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A BOOLEAN POWER AND A DIRECT PRODUCT
OF ABELIAN GROUPS

By

Katsuya Epa

A group means an abelian group in this paper. A DBoolean power and a
direct product of groups consist of all global sections of groups in some Boolean
extensions V®. We shall study about a homomorphism h whose domain is a
group consisting of all the global sections of a group in V®, We investigate
two cases: one of them is that the range of h is a slender group, which is
related to a torsion-free group, and the other is that the range of h is an
infinite direct sum, which is related to a torsion group. We extend a few
theorems which have been obtained in [4] and [5]. As in [5], we not only
extend theorems, but improve them and give a good standing point of view.

We refer the reader to [9] or [1], for a Boolean extension V@, We shall
use notations and terminologies in [571, [6] and [71. Throughout this paper, B
is a complete Boolean algebra and & is the set of all countably complete max-
imal filters on B. We do not mention these any more. X is the element of
V® guch that dom ¥={}; yEx} and range xS {1}. As noted in [5], “2” in
[1] means our “X”. 2={y;[yex]=1 and yeV®} for xeV®, where V&
is separated. For b€B and a group Ain V®, ie [Ais a group]=l, Ab is
the subgroup of A such that ce A iff xeA and —b=[x=0], where 0 is the
unit of A. By this notation, A=Al TFor xcA, x* is the element of A® such
that b=[x=2x"].

1. A general setting about a complete Boolean algebra

Let @(b) be a property of bEB which satisfies the following conditions:
(1) if {bs; nEN} is a pairwise disjoint subset of B, there exists k such that

(D(H\K/an) and @(b,) hold for each nzk;

(2) if bAc=0, @(b) and @(c) hold, then @(bV¢) holds.

Let S be the subset of B such that beS iff @(b) does not hold and cAc¢”

=0 implies @(c) or P(c’) for any ¢, o/ <bh.
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LEMMA 1. Let F°® be the subset of B defined by: c=F® iff D(bAc) does not
hold. Then, F*€ % for every heS.

PROOF. We prove only the countable completeness. Let b,=F° for neN.
Let ¢,=0 and an:k/Slbk—bn“. Then, b=\ ¢,V A b By the condition (1)
and (2) of @ and the property of S, @A chn) and so @(bA [\an) does not
hold.

LEMMA 2. Let M be a maximal pairwise disjoint subfamily of S. Then, M
is finite and ©(c) holds for any c such that ¢ N\ M=0.

ProOOF. By the condition of @, M is finite. Suppose that there exists ¢
such that @(c) does not hold and ¢cAY M=0. By the maximality of M, there
is no element of S below ¢. So, there are by, c,<c¢ such that b,Ac,=0 and
@(be) nor D(c,) does not hold. Then, take by, c;<¢, with the same property of
b, and ¢,. In such a way, we obtain a pairwise disjoint family {b,; n<N}
such that @(b,) does not hold for any n<N, which is a contradiction.

2. Hom(4, G)

Let F be a maximal filter on B. For a group A in V® A/F is the
quotient of A by the equivalence relation ~5 such that x~py iff [x=y]eF.
In the case A=X, A is known as a Boolean power X® and A/F is a Boolean

ultrapower X®/F. (Ref. [8]) In the case that B=P(]) and A= iIIIAi’ where
=3
A is defined by a natural way, A/F is known as an ultraproduct H—,Ai/F' (Ref.

[2]) However, the following fact is enough to read the main part of this paper.
Let K be the subgroup of A defined by: reK—[x=0]cF. Then, A/F=A/K,
where the right part is the quotient group.

THEOREM 1. Let A be a group in V® and G a slender group. Then,
Hom(A, G)zp@ Hom(A/F, G) holds.
c€F

PROOF. Let 4 be a homomorphism from A to G and @(b) the property
“p” Ab=0”. Let {b,; nN} be a pairwise disjoint subset of B and x,=Ab» for
each neN. Think of the homomorphism g: Z¥—A such that g( ;Na"e"):

> @nxq, Where x= 2 a,x, is the element of A® such that b=\ b, and b, <
nEN nEN neEN

[x=a.x.] for each neN, and apply the slenderness of G to h-g, then i-gle,)

=0 and so A(x,)=0 for almost all n. Hence, there exists %k such that @(b,)

for any n=k and A( Z)kxn)fr—:O, by Specker’s theorem. (Ref. Prop. 1 of [5] or
nz
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Lem. 94.1 of [7])

Therefore, @ satisfies the conditions (1) and (2) of §1. Hence, Lem. 1 and
Lem. 2 hold for this @. Now, let M= {b, --- b,} and by=1—V M. Let h;: A/F* -G
be defined by: A[xJ))==h(x"), where [x]; is the equivalence class contain-
ing x with respect to F%, for each 1=i{=<n. Since [x=0]e F® implies A(x%)=0

for xeA-©=% p; is well-defined for 1<;<n. For x&A, h(x)=h(3 x*i)=

i=0
mZ)h(xbi): m§:h(x°i):21hi([x]i). The linear independence of {Hom(A/F, G);
=0 i=1 i=

Feg} is clear. Now, the proof is completed.
In view of the paragraph preceding Th. 1, Th. 1 includes Th. 2 of [5] and
Th. 944 of [7]. We express these as corollaries.

