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APPROXIMATIVE SHAPE IV

― W-MAPS AND THE VIETORIS-SMALE THEOREM―-

Dedicated to ProfessorYukihiro Kodama on his sixtiethbirthday

By

Tadashi Watanabe

§0. Introduction.

This paper is a continuation of [35-37]. We introduced approximate shape

in [35], discussed approximative shape properties of spaces and generalized

ANRs in [36], and fixed point theorems in [37]. In this paper we investigate

approximative shape properties of maps and show the Vietoris-Smale theorem

in shape theory.

Many mathematicians studied £/V"-maps. See the references of Lacher [18]

for their studies. Smale [30] gave a Vietoris type theorem for homotopy groups

and UVn-maps, called the Vietoris-Smale theorem. Kozlowski [13] gave a

factorization theorem for UVn-maps. Borsuk introduced approximatively n-

connected spaces. This is a basic notion in shape theory. Various Vietoris-

Smale theorems in shape theory were given by Bogatyi [2, 3], Dydak [4-7],

Kodama [11, 12], Kuperberg [16], Kozlowski-Segal [15] and Morita [27, 28].

In this paper we discuss the following topics: In §1 we introduce the

approximative lifting property and investigate its properties. In §2 we prove

restrictionand product theorems for the approximative lifting property. In §3

we introduce approximatively n-connected maps and give their characterizations.

We show the Vietoris-Smale theorem and the Whitehead theorem for approxi-

matively n-connected maps. In §4 we introduce the approximative extension

property. We characterize approximatively n-connected spaces by this property.

In §5 we introduce partial realizations for decomposition spaces. We introduce

the approximative fullextension property and investigate its properties. In §6

we show that our approximatively n-connected maps and usual £/Fn-maps are

equivalent. Hence by using results in §3 we show the Vietoris-Smale theorem

and the Whitehead theorem in shape theory for closed UVn-maps between

paracompacta.

We assume that the reader is familiar with theory of ANRs and shape

theory. As reference books we use Hu [10] for theory of ANRs and Mardesic
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and Segal [23], quoted by MS [23], for shape theory. For undefined notations

and terminology see these books. We use the same notations and terminology

as in [35-37], We quote results in [35-37] as follows: For example (1.3.3),

(II.5.5) and (III.1.1) denote theorem (3.3) in [35], theorem (5.5) in [36] and

theorem (1.1) in [37], respectively.

The author thanks Professor Y. Kodama who encouraged him to develop

this theory, and also Dr. A. Koyama and the refree. They carefully read the

firstmanuscript and gave valuable advices.

§1. Approximative lifting property.

In this section we introduce the approximative lifting property for maps and

discuss its properties.

Let JC be a collection of pairs of spaces. Let C be a subcategory of TOP.

Let (X, <U)={(Xa, HJa),pa<.a, A) and (Qj,q;)={(r6, q/6),qb.tb,B) be approxi-

mative inverse systems in C. Let f=[f, fb: b^B}: (3C,lO-K'V, <=V) be an

approximative system map in C. We say that f has the approximative lifting

property, in notation ALP, with respect to Jf provided it satisfiesthe following

condition:

(ALP) For each admissible pair (a, b) of f there exists an admissible pair

(<20,bo)>(a, b) with the following property; for each (K, K0)^Ji and for any

maps g: K^Ybo, h : Ko^Xao with (fboPao.fcbo^h,g＼K0)<st<VH, then there exists a

map H:K->Xa such that (pan,ah, HlKoXsfVa and (qbn,bg,fbpa,rcb-)H)<stcvb.

//

(1 1) Lemma. Let f, g: (DC, <U)-≫(3/,CV) be approximative system maps in C

: g and f has ALP with respect to Jf, then so does g.

