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§0. Introduction

Let Pn(C) be an n-dimensional complex projective space with Fubini-Study

metric of constant holomorphic sectional curvature 4, and let M be a real hy-

persurface of Pn(C). M has an almost contact metric structure (0, |, t],g) in-

duced from the complex structure / of Pn(C) (see,§1). We denote by A, R, S,

the shape operator, the curvature tensor and the Ricci tensor of type (1, 1) on

M, respectively. Many differentialgeometers have studied M(cf. [1], [6], [9],

[11] and [12]) by using the structure {<f>,£,-q,g).

Typical examples of real hypersurfaces in Pn{C) are homogeneous ones. R.

Takagi ([10]) showed that all homogeneous real hypersurfaces in Pn{C) are

realized as the tubes of constant radius over compact Hermitian symmetric spaces

of rank 1 or rank 2. Namely, he showed the following:

Theorem T ([10]). Let M be a homogeneous real hypersurface of Pn{C).

Then M is a tube of radius r over one of the following Kaehler submanifolds:

(A0 hyperplane P≫_i(C), where 0<r<7r/2,

(A2) totallygeodesic Pk(C) (l^k^n-2), where 0<r<?r/2,

(B) complex quadric Qn-＼, where 0<r<r/4,

(C) Pi(C)xPu.i,/2(C), where 0<r<7r/4 and n(^5) is odd,

(D) complex Grassmann G2>B(C), where 0<r<7r/4 and n=9,

(E) Hermitian symmetric space SO(10)/U(5), where 0<r<7r/4 and n = 15.

Due to his classification,we find the number of distinct constant principal

curvatures of a homogeneous real hypersurface is 2, 3 or 5. Here note that the

vector $ of any homogeneous real hypersurface M (which is a tube of radius r)

is a principal curvature vector with principal curvature a―2 cot 2r with mul-

tiplicity1 (for further details,see [11]).
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Now itis well-known that there does not exist a real hypersurface M with

parallel second fundamental form A. So the authors introduced the notion of

^-parallelsecond fundamental form (cf. [6]), which is defined by g((1xA)Y, Z)

=0 for any vector fields X, Y and Z orthogonal to the structure vector field£,

where g and 7 denote the induced Riemannian metric and the induced Riemannian

connection, respectively. In this paper, we consider another condition on the

derivative of A.

The main purpose of this paper is to classify real hypersurfaces M which

satisfy ^sA=0 (, that is, the second fundamental form A is parallelin the direc-

tion of £)in Pn(C). Our main result is as follows:

Theorem. Let M be a real hyper surface in Pn(C). If V^4=Q, then M is

locally congruent to one of the following:

(i) a non-homogeneous real hypersurface which lies on a tube of radius tt/4

over a certain Kaehler submanifold N in Pn(C),

(ii) a homogeneous real hypersurface which lies on a tube of radius r over a

totallygeodesic Pk{C) (l^k^n-1), where 0<r<7r/2.

We here remark that there exist many real hypersurfaces M's which are of

case (i) in our Theorem (for details,see the Proof of Theorem).

Now it is known that there does not exist a real hypersurface M with

parallel Ricci tensor S in Pn(C), n^3 (cf. [2] and [3]). As an immediate con-

sequence of this result, Pn(C) (≪2>3) does not admit a locally symmetric real

hypersurface M. Motivated by their results and our Theorem, we investigate

real hypersurfaces M in Pn(C) by using the conditions "VfS=0" and "Vfi?=0".