COROLLARY 1. Let A be a group and G a slender group. Then, Hom(A®, G)
zFEB Hom(A®/F, G).
g

COROLLARY 2. Let A; be a group for each i<l and G a slender group.
Then, Hom(IT A;, G)= & Hom( II A;/F, G).
el Feg el

If the cardinality of A is less than the least measurable cardinal M, or B
satisfies M,—c.c., A®/F=A holds, so Cor. 1 is an extended form of Th. 2 of
[5]. If the cardinality of [ is less than M., then every FeF is principal.
Therefore, Hom( iIEIIAi, G)= i%%lHom(Ai, G), which is a famous theorem. If the

cardinalities of the A; are bounded below M., then H[A[/Fz/ii for some 7,
S

which was used in the proof of Cor. 2 of [5].
By Cor. 2, we can calculate a dual group of p@ -+ JI Z. Now, we shall
1

A3 Azp-i
do it in a simple case. Let jr: V—My be the elementary embedding, where F

is a countably complete maximal filter on P(2) and My is the transitive model
which is isomorphic to V4/F. (Ref. [107) Let B=P(2,), then

Hom(I1 €D Z, Z)= & Hom(1 (B Z)/F, Z)
A1 Ay Feg A1 Ag

Jp(dg

=P Hom( § Z, Z)
FEg 1)

=0 II Z.
Feg jpip
In the calculation, we have used the absoluteness of direct sums. Unfortunately,
direct products are not absolute among transitive models. So, for the calculation

of Hom(]]:I ga I;I Z, Z), we must prepare a proposition which is obtained by
1 2 3

modifying Cor.2. That can be done, if we notice the fact that only the count-
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ably completeness of B, not the full completeness, has been used in the proof
of Th. L.

In this paper, we deal with the case that B is a complete Boolean algebra.
Therefore, unless B is very large, every element of & is principal. Concerning
a Boolean power, a countably complete Boolean algebra can give us interesting
groups, for there can be a non-principal ¢.c. max-filter on a non-complete but

countably complete and small Boolean algebra.

3. A homomorphism into an infinite sum
In this section, we shall extend some results of [4]. We do not prove the
next lemma, because the proof is in [3] and [47], and the essential idea of it
will be developed in the proof of Lem. 5. For X<I, we identify IIYA, with the
subgroup of H[Ai such that XE'I)[Z A; iff xeiﬂr A, and x(?)=0 for each e X.
= 1e =

Similarly, we do E[?(Ai with the subgroup of EBIA@
ie ie

LEMMA 3. (Chase [3]) Let h :‘]Cf;vAr—» @] G; (=G)bea homomorphism. Then,
ic =
there exist an integer n>0 and finite subsets FSN and J'S J such that

h'n T1_AS @ G+ NnG.
I jedsr neN

1EN -

THEOREM 2. Let A be a group in V?® and h: A—»@JG,- (=G) a homomor-
&

phism. Then, there exist Iy, -, F.e4, an integer n*>0 and a finite subset J*
of J that satisfy the following condition: Let K be the subgroup of A such that
reK iff [x=0]€F; for each 1=i=m, then h"n*KS e@ G+ Qvn(}f*"
jET* ne
Let @(h) be the property “ There exist an integer n>>0 and a finite subset
J’ of J such that h”n/i”i‘;@ Gyt [\ nG”
JeJ?! ne

LEMMA 4. This @ satisfies the conditions (1) and (2) in § 1.

ProoF. Let b= ben, for a pairwise disjoint family {b,; neN}. Then,
ne

Av= T Atr. b=<c and ®(c) imply @(b). Hence, @ satisfies the condition (1), by

neN

virtue of Lem. 3. @ satisfies the condition (2) clearly.