Proof. We put g―{g, gb: b^B}. We may assume f― : g without loss of

generality. Take any admissible pair (a, b) of g. By (AI3) there exists bt>b

such that 9^11,6cl/6>s^cV6l.Since f=:g and bi>b, there exists av>a, fib),/(fri)

such that

(1) (gbpai.8m, hPa^taiX^b and

(2) {fbPax.fW, QbvbfblPa1.fCbl-)XC^b-

By the assumption there exists an admissible pair(az, bz)>(au bt)satisfying ALP

with respect to Ji for f and (au bi). By (AI3) there exists b3>b2 such that

^blbzc^b2>st2(:Vbr Since f=:g, there exists as>f(bs), g(b3) such that

(3) (fb3Pa3.f(.bs->,gbBPa3, gCb^X^b^-
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(4) (fb2Pa3,f(.b21,Qb3,b2fb3Pa3.f(.b3))<CVb2>

We show that (a3, b3) is the required admissible pair for g. Take any

(K, K0)^JC and any maps s: K―>Yba, h:K0->Xa3 such that

(5) (gb3Pa3,g<b3>h,s＼K0)<st<=Vba.

By (3)-(5) and the choice of b3,(fb2Pa3,/a^h, qb^b^lKoXst^V^- Thus by the

choice of (a2, b2) there exists a map H:K-^Xai such that

(6) (Pa3,aih, H＼K0)<stcUai and (fblpavf^H, qt^sXsW^.

By (1),(2),(6) and the choice of &, (pa3,ah, pavaH＼Kli)<stcUa and (gbpai.gwH,

qb3,bS)<stcVb. Hence g has ALP with respect to JC m

Thus by (1.1) we may say that [f] has ALP with respect to JC provided

that f has ALP with respect to JC.

(1.2) Lemma. Let f: (X, 1/)-K<y, °V) and g: (<y,<=V)->(2,W) fee approxi-

mative system maps in C. If [f] and [gr] /zaye ^4LP u;ff/zrespect to JC, then so

does [flrlff].

Proof. We put g={g, gc: c^eC} :(9, <V)^{Z, <W)=-{{ZC, Wc), re..e,C) and

take a 1-refinement function u: C-+C of (Z, IV). We show that r(u)(gf)

has ALP. Take any admissible pair (a, c) of r(u)(gf) and take Ci>c such that

r^cWcysfW^. Since r(u)(gf) is an approximative system map, there exists

di>a, fgu(ci) such that

(1) (ru(c1,cgulofguCrtPay,fguM >ruUx^),cguUx~)fguic^Pav fguUOJ^0^c-

By the assumption there exists an admissible pair(a2, bx)>(au gu(ct))satisfying

ALP for f and (au gw(ci)). Take any 62>&i such that qilHcVh>stcvbr By the

assumption there exists an admissible pair (b3, c2)>(b2,u(cx))satisfying ALP for

g and (b2, u{cx)＼ Take any c3>c2 such that r~;lcfWc.1>sf'WCr By (AM2) there

exist bi>b3, gu(c3) and a4>a2, fgu(c3), f(b3) such that

(2) (gcflbi,g(c2-),^u(c3),CzguCc^Qbi,gM(c3))<CW;c2>

(3) (fgu(.c3)Pai,fgu(.cs'>,(]bi,gu(c3*>fbltPai,fai))<^CVgu<.c3')and

(4) (fbiPcu.ftb^tQbi,b1fbiPai,f<ibix)<CV.b1-

We show that the admissible pair (a4, c3) of r(u){gf) has the required

property. Take any {K,K0)(=Ji and maps s: K^>ZCQ) h: K0->XaA such that
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(ruica>.csgu<:ci>fguic3)P<ii.f8utci>h,s＼K0)<stWCii. Then by (2), (3), (AMI) for g and

the choice of c3 (£C29&4,gCc2)/64£a4,/c&4)/i,rC3,C2s＼K0)<stWC2. Thus by the choice

of (63, c2) there exists a map H±: K-^Y＼2 such that

(5) {qbA.bJbiPai,nboh> HAKoXstcv^, and

(6) ＼gu(.cl~>qb2.eutc^Hi, TCstU^Cl->s)<Cst'Wu^cl~).

By (4), (5) and the choice of bz (fbiPa^/cb^h, q^^^K^Xstcv^. Then by the

choice of (a2, bi) there exists a map H2:K-+Xai such that

(7) (Pat.aih, H2＼K0)<stcUai and

(8) (fgu(.c1-)Pa1,fgu(.cl->H2,qbz,gulc^HlXstCVgu(C]) .