We have the following:

Proposition A. Let M be a real hypersurface with constant mean curvature

in Pn(C). Suppose that £is a principal curvature vector and the corresponding

principal curvature is non-zero. If V^5=0, then M is a tube of radius r over one

of the following Kaehler submanifolds:

(AO hyperplane Pre_i(C), where 0<r<x/2 and r^n/A,

(A2) totallygeodesic P*(C) (l£k£n-2), where 0<r<7r/2 and r^^/4,

(B) complex quadric Qn-i, where 0<r<^/4 and cot22r=n―2,

(C) P,(C)xP(B.i)/2(C), where Q<r<iz/A, cot22r=l/(n-2) and n(^5) is odd,

(D) complex Grassmann G2,5(C), w/iere 0<r<7r/4, cot22r=3/5 anrf n=9,

(E) Hermitian symmetric space SO(10)/£/(5),u;/zere0<r<^/4, cot22r-5/9
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Proposition B. Let M be a real hyper surface in Pn(C). Suppose that £is

a principal curvature vector and the corresponding principal curvature is non-zero.

If 7*i?=0, then M is a tube of radius r over one of the following Kaehler sub-

manifolds :

(AO hyperplane Pn-i(C), where 0<r<7r/2 and r^iz/A,

(A2) totallygeodesic Pk(C) (l^k^n-2), where 0<r<7t/2 and ri-x/A.

§1. Preliminaries

Let M be an orientable real hypersurface of Pn{C) and let N he a. unit

normal vector fieldon M. The Riemannian connections V in Pn(C) and 7 in M

are related by the following formulas for arbitrary vector fields X and Y on M:

(1.1) $xY=VxY+g(AX, Y)N,

(1.2) VXN=-AX,

where g denotes the Riemannian metric of M induced from the Fubini-Study

metric G of Pn(C) and A is the shape operator of M in Pn(C). An eigenvector

X of the shape operator A is called a principal curvature vector. Also an

eigenvalue X of A is called a principal curvature. In what follows, we denote

by V x the eigenspace of A associated with eigenvalue X. It is known that M

has an almost contact metric structure induced from the complex structure / on

Pn(C), that is, we define a tensor field 0 of type (1, 1), a vector field£and a

1-form 7] on M by g(0Z, Y)=G{JX, F) and #(£,X)=y(X)=GUX, N). Then

we have

(1.3) <P2X=-X+7](X)£, *(£,£)=1, 05=0.

It follows from (1.1) that

(1.4) (7^)7=^(7)^1-^1, Y%,

(1.5) Vx£=<M*.

Let /? and R be the curvature tensors of Pn(C) and M, respectively. Since the

curvature tensor R has a nice form, we have the following Gauss and Codazzi

equations:

(1.6) g(R(X, Y)Z, W)=g(Y, Z)g(X, W)-g{X, Z)g{Y, W)+g{<j>Y, Z)g($X, W)

-g{<j>X, Z)g(0Y, W)-2gyX, Y)g(<j>Z,W)

+g(AY, Z)g{AX, W)-g(AX, Z)g{AY> W),

(1.7) (lxA)Y-C7YA)X=V(XUY-V(Y)6X-2g(6X, Y%.
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From (1.3),(1.5),(1.6) and (1.7) we get

(1.8) SX=(2n + l)X-3r)(X)%+hAX~A2X,

(1.9) CVxS)Y=-3{gyAX, YK+V<ytyAX＼+(Xh)AY

+{hI-A){lxA)Y-{lxA)AY,

where /z=trace A, S is the Ricci tensor of type (1, 1) on Mand / is the identity

map.

In the following, we use the same terminology and notations as above unless

otherwise stated. Now we prepare without proof the following in order to

prove our results:

Theorem K ([4]). Let M be a real hypersurface of Pn(C). Then M has

constant principal curvatures and | is.a principal curvature vector if and only if

M is locally congruent to a homogeneous real hypersurface.

Proposition 1 ([8]). //£is a principal curvature vector, then the correspond-

ing principal curvature a is locally constant.

Proposition 2 ([8]). Assume that $ is a principal curvature vector and the

corresponding principal curvature is a. If AX=rX for X_l_$, then we have A<j>X

=((ar+2)/(2r-≪))0X

Proposition 3 ([8]). Let M be a real hyper surface of Pn{C). Then the

following are equivalent:

(i) M is locally congruent to one of homogeneous ones of type (Ax) and (A2).

