N;=N; and a neighborhood E,CF, of E in Q such that for
mznz=N; there is a homotopy F, m: EyXI—>V, such that Fy .(q, 0)=Ffu(@), Fr.ulg,1)
=/n(q) and d(p'Fu, u(q, ), f(9)) <eaf2, for geFEy, tel. Choose a Z-embedding ay: E—
V. and a homotopy R:EX [V, such that Ry=as, R, =fuw,|E and d(p'R(q, 1), p(q) <
/2, for geE, tel. By choosing N; large, there is a homotopy D:ExI-U, such
that Do=gw fn,|E, Di=id and d(pD(q, t), p(q))<e,, for geE, tel. Then we can define
a homotopy T': EXI—hh (U,) by

R(q, 41, gek, 0=¢=<1/4,
) BB (fr,(q), 42 -1), qeE, 14=t=1)2,
Ha.0= hahsGovy (@), 46—2),  qeE, 12=t=3/4,
st D(q, 42—3), qeE, 3/4=t=1.

Then To=as, Ti=hott,|E and d(§'T(q,t), p(@))<4e,, for qek, tel. By Lemma 3.5,
there is a homeomorphism /s : Q—Q such that /hs|Q—/ruh(U)=id, hshshi|E=as and
d(p'hs(q), §(9)) <4es, for qeQ.

If we continue the process as above, we have desired sequences {U,}, {V,} and
{ha} satisfying the properties (1)—(8) as we wanted. Define a map /: Q—E—-Q—F’
by /z(q)zl}glc hj-hhi(q) for qeQ—FE. By (1)—(6), % is a homeomorphism (see [4]).
To prove that % is a desired homeomorphism, for each beB choose a neighborhood
W’ of p'7'(b) in Q. Let N, be an integer and ¢>0 such that Ve NG Y(Bb;e)C
W', where B(b;¢)={xeQ|d(x,b)<e}. Choose an integer #, such that'§}4sn<e/2.
By (8), feur--hahs( p (B)C B'~{(B(b; /2)) for i=2mp—1. Let m—=Max (N ny~ Choose
a neighborhood W of p~b) in @ such that Wc Uyn, and By lht( W)YCH (B ;
¢/2)). By (3) and (7), hihi_v--hobi( W)C Vi , NP "B ¢)) for i=2n,—1. Hence (W —
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E)YcW’'—FE’. This completes the proof.

CoROLLARY 34. Let p: E—B be a CE-map from a compact ANR E to a com-
pactum B. Then p is shape shrinkable if and only if B is an ANRK.

Proor. Sufficiency follows from Corollory 2.5. Suppose that p is shape shrink-
able. By Corollary 3.3, there is an extension p:Q—Q of p such that p|Q—FE:Q—
E=Q—Bis a homeomorphism. Since £ is an ANR, there is a neighborhood U of
E in Q and a retraction r: U—E. Clearly, there is a retraction #': H(U)—B such
that pr{x)=7'p(x) for zeU. Hence B is an ANR.

In [9], Koztowski proved the following. If £ and B are Z-sets in the Hilbert
cube Q, then a map p: F—B between compacta is a hereditary shape equivalence iff
there is an extension §:Q—-®Q of p such that p|Q—F:Q—FE=Q—B is a homeo-
morphism. Hence by Corollary 3.3 we have the following.

COROLLARY 3.5. Let p: E—B be a map between compacta. Then p is shape
shrinkable if and only if p is a heveditary shape equivalence.

By Theorem 3.1 and Corollary 3.5, we can easily see the following.

COROLLARY 3.6. Fiber shape equivalences preserve shape fibvations. In parti-
cular, heveditary shape equivalences are shape fibrations.

Finally, the author would like to thank the referee for helpful comments.
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