By (1), (6), (8) and the choice of c1 (ruM,cguMfguMpBvfguc^H2, rCs,cs)<st(Wc

and by (7) (pa4,ah, H^K.XstHJa. Thus r(u)(gf) has ALP with respect to Ji

and hence [≪?][/*]has the required property ALP. B

(1.3) Lemma. // [f ] :(DC, 17)->(<y, <=[?)is an isomorphism in Appro-C, then

[f] has ALP with respect to any collection of pairs.

(1.3) follows from (1.2.16). m

Let X and Y be spaces and / : X^Y a map. Let p: X^{D£, II), pf: X->

{X, HJ)', q : Y-*(<y, ^V) and q': Y->(<y, <^V)r be approximative AP-resolutions.

Let f:{T, *U)->(q/,(V) and f':(3C, <U)'->(≪/,W)' be approximative resolutions

of / with respect to p, q and with respect to p', q', respectively. By (1.5.1)

[f/] = [lr],,q'[f＼{lx1p',P-Since [±xl,'.rand [ly],.,'are isomorphisms in Appro-

AP by (1.5.1),we have the following from (1.2) and (1.3):

(1.4) Lemma. // [f] has ALP with respect to X, then so does [f ]･ ■ '

Let p={pa: a<=A}:X^3C={Xa, pa>,a, A} and q={qb:b^B) :Y-+QJ=

[Yb, qb<,b,B) be AP-resolutions. Let f={f,fb:bGB}:2£^<if be a resolution

of /: X-+Y with respect to p and q. We say that (f, p, q) has the approxi-

mative liftingproperty, in notation ALP, with respect to J( provided it satisfies

the following condition:

(ALP)* For each admissible pair (a, b) of f and for any HJ^CoviXa),

c[7(^Cov(Yb) there exist an admissible pair (a0, bQ)>{a, b) and cv0<^Cov(Ybo) with

the following property; for any (K, iQe JC and any maps h : K0^>XaQ, g :K^>Ybo

with (fb0pao,f<.b0)h,g＼K0)<cV0, there exists a map H:K-+Xa such that

(pao.ah, HlKoXV and (fbpa,fwH, qbo,bg)<^.
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(1.5) Lemma. Let (f, p, q) and (g, r, s) he AP-resolutions of f: X->Y. If

(f, P, q) has ALP with respect to
<K,
then so does (g, r, s).

Proof. We put r={rc: cseC} : X-+2l={Re, rc.,c,C}, s={sd: d^D} :Y-^S

= {5d, sd',d!D} and g―{g, gd: d^D}. We assume that(f, p, q) satisfies(ALP)*

and show that (g, r, s) satisfies(ALP)*.

Take any admissible pair (c, d) of g and W<eCov(Rc), X^C0V(Sd). There

exist JCi,Xz, Xz, Xi^Cov(Sd) such that stXx<X, X2 satisfies(R2) for p and

Xlt X3 satisfies(R2) for s and Xu and stXiKXiAXiAXz. Also there exist

Wi, W2, ･Wz<=Cov(Rc) such that stW^HV, Wz satisfies (R2) for r and Wi,

sfW%<'WlAcWi/＼{gdrc,g^-'X,. By (Rl) there exist b^B and a map f: YH-^Sd

such that

(1) (sd,tgh)<Xt.

By (Rl) there exist a{>f(bC) and a map u: Xai->RC such that

(2) (rc,upai)<W3.

Then by the choice of W3

(3) {gdTgW), gd.rc,g<ld)Upa1)<-C4.