(ii) g({lxA)Y, Z)=-V(Y)g(0X, Z)-r)(Z)g($X, Y) for any vector fields X,

Y and Z on M.

Proposition 4 ([7]). Let M be a real hypersurface of Pn(C). Suppose that

$ is a principal curvature vector and the corresponding principal curvature is non-

zero. Ifl^A=Q, then M is a tube of radius r over one of the following Kaehler

submanif olds:

(AO hyperplane Pn-＼{C), where 0<r<7r/2 and r^n/A,

(A2) totallygeodesic Pk(C) (l^k^n―2), where 0<r<7t/2 and r^7r/4.

Proposition 5 ([7]). Let M be a real hyper surface of Pn{C). Then "A%

=0" implies "VeA=0".

Proposition 6 ([1]). Let M be a connected orientablereal hypersurface (with

unit normal vector N) in Pn(C) on which $ is a principal curvature vector with
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principal curvature a=2 cot2r. Then the following hold:

(i) M lies on a tube (in the direction of rj=y'{r), where Y(r)=expx(rN) and

x is a base point of the normal vector N) of radius r over a certain

Kaehler submanifold N in Pn{C).

(ii) Let cot 0 be a principal curvature of the shape operator Av at y=f{r)

of the Kaehler submanifold N. Then the real hypersurface M has a

principal curvature cot(d-r) at x = y(0).

Finally we prove the following which is the main tool for the proof of our

Theorem.

Proposition 7. Let M be a real hypersurface of Pn(C). Then "Vei4=0"

implies "£is a principal curvature vector of M".

Proof. First we shall show that Ag is principal. From (1.5),(1.7) we find

that the condition 7^=0 is equivalent to

(1.10) (?lxA)£=-<j>X (for any X<=TM),

that is,

(1.11) lx(AZ)=-ij>X+A<j>AX (for any X^TM).

The equation (1.11) yields

lY(lx(AZ))-llYx(AZ)=-lY(<f,X)+lY(A<j>AX)+<j>lYX-A<l>AlYX.

which, together with (1.4), shows

(1.12) lYWx{AS))-lVYx(AS)=-i}(X)AY+g{AY,X)S+WYA)<l>AX

+A{7](AX)AY-g(AY, AX)%}+A0(VYA)X.

Exchanging X and Y in (1.12),we have

(1.13) lx{lY{A^)-llxy{A^=-rj{Y)AX+g{AX,Y^+{lxA)^AY

+A{i)(AY)AX-g(AX, AY)£}+A<j>WxA)Y.

It follows from (1.3),(1.7),(1.12) and (1.13) that

(1.14) R{X, Y)A%={1 XA)$AY-{lYA)<j)AX+7)(AY)A2X-y]{AX)A*Y.

On the other hand the Gauss equation (1.6) tells us that

(1.15) R{X, Y)A$=g(y, A£)X-g{X, A$)Y+g^Y, AtyX-gyX, A^Y

-2g{<j>X, Y)tj>AS+g(AY, AS)AX-g(AX, A$)AY.

Then from (1.14) and (1.15),for any X, Y{e,TM) we get
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(VxA)<f>AY-C7YA)6AX+7)(AY)A2X-7}(AX)A2Y

= Tj(AY)X-i)(AX)Y+i)(A$Y)$X-r)(A$X)$Y-2g($X,Y)$A$

+ f]{A2Y)AX-7]{A2X)AY.

This, combined with (1.3), yields

(1.16) g(&zA)S, <f>AY)-g{{lYA)%, ^>AX)+r](AY)V(A2X)-7](AX)V(A2Y)

= V(X)V(,AY)-V(Y)V(AX)+V(AX)V(A2Y)-V(AY)V(A*X).

Here, from (1.10) we find the following:

(1.17) gWxAtf, <f>AY)=-g{X, AY)+V(X)V(AY).

(1.18) gWrAK, <f>AX)=-g{Y, AX)+V(Y)V(AX).