LEMMA 5. There exst an integer n*>0 and a finite subset J* of ] such
that, for any b which satisfies D), h"n* A’ GDI G+ (\NnG.
JjeJ* e

& Here we admit m=0 and in such a case K=A.
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Proor. Suppose the negation of the conclusion. Let 7 D G,—G; be the
Jjes

projection for je/. We construct b,eB, a,e4, n,eN, 7¢€J and a finite
subset J, of J satisfying the following conditions :

(1) <by; k=N) are pairwise disjoint and D(b,) for keN;
(2) arene, !V A% and z;,h(ag)@n,! Gj, and r;,h(a)=0 for each ;< k;

3) h'n,- 1'A”C EB G+(\ nG, where b—‘\/b

Jk-1

4) j.=J, and ]ker:jz for i<k
(5) <ng; kN> and {J,; kN> are increasing.

Suppose that we have already defined by, ai, ny, 7; and J; for i<k satisfy-
ing the above conditions. By the hypothesis, there exists b,., such that

k -~
b NN b;=0, @byyy) and h'n,l Ak 6? G+ QNnG. So, there exists @4,
=1 JjE ne

k
€n,! A%+ such that h(a,ﬁl)&'jé}; G+ [} nG. Hence, there are ji, &/, and
S8 ne

n>n; such that m;,, A(a,)&n! Gierr Let J'=J\J{j; nh(ass)#0}. By the
property of &,.,, there exist n,., and a finite subset Je+1 such that n<n,., and
J' STk and h'nyyV A @ G+ IAY nG. 2, ay exists in 4 and so let it

JeJ k41
be a. Then, a-2a €ne! A and n;,h(a)En,! Gj, and mi,h(a;)=0 for each
i<k. Hence, rrjkh(a):rcjkh(aw-,_gi ag)+tm;,h(a)#0 for each k. Since k+#k’

implies j,+#7,, it is a contradiction.

ProorF oF TH. 2. By Lem. 1, Lem. 2 and Lem. 4, M is finite and so let
M=1by, -+, by} and by=1—\ M. Let F,=F% for 1<;<m. Now, the theorem
is clear by Lem.5 and the fact that x< XK implies x € A® for some b which
satisfies @(b).

For a Group A, A denotes the corresponding Hausdorff group A/ ()VnA.
nEN

LEMMA 6. For a group A in V®, A=A,

A
ProOF. By the absoluteness of N, N nAx= N nA. Hence, AXEA/ 3 nA
ne n<s
A/ (\ nA A

neN

IR

Let F be a maximal filter on B and K32 the subgroup of A such that
xeKi iff [x=0]eF.

LEMMA 7. nxeK2 implies nx<nK3, where n is an integer.

PROOF. Let b=[nx=0]. Let x’ be the element of A such that —b=[x'=x]
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and b=[x’=0]. Then, x’€K% and nx’'=nx.

LEMMA 8. Let 7: A-A (f—:ﬁ) be the canonical homomorphism. Then, n”K}-‘\

)

=K

PROOF. zr”KggKg is obvious. Let xel{g. Then, there exists y in A such
that n(y)=x. So, there exists b such that peF and b=<[x=0]. Let y’ be the
element of A such that —b=[y’=y] and b<[y’=0]. Then, n(y")=x(y) and
3’ eK3.

LEMMA 9. Let A be a torsion group in VP, then A/F is also a torsion
group for FEF.

PrROOF. Let a=A, then \/Nu:na:O]:[[aneN(na:O)]:L By the countable
ne

completeness of F, [na=0]€F for some neN. So, A/F is a torsion group.

THEOREM 3. Let A be a torsion group in V®. Then, for each direct sum
decomposition @ Gj of A, G; is a torsion group for almost all 7].
Jje

PrOOF. Applying Th. 2 directly, we have F,, -, FRn€%, an integer n and
a finite subset J/ of J such that nK& E@ G+ ﬂNnG, where K and G are the
JEJ! ne

same as Th. 2. Let 7: G—G be the canonical homomorphism. Then, 2"G;=G;
for each j=J and nx”K&S 69 7" Gj.

Let ¢: G (—AA)—>G/ n”K be the canonical homomorphism. Then, the restric-
tion ¢ to " 633  ”G; is a monomor phmm by Lem. 6, 7 and 8. On the other
hand, G/rr”K"’AbJ/FI(B EBA”M/F :A/F&B @A/Fm, by virtue of Lem. 6, 7
and 8 and the fact: K=A"PK? Ab‘EB EBKA" . Therefore, it is a torsion group
by Lem. 9 and hence EB G; is a torsion group.

Let A; be a torsmn group for each i€l. In view of the first paragraph of
§2, we can take a torsion group A in V®Ud» gyuch that A= II,Ai- So, Th. 3
IS

is an improvement of Lem. 8 of [4], even in the case of a direct product, i.e.
dropping the cardinality hypothesis for I. Hence, we have Th. 9 of [4] without
the cardinality hypothesis for I.
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