Since (f, p, q) and (g, r, s) are resolutions of /, tqblf=tfblpfa)O and sdf=gdrgid>

Then since (sd/, tq^fXX, by (1), (3) follows (gdrc,gUOupav tfblpai,fCbOpai)

<stXi<Xz. Thus by the choice of JT2 there exists a{>ax such that

(4) (gd.rc.gCd^Upa,,a,,tfb.pa^fCb^X-Cl-

By the assumption there exist an

<=V' =CoV(ybt) satisfying (ALP)* for f,

admissible pair (as, b2)>(a2, bx) and

(at, bi), (upa2,aiylcW3^Cov(Xa2) and

t^X^CoviY^). There exist tV[, <V'2><=Vr3^CoV(Ybt) such that stcv[<<V', cv'2

satisfies(R2) for r and cyjf and stcV'z<<V'2/＼{tqb2,HyiX＼.By (Rl) there exist

di>d and a map y: Sdl―>y6o such that

(5)

By (5)

(vsdl,qb2)<cV's.

and the choice of

that

°^s, (tqbi,hvsdv tqtJKXt, and then by (1),

By the choice of X3 there exists J2>rfi such

(6) (tqb2.blvsd2,dl,sdz,d)<Xx.

By (Rl) there exist Ci>c, g(d2) and a map w: RCl-+Xas such that

(7) (Wrci, PaA)<{uPa^aiY1CWz/＼{fb2Pa,,f^YlCVz.
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By (5), (vsdj, qbj)<cvi By (7), {fhpaz,f^wrCl, fbspw)<<=Vfs. Since (f, p, q)

and (fir,r, s) are resolutions of /, fHPs^^-qbJ and sdl/=sd2ldlg≪i2/v<i2). Then

(fb2Pas,ftb^wrCl>vsd2,dlgd2rCl,gCd2)rCl)<stcv'3<cv'2. By the choice of cp£ there

exists c2>Ci such that

(8) (fb2Pa3,fcb2^'wrC2,Cl,vsd2idlgd2rC2ig(ig2>l)<cV1.

By (7), (upa3,aiwrcvupai)<W3 and by (2), (upaa.aiwre2,eirei, rt2,(g<sW,<lF,

By the choice of W2, there exists c3>c2 such that

(9) (upas.a1wrea,c1, rC3,c)<<W1.

We show that the admissible pair (c8, c?2) for gf and (ysd2,dl)~1(^'(GCo!;(Sd2)

are the required ones. Take any (K, K0)<^JC and any maps k:K0-*RCs, h:K-+

Sd2 such that {gd2rC3,g(_d^k, /i|.Ko)<(z;sd2,di;r1q/1')and then (vsd2,dlgd2rC3,gu2->k,

vsd2,dlh＼K0)<cvi. Then by (8), (fbipaa.wwrCa<eik, vsdi,dlh＼Ko)<st(Vi<cv＼ By

the choice of (a3, 62) there exists a map H:K->Xa2 such that

(10) (pa3,a2wrC3,Clk)H＼K0)<(upa2,ai)-1W3 and

(11) (fblPa2,f(boH> Qb2.b1vsd2tdlh)<r1X4.

By (10), (upa3,aiwrC3,Clk, upat.alH＼K0)<tW3 and by (9),{upaz,aiwrCz,Clk, rei.eik)<(W1.

Then

(12) (rC3,c^, upa2,aiH＼Ko)<stW1<<W.

By (11), (tfblpat.fw>H,tqi>s,i>1vsdi,dlh)<Xi<J:1, by (4), (gdrc,gWupa2.aiH,

tfhpa2,fiboH)<Xi and by (6), (tqb2,hvsd2,dlh, sdl,dh)<Xu Thus

(13) (gdre.g≪≫upat.a1H, sd2,dh)<stX,<X.

Hence, by (12) and (13), gr satisfies (ALP)* with respect to JC. m

By (1.4.9) there exist approximative ANR-resolutions p:X-^(3C, HJ), q:Y―>

(94, CV) and an approximative resolution f:(DC, tU)-^im, CV) of / with respect

to p and q such that (f, p, g) is an ANR-resolution of /.

(1.6) Lemma. Under the above conditions,f satisfies{ALP) with respect to

-X iff(f, P, q) satisfies(ALP)* with respect to JC.

Proof. We assume that f satisfies (ALP) and show that it satisfies (ALP)*.

Take any admissible pair {a, b) of f, HJ^CoviXa) and cV^Cov{Yb). There exist

bx>b, ai>a, f{bx) such that palaVystVa^ qb1＼bc^>stcvbl and fhpai.fw=

Qb^bfb^Pa^.fib^- There exists an admissible pair (a2, b2)>(a1, bx) satisfying
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(ALP) for (au bi). Thus it is easy to show that (a2, b2) and sf^V^ satisfy

(ALP)* for (a, b), HJ and <V,

Next we assume that f satisfies (ALP)* and show that it satisfies (ALP).