Therefore from (1.16),(1.17) and (1.18) we see

r}(AX)y}(A2Y)=7}(AY)7](A2X) (for any X, Y<=TM)

so that

g(A$,X)A*e=g(A*$,X)A$,

which shows that A$ is principal. So we can set

(1.19) A*£=aA£.

Next we shall show that £is principal by making use of (1.19). Now we find

the following:

(1.20) lx{A^)={lxA)A^A{lxA)£+A2<f>AX,

(1.21) lx(aA£)=(Xa)AS+a(lxA)S+aA$AX.

Then from (1.19),(1.20) and (1.21) for any X, Y((=TM) we obtain

(1.22) g(A£, WxA)Y)+g(C7xA)£, AY)+g(A*0AX, Y)

=(Xa)g(A$, Y)-＼-ag{{lxA)^, Y)+ag(A0AX, Y).

Exchanging X and Y in (1.22), we have

(1.23) g(A$, C7rA)X)+g(C7rA)$, AX)+g{A2<f>AY, X)

=(Ya)g(A%, X)+agWyA)$, X)+ag(A<f>AY, X).

The equations (1.7),(1.22) and (1.23) assert that

(1.24) g(&xA)Z, AY)-g{{lYA)^, AX)

=(Xa)V(.AY)-(Ya)V(AX)-2ag(0X, Y)+2ag{A<j>AX, Y)-V(X)V(A0Y)

+ 7)(Y)V(A$X)+2V(A£)gyX, Y)~g{A<j)AX, AY)-g($A*X, AY),,

By virtue of (1.10) and (1.24) we find
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(1.25) -gtyX, AY)+g(0Y, AX)

=(Xa)r}(AY)-{Ya)7)(AX)+2ag{A<j)AX, Y)-2ag{<j>X,Y)―q(X)y{A<j>Y)

+ f](X)r}{A<j>X)+2y]{A^)g{<j>X,Y)-g(A^AX, AY)-g(0A>X, AY).

Setting X=£ in (1.25),for any (Y^TM) we see

(1.26) V(A%)(Ya)=mV(AY)+ag(A<f>A%, Y)~2V(A0Y)-g(A<?>A$, AY).

Now we put u=g(Al-, $). In the following,we may assume that ≪^0.

/ Suppose that fi=0. Since At- is principal, there exists a principal curva-

ture vector X (with principal curvature X) orthogonal to At-. So the

following holds. 0=g(X, A$)=g(AX, £)=Xg(X, £), which implies that

g{X, |)=0 in the case of X^O. And hence |Gspan{^|}+Ker A. There-

＼fore the hypothesis u=0 shows that |eKer^4, so that £is principal.

Multiplying (1.25) by fi(^Q), we get

-ftgMA+A&X, Y)=v(Xa)V(AY)-fi(Ya)V(AX)+2a[tg(A4>AX, Y)

^atigiWY^MiXWA^+MiYWAtX)

+2[x2g{<j>X,Y)-fig(A0AX, AY)-ftg^A*X, AY).

This, together with (1.26), yields

(1.27) -ftyA + A$)X=lag(A$A$, X)+2g{<j)A^, X)-g(A*0AZ, X)}A$

-g(A£, XXaA0A$+2<f>A£-A20A£)+2aiiA0AX

-2atufiX+fiV(X)$A$-figtyA£, X)$+2fi*4>X

-ftA20AX-iiA<f>A2X.

Now, putting X=A£ in (1.27), we can see that

(1.28) A$A£=3(a-fi)$A$.

It follows from (1.26)and (1.28)that

ftgrad a=($a)A£+aA$A£+2$A£- A20A%

=tfa)A$+3a(.a-ft)$AZ+2$At-9(a-fty4>A£

Namely, settingfi=£a,we obtain

(1.29) figrada=pA£+{2-3(ft-aX3fi-2a)}$A$.