Take any admissible pair (a, b) of f. Then there exist an admissible pair

(fli, 6i)>(fl, b) and <Vf^Cov(XH) satisfying (ALP)* for (a, b), HJa andq/6. Take

bz>bx and at>au f(b2) such that qblb^^st^V^ and fblpai.fib1->=Qbi.bJbtPa2.fib^.

It is easy to show that (a2, b2) satisfies (ALP) for (a, b). M

(1.7) Theorem. Let Ji be a classof pairs. Let f: X^Y be a map. Then

the following statements are equivalent:

(i) Any /some approximative AP-resolution of f has ALP with respect to Ji.

(ii) Any/some AF-resolution of f has ALP with respect to Ji.

(1.7) follows from (1.4)-(1.6). m

Thus by (1.7) we say that a map /: X-*Y has the approximative lifting

property, in notation ALP, with respect to X provided that it satisfiesany one

of the conditions in (1.7).

(1.8)Corollary. Let f: X->Y and g:Y->Z be maps.

(i ) // CT{f): CT(X)->CT(Y) is a homeomorphism, then f has ALP with

respeotto any Ji.

(ii) // / is a homeomorphism, thenf has ALP with respectto any X.

(iii)// / and g have ALP with respectto X, then so doesgf.

(1.9) Corollary. A map f: X-^Y has ALP with respect to Ji iff so does

CT{f): CT(X)->CT(Y).

(i) in (1.8) follows from (1.7.10) and (1.3). (ii) follows from (i). (iii) fol-

lows from (1.2). (1.9) follows from (1.6.9), (1.6.11), (1.7.10), (1.2) and (1.3.). m

Let TOP(ALP, Ji) be the subcategory of TOP consisting of all spaces and

all maps having ALP with respect to JC. Thus by (1.8) we have the following:

(1.10) Theorem. TOP(ALP, JC) forms a subcategory of TOP including all

homeomorphisms for any collectionJi of pairs. H

Let Xo be a subspace of a space X. We say that (X, Xo) is a closed pair

provided that Xo is closed in X. We recall that coverings are always normal

open coverings (see [1]). We say that Xo is P-embedded in X provided that

for any covering 170 of Xo there exists a covering HJ of X such that cU＼Xa-=
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{UnX0:U^cU}<eU0. In MS [23] "normally embedded" is used instead of

" P-embedded ".

Let TOPpairs be the category consisting of all pairs and all map between

pairs. TOPc.pairs and TOPP.pairs denote the full subcategories of TOPpairs con-

sisting of all closed pairs and all P-embedded pairs, respectively. TOPCp.pairS

denotes the fullsubcategory consisting of all closed P-embedded pairs. TOPpairs

and "TOPpairs denote the full subcategories of TOPpairs consisting of all pairs

(X, Xo) with dimZ^n and dim{X―X0)^n, respectively.

We say that (X, Xo) is a polyhedral pair provided that there exists a sim-

plicialcomplex K and a subcomplex Ko of K such that ＼K＼=X and ＼K0＼=X0.

Here ＼K＼denotes the realization of K endowed with CW-topology. We say

that (X, Xo) is an ANR-pair provided that Xo is closed in X and X, Xo are

ANRs. POLpairs and ANRpairs denote the full subcategories of TOPCp.pairs con-

sisting of all polyhedral pairs and ANR-pairs, respectively. Similarly we may

define categories POL^, "PQLpairs, ANR£airB,"ANRpairs and so on.

Let Kx and K2 be subcategories of TOPpairs. We say that Kx is expandable

by K2, in notation iCi<eiir2, provided that any (X, X0)^ObKi admits a Ir-

resolution. We say that ifi and K2 are expansively equivalent, in notation

Kx^eKz, provided that both K^eK^ and Kt<eKx. We say that f: (X, V)-^^, <=V)

and /: X-^Y have ALP with respect to Kx provided that they have ALP with

respect to ObKu respectively. (1.3.15) and (1.3.16)(see [21] and [23]) mean

the following:

(1.11) Lemma. T0Ppair8=eT0P*.pair8=eP0LpairB=eANRpair8, T0P=eP0L

=eANR, T0Pplair8=eT0P?.pair8=eP0L?airs and TOP"=ePOL". B

(1.12) Theorem. Let Kx and K2 be subcategories of TOPF.pairs.

that Ki<eK2. If a map f has ALP with respect to K2, then f has

respect to Kx.

We assume

ALP with

To prove (1.12) we need the following lemma.

(1.13) Lemma. Let Z be an AP. Then for each V^CoviZ) there exists

HJ''^Cov(Z) satisfying (R2) for any resolution and CU.

Proof. For any <Uge<?<,≫(Z) we take"U'^CoviZ) with stHJ'KHJ. We show

that 17' has the required one. Take any resolutionp: X-+3C of any space X.

Take any a&A and any maps g,h:Xa-^Z such that (gpa, hpaXHJ'. Put
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(1) (g＼st(pa(X), <W), h＼st(pa(X), W))<HJ.

Take any y^st(pa(X), <W) and then there exist U[, U^RJ' and xgZ such

that Pa(x){Epa{X)r＼g-lU[r＼h-lU'z and y ^ g~lU [nh-'U',. Thus gpa(x), g(y)^U[,

hpa(x), h(y)(=U'2. Since (gpa, hpaXRJ', there exists U'Z(^CU' such that gpa(x),

hpa{x)^U'3. Thus g(y), h(y)(Est(U'3, HJ')<zXJ for some £/e<U. Hence we have (1).

By (1.3.3) p satisfies (B4) and then there exists a'>a such that pa',a{Xa')

dst(pa(X), W). Hence by (1) (gpa-,a, hp^.aXRJ. m

Proof of (1.12). Take any approximative AP-resolutions p:X-*3C and

q: Y―><y. Let f: (DC, cU)-^iP4,̂ V) be an approximative resolution of/ with

respect to p and q. We assume that f has ALP with respect to K2 and we

show that it has ALP with respect to Ku

Take any admissible pair (a, b) of f. Then there exist bi>b such that

qblb°^b>stcvh. By (AM1)-(AM2) there exists az>ax>a, f(bi) such that

(fbPavfw, Qb1,bfb1Pavfcbo)<c^b and pil.aiVai>stVai. By the assumption there

exists an admissible pair (a3, 63)>(a2, bi) satisfying(ALP) for Kz and (az, bx).

By (1.13) there exists cV^Cov(Ybs) satisfying (R2) for any resolution and q/63.

Take any b4>b3 and at>as, f(bt) such that qblb3cV>st2cVbi and (/&8/>a4,/<&8)>

^64.bzfbiPai,/C64))<C^63-

We show that the admissible pair (a4, 64) has the required property. Take

any (Z, Z0)g^"i and maps g: Z->Ybi, h: Z0-^Xai such that

(1) (fb.Pa^f^h, glZoXsW^.

By the assumption there exists a if2-resolutionr={rc:c<^C} :{Z, Zo)―>(3f,3f0)

= {(ZC, Zoc),rC',c>C} of (Z, Zo). Then by Theorems 2-3 of Mardesic [21]

rz={re:c =C}:Z-*Z={Ze,re',e, C] and rZo={r°c:c<=C) : ZQ-+Zo={ZOc, r°c,c>C}

form resolutions. Here r?: Zo->ZOc and r?-,c:Z0C'―>ZOCare induced by rc and

rC',c- By (Rl) there exist CiEC andmaps /ir:Z0Cl-^Xai, g': ZCl->Ybi such that

(2) (h, h/r0Cl)<1Jaiand (^ g'rCl)<cVbi.