On the other hand, from (1.5),(1.11)and (1.28)we have

(1.30)

so that

(1.31)

Xti=6(ti-a)g(6A£, X)

grad u=6(u―a)6A£.
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Differentiating (1.31) with respect to X, we see that

(1.32) 7x(grad {t)=6((Xpi)-(Xa))<f>A%+6(it-a)lx(<f>A£).

Multiplying (1.32) by pt,from (1.26),(1.28) and (1.30) we find

[Nxigmd [i)=t%pi(fi-a)g($A£, X)-6^g(A$, X)

-6{2-3(fi-a)(3fi-2a)}g(<f>A$, X)MA$

+6fi(ft-a){C7x$)A£+FJx(Ae)}.

This, combined with (1.3),(1.4) and (1.11), yields

(1.33) /^(Vx(grad ft),Y)=-6f3g(A$, X)g(0A%, Y)

+6{3(ft-a)(5ft-2a)-2}g($A%, X)g(<pA%, Y)

+6fi(fi-a){ftg(AY, X)-ar](AX)V(Y)+g(X, Y)

-i)(X)i)(y)+g{4>Ail>AX,Y)).

Since ^(7x(grad ft),F)=g(Vy(grad ft),X), the equation (1.33) implies

(1.34) 6j3te(i4£,Y)gtyM, X)-g(A£, X)g{<j>A$, Y)}

+6fta(ft-a){V(AY)V(X)-r](AX)V(Y)}

+6fi(fi-a){g(0A<f>AX-A<f>A$X, F)}=0.

Here, from (1.3) and (1.28) the following holds:

(1.35) tAtA$=%P-≪XA£-tf)'

Setting F=| in (1.34), from (1.35) we have

(1.36) p$A£+(ti-aX3fj-2a)(-A£+fi$)=0.

Since g(Al-―fit;,At-)=a[i―ft2, the equation (1.36) implies

(1.37) (ii-a)2(3[i-2a)[t=0.

Now we suppose that a^fi (, which is equivalent to "£is not principal"). And

hence, from (1.37) we find

(1.38) ≪=(3/2)ju

so that

(1.39) grad a=(3/2) grad pt.

Since $A£±?0,the equation (1.36) shows

(1.40) j8=0.

From (1.29),(1.38) and (1.40) we get

(1.41) agT&da=26A£.
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Now, from (1.31) and (1.38) we find

(1.42) (3/2)/igrad fjt=(-9/2)ft^A$.

On the other hand, from (1.39) and (1.41) we see

(1.43) (3/2)^ grad ft=2$A$.

Since $A$^0, the equations (1.42) and (1.43) give us a contradiction,

we can conclude that £is a principal curvature vector.

§2. Proof of Theorem

By virtue of Proposition 7 we find that £ is a

(with principal curvature a). From Propositions

divided into two cases: (i) a=0 and (ii)≪=£().

principal

1 and 5.

555

Therefore

Q.E.D.

curvature vector

our discussion is

Case of (i) a=0. Statement (i) of Proposition 6 asserts that our real hy-

persurface M lies on a tube of radius tt/4over a Kaehler submanifold N in Pn(C).

But the converse is not true. Note that, in general a tube of radius 7r/4 over

an arbitrary Kaehler submanifold N is not a real hypersurface of Pn{C). In

fact, for example let N be a complex quadric Qn-i. Then a tube of radius tt/4

over N is Pn(R) (which is the real part of Pn{C)) (cf. [4]). Statement (ii)of

Proposition 6 shows the following:

Let N be a Kaehler submanifold (with unit normal vector N) in Pn{C).

Suppose that the shape operator (with respect to N) AN does not have the

principal curvature 1. Then a tube (in the direction of N) of radius 7r/4 over

N is a real hypersurface M.

As a matter of course the real hypersurface M admits the vector | as a

principal curvature vector with principal curvature 0 (cf. [1]).

Finally we remark that a homogeneous real hypersurface M with A^=0 lies

on a tube of radius x/A over a totally geodesic Pk(C) (l^k^n―1) (cf. [11]).