By (1), (2) and the choice of bK, <,qH.HfHpai.faoh'r*v Qh-hS'^X^. By the

choice of cy there exists cz>cx such that (g64>63/64/>a4,/c64)^V22.Cl,^4.68gV28>Cl)

<cyv Thus (fhsPat.f^h'r^,^, qbi,hg'rC2,Cl＼Z0C2)<stcvh. By the choice of

(a3, &3) there exists a map H: ZCo^Xao such that

(3)

(4)

(H＼Z0Ct, pai,a2h'r°C2,Cl)<stcUaz and

By (2),(3) and the choice of a2
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(5)

By (2),

(6)
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(Pa2,aHrC2＼Z0, Pai,ah)<StcUa

(4) and the choices of au bx

(fbPa2,fcb)HrC2> qbi,bg)<st<=Vb.

By (5) and (6) (ait b4) satisfiesthe required conditions. Hence / has ALP with

respect to JK",. 8

(1.14) Corollary. Let Kx and K2 be subcategories of TOPF.pairs and

Ki = eK2. A map f has ALP with respect to Kx iff f has ALP with respect to

K2. m

(1.15) Corollary. The following statements are equivalent:

(i)

(ii)

(iii)

A map f has ALP with respect to TOP/>.pairs.

/ has ALP with respect to ANRpairs.

/ has ALP with respect to POLpajrs.

(1.16) Corollary. For each integer n the following statements are equiva-

lent:

(i) A map f has ALP with respect to TQP£.pairs.

(ii) / has ALP with respect to PQL£airs.

(1.15) and (1.16) follow from (1.11) and (1.14). B

(1.16) Remark. Let Ji be a collection of pairs of spaces. Let t{Ji)be the

full subcategory of TOPpairs consisting of Ji as objects. Then Ji uniquely

determines t(J(). Since Obt(X)―JC, t(JC) uniquely determines Jf. Hence we

may identify JC and t(J(). For example, for collectionsJix and JC2 of pairs of

spaces we say that Jix is expandable by JC2,in notation
<Xx<e&%,

provided that

t{Jix)<et{J(%). Similarly we can define j(1=eJCt. Thus (1.12) and (1.14) hold

for collections.

(1.17) Remark. Approximative homotopy lifting property was introduced

for [maps between compacta by Mardesic and Rushing [22] and for maps be-

tween arbitrary spaces by Mardesic [20]. In the sequel we shall show that

the approximative homotopy lifting property is a special case of our approxi-

mative lifting property.



Approximative Shape IV 283

§2. Restrictions and products of the approximative lifting property.

Let {X, Xo) be a pair of spaces. Let p = {pa '･<k=A) : X-+{3£, V) =

{(Xa, IJa), Pa',a, A) be an approximative resolution. We put X^a=st{pa{X0), 'UJ

and cUOa―eVa＼XOa for aeA Then pa:X-*Xa and pa>,a: Xa>-+Xa induce maps

p°a:Xo->XOa and poa'a'X0a.~^X0a for a'>a.

(2.1)Lemma. // Xo is P-embedded in X and all Xa are paracompact, then

po={p°a:a<=A}: Xo^iDCo, HJo^UXoa, Voa),Pl'.a,A} is an approximative re-

solution.

Proof. First we show that (3?0,IJo) forms an approximative inverse sys-

tem. (All) and (AI2) for (To, Vo) follows from (All) and (AI2) for (DC, V).

We show (AI3). Take any a<=A and any <=V^Cov{Xaa). Since pa(Xo)CZXOa

and Xa is paracompact, cU=cV＼J{Xa ―pa(X0)} is an open normal covering of

Xa. Take any <Ur^Cov(Xa) such that stHJ'<V. By (AI3) for (2C, HJ) there

exists a'>a such that p~£,acVf>cUa,'-

We show that (/>,-,a)~lc^>cUoa'- Take any non-empty UoiGHJoa' and then

U01=st(pa>(X0), HJa')r＼Ui for some U^HJa'- Thus there exists Uz^Va' such

that U2npa'(X0)^ 0 and UxC＼Ut^0. By the choice of a' there exist £/{,U^V

such that paKaUiZ)Uu z=l, 2. Then Uir＼pa(X*)±0 and U[r＼U^0. By the

choice of <U' there exists J7e*U such that sf(Z7i,CU')(ZU. Since Ur＼pa(Xo)^0,

by the definitionof <U, t/eq/ and (p°a,,a)-1U=XOa.npaKaUZ)XOa.r＼U1=Uoi. We

thus have the required property. Hence (3C0,1/0)forms an approximative inverse

system.