Case of (ii)a=±0. See, Proposition 4. Q.E. D.

Remark 1. Our Theorem gives the following

Corollary. Let M be a real hypersurface of Pn(C). Suppose that A$^0.

If VfA=0, then M lies on a tube of radius r over a totallygeodesic Pk(C)(l^k

^n ―1), where 0<r<x/2 and r=£;r/4.

§3. Proof of Proposition A

First of all we shall show that the real hypersurface which satisfies the
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hypothesis of Proposition A must be homogeneous.

The equation (1.8), together with Proposition 1 and the hypothesis that

/z(=trace A) is constant, shows that

=V5(S£)

=7f{(2n-2+a/z-≪2)|}=0.

And hence "VfS=0" implies

(3.1) g((7eS)Z, Y)=0 (for any X, F±£).

Then from (1.9),(3.1) and the hypothesis that £is principal and h is constant,

we have to show that the real hypersurface M, which satisfiesthe following

equation (3.2), must be homogeneous.

(3.2) g(^A)X, {hI-A)Y)-g{{!iA)AX, F)=0 (for any X, F±£).

Let X be a principal curvature (unit) vector orthogonal to $ with principal

curvature r. Putting Y―^X in (3.2), we see

{h-r-(ar+2)/(2r-a)}g((7^A)X> 0X)=O.

On the other hand, from (1.7) and Proposition 2 we find

g(WsA)X, <f>X)=g{{lxA)$+<f>X, (f>X)

=g{lx{a%)-Alx£+(j>X, <I>X)

=ar-r(ar+2)/(2r-a)+l

=a(r2-ar-l)/(2r-a).

By hypothesis that a^O, the above computation yields

h=r+(ar+2)/(2r―a) or r2-ar-l=0

so that the principal curvatures r and a are constant. Therefore Theorem K

assertsthat our real hypersurface must be homogeneous. In the following, we

shall check the equation (3.2) one by one for six model spaces of type Ai, A2,

B, C, D and E:

Let M be of type Ar or A2. Then Proposition 3 tells us that 1sA―0 so

that (3.2) holds.

Let M be of type B (which is a tube of radius r). Let x=cotr. Then M

has three distinctconstant principal curvatures r1=(l + x)/(l―x) with multiplicity

n ―1, r2=(x―l)/(x + l) with multiplicity n ―1 and a―x ―l/x so that TVM―

Vri+Vr2-{-{%}R at any point p of M. Here note that 0Vri=VT2 (cf. Proposi-

tion 2). It is sufficient to consider the following equations in order to check
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(3.2):

(3.3) g((V*A)X, {hI-A)X)-g{{liA)AX, X)=0 (for any X<=Vri),

(3.4) g((?7sA)X,(hI-A)Y)-g(WsA)AX, Y)-0 (for any X, Y<zVTl, X±Y),

(3.5) g{{liA)X,{hl-A)(f>X)-g{{liA)AX,<})X)=Q (for any Xs=Vri),

(3.6) g(C*sA)X, (hI-A)Y)-g(C7iA)AX, F)=0

(for any X<=Vrv FgF^ and <j>X±Y).

We shall calculate the left hand side of (3.3).

g(&eA)X, {hl-A)X)-g{{liA)AX, X)

=(h-2ri)g(WsA)X, X)

=(h-2ri)g((VxA)$+0X, X) (from (1.7))

={h-2ri)g(?1x(A$)-AlxS, X)

=(h-2r1)g(a<^AX-A^>AX, X) (from (1.5) and Proposition 1)

=(h-2r1)g(ar10X-r1r20X, X)=0.

This computation shows that the equation (3.3) holds for any x(>l). Moreover

a similarcomputation yields that the equations (3.4)and (3.6) hold for any x(>l).

Next we shall calculate the left hand side of (3.5).

g(C7sA)X, (hI-A)<t>X)-g((VsA)AX, <j>X)

^{h-r.-r^giil^X, 4>X)

=(ft-ri-rMVi^+fiI, <f>X) (from (1.7))

={h-r,-r2)g{lx{A^)-A(l>AX+^X, $X) (from (1.5))

=(h-r1-r2)g(a^AX-r1A^X+^>X, $X) (from Proposition 1 and (1.5))

=(h―r1―ri)(ar1―rxr2+l).

Note that arx―rir2Jrl= ―(xz+l)/x^0. Here we put h―rx―r2=0. Then we

have the following algebraic equation

x4-2(2n-3)x2+l=0.

And hence we find x2=2n― 3±2V(n ―l)(n―2) so that

x=Vn ―l + Vn― 2, since x>l.

Therefore a homogeneous real hypersurface of type B with x― Vn ―1-＼-Vn―＼

satisfiesthe hypothesis of Proposition A.

Now let M be of type C (which is a tube of radius r). Let x=cotr. Thei

M has five distinct constant principal curvatures rl―(lJrx)/(l―x) with multi
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plicity 2, r2=(x―l)/(x+l) with multiplicity 2, r3=x with multiplicity n~3,

r4=―1/x with multiplicity n― 3 and a=x―1/x so that TpM=yri+Fr2+Fr3+

^r4+{|}R at any point £ of M. Here note that 0Fri=Vr2, $Vrz=Vr3 and ^Fr4

=Fr4. For simplicity, we set Vi={X＼AX=riX, X±$} for l^z^4. In the

following, let XuYi&Vi and ||Zt||= ||rt||=l for l^/^4.

It sufficiesto consider the following equations in order to check (3.2):

(3.7) giil^Xu (hl-A)Xi)-g(C7iA)AXi> Xt)=0 (for l^i£A),

(3.8) g(C7sA)Xt, (hl-A)Yt)-g(WsA)AXt, Yt)=0 (for XtlYt; i=l, 2),

(3.9) gWtA)Xu (hI-A)^Xt)-g((7sA)AXi, ^X,)=0 (for /=3, 4),

(3.10) gWsA)Xt, {hl-A)Yi)-g{{liA)AXi, rf)=0

(for XilYi and rt±0*,; *=3, 4),

(3.11) ^((75i4)^, (/iZ-^D^XO-^V^^Z,, ^X,)=0 (for /=1, 2),

(3.12) g^A)X1AhI-A)Y2)-g(^A)AX1,Y2)=:O (for ^J.r8),

(3.13) ^((7^)Z1; (hI-A)Yt)-gWtA)AXlt Yt)=Q (for j=3, 4),

(3.14) gWsA)X2, (hl-A)Yi)-g{{liA)AX2, 70=0 (for *=3, 4),

(3.15) ^((7^)Z3, (W-i)F4)-g((7^)iI3, F4)=0.

We here calculate the left hand side of (3.15).

g((lsA)Xs, (hI-A)Y4)-g(£7eA)AXt, Y4)

=(h-r3-r<)gWsA)Xt, Y<)

=(A-r,-r1)g((7j8^+^8) F4) (from (1.7))

=(/i-r3-r4)^(Vx3(a|)-A7x3^ Yt)

^(h―ri―rMa^AXa―A^AXa, Y4) (from Proposition 1 and (1.5))

=(/i-r3-r4)£(ar30Z3-(r3)2$X3, F4)=0.

This computation shows that the equation (3.15) holds for any x(>l). Moreover

a similar computation yields that the equations (3.7)~(3.10) and (3.12)~(3.14)

hold for any x(>l). Next we shall calculate the left hand side of (3.11)in the

case of f=l.

g(Q7sA)Xlt (hl-A)^Xl)-g(^A)AXlt <j>X,)

=(A-r1-r8)g((Vfi4)^1, $XJ

=(h-r1-rt)g(Q7x1A)e+tXu 0*0 (from (1.7))

=(h-r1-r*)g(?JxAa?)-Alx£+<i>Xl,<l>Xi)
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=(h-r1-r2)g(a6AX1-A6AX1+SX1, 6X,)
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(from Proposition 1 and (1.5))

=(h―rl―r2)(ar1―r1r2+l).

Note that arx―r1r2Jt-l=―(x2+l)/x=£0. Here we put h―rx―r2=0. Then we

have the following algebraic equation

(n-2)x4-2nx2 + n-2=Q.

And hence we find x2=(n±2Vn ―l)/(n―2) so that

x=(Vn ―1 + 1)/Vn ―2, since x>l.

Of course, solving the equation (3.11) in the case of i―2, we obtain the same

solution x. Therefore a homogeneous real hypersurface of type C with x―

(Vn―l+l)/Vn―2 satisfiesthe hypothesis of Proposition A.

Let M be of type D (which is a tube of radius r). Let x=cotr. Then M

has five distinct constant principal curvatures ri=(l + x)/(l―x) with multiplicity

A, r2=(x ―l)/(x+l) with multiplicity4, rz―x with multiplicity 4, r4= ―1/x with

multiplicity 4 and a―x ―1/x. By virtue of the computation in case of type C

we have only to solve the equation h―r1―r2=0. Namely we get the following

5x4-22x2+5=0 so that x=(V~8+ VT)/V5~.

Therefore a homogeneous real hypersurface of type D with x=(V8+V3)/V5

satisfiesthe hypothesis of Proposition A.

Let M of be type E (which is a tube of radius r). Let x=cot r. Then M has

five distinct constant principal curvatures rx―(l+ x)/(l―x) with multiplicity 6,

rz-={x―l)/(x+l) with multiplicity 6, r3=x with multiplicity 8, r4= ―1/x with

multiplicity 8 and a=x―1/x. Considering the equation h―rx―r^―Q, we have

the following

9x4-38x2+9=0 so that x=(V5~+Vl4)/3.

Therefore a homogeneous real hypersurface of type E with x=(VlT+Vl4)/3

satisfiesthe hypothesis of Proposition A. Q. E. D.

§4. Proof of Proposition B

First we note that "| is principal"is equivalent to "Vf0=O". Since Vfi?=0

from (1.6) we have

g(C7sA)Y, Z)g(AX, W)+g(AY, Z)g((7sA)X, W)-g{{l^A)X, Z)g{AY, W)

-e(AX, Z)g((VeA)Y. W)=0.
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which, together with (1.7), yields

gWrA)$+<f>Y, Z)g(AX, W)+g(AY, Z)g{{! xA)£+<f>X, W)

-g({lxA)£+<l>X, Z)g(AY, W)-g(AX, Z)g{(lYA)£+<}>Y, W)=0.

Therefore, from Proposition 1 and (1.5) we obtain

(4.1) g(a$AY-A$AY+$Y, Z)g(AX, W)+g(AY, Z)g{a<j)AX-A(f)AX+(j)X, W)

-g(,a<j>AX-A<j>AX+<f>X, Z)g{AY, W)

-g(AX, Z)g{a(f>AY-A<j>AY+<j)Y, W)=0 (for any X, Y, Z and W&TM).

Let X be a principal curvature (unit) vector orthogonal to £ with principal

curvature r. Putting Y―Z=| and W―^>X in (4.1), from Proposition 2 we find

ar-r(ar+2)/(2r-a)+l=0.

Since a^O, we see r2―ar―1―0, that is, r=(ar+2)/(2r―a). This implies that

our real hypersurface M is locally congruent to a homogeneous one of type (Ax)

or (A2) (cf. [8]). Of course a homogeneous real hypersurface of type (Ax) or

(A2) of any radius r(=£?r/4)satisfiesthe hypothesis of Proposition B. Q. E. D.

Remark 2. The firstauthor classifiedreal hypersurfaces M which satisfy

0S=S0 in Pn{C) (cf. [5]). By virtue of his classificationwe findthe following:

Let M be a homogeneous real hypersurface of Pn(C). Then the following

two conditions are equivalent.

(i) V*S=0.

(ii) 6S=S6.
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