Next we show that j?°:X0->(X0, <U0)is an approximative resolution. We

show (AR1). Take any cv^Cov(X0). Since Xo is P-embedded, there exists

HJ^CoviX) such that c^>cU|Z0. By (AR1) for j? there exists dGi such that

palcUa<cU. It is easy to show that (pl)~lVOa<cV. We show (AR2). Take

any a^A and any cV(=Cov(X0a). Put HJ, HJ'^Covi.Xa) and a'>a as in the

second paragraph. Since (p^,a)'lc^>^J^, Pl',a{X,a')CLst(pOa{X,),<V). Hence

d°is an approximative resolution, m

(2.2) Corollary. // p: X-^(2C, HJ) is an approximative ANR-resolution and

Xo is P-embedded in X, thm p": XQ->(3£0,Vo) is an approximative ANR-resolu-

h'nn M

(2.3) Corollary. Any space X admits an approximative ANR-resolution

p: A->(3f, HJ) such that st{pa{X), cUa)=Xa for all a^A. m
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Let (X, Xo), (Y, Yo) be P-pairs and /: (X, X0)-+(Y, Yo) a map. Then j

induces a map /,: X0^Y0. Let q={qb:b^B) : Y-^(QJ, cp)={(F6, <yb)tgb,b}B

be an approximative resolution. We assume that all Xa and all Yb are para

compact. We put Yob=st(qb(Yo),cvb) and cvob=<Vb＼Yobe.Cov(Yob) for all b&B

Then qb:Y->Yb and qb.,b＼Yb'->Yb induce maps qob:Yo-+Yob and ql',b:Yw-*Ya

for b'>b. By (2.1) q°={q°b:b^B): Yo->(≪Jo,cVo)={(Y(lb, <V<>b),q＼-.b,B) is ai

approximative resolution. Let f={f, fb: b<=B) :(3C, CU)-^{C^,<=V)be an approxi

mative resolution of / with respect to p and q. Let k : B-^B be a 1-refinemen

function of (<y,ci*7).We put /8=0*{Ml6/tc≫|^o/*c&>:^o/acbj-^ob for b^B. Ir

a straightforward way we can easily show the following:

(2.4) Lemma. Under the above conditions fo={fk, /&: b^B): (DC0, Vo)-

(^/o,^o) is an approximative resolution of f0: Xo-+Yo with respect to p° and q°.

(2.5) Theorem. Let f: (X, Z0)-≫(F,YQ) be a map and Ji a collection oj

pairs of spaces. We assume the following two conditions:

(i) Xo and Yo are P-embedded in X and Y, respectively.

(ii) For each RJ^Co^X) there exists cv^CoviY) such that f-lst(Ya,<V＼

Cst(X0, <V).

If f: X―>Y has ALP with respect to X, then so does f0: Zo―>F0. Here fQ ii

induced by f.

Proof. By (2.3) there exist approximative ANR-resolutions p:X-≫(2C, RJ]

and g:F->(<y, <=V)satisfying Xa=st(pa(X), Rja) and Yb=st(qb(Y), <=Vb)for a^A

and bGB. By (i) and (2.2) p°:Xo->(3£0,1/0) and q°:Y0-+(QjQ,<V,) are approxi-

mative ANR-resolutions. Let f:(3C, CU)―K<3/,̂V) be an approximative resolution

of / with respect to p and q. By (2.4) f0:(DC0, "Uo)―K^o,^0) is an approxi-

mative resolution of f0: X0-^Y0 with respect to p° and q°.

By the assumption f has ALP with respect to Ji. We show that also fc

has ALP with respect to JC. Take any admissible pair (a, b) of f0, that is,

a>fk(b). Here k: B-+B is a 1-refinement function of (<y,<=V). By (AI3) there

exists Gi>g such that p^, aVa>stRJav By (ii)there exist <V<E:Cov{Y) such

that f-HKYo, cv)dst(X0, pl^U^). By (AR1) and (AI3) there exist bt>b!>k(b)

such that ^i^ftx<°^ and qil^cvbl>st<=VH. By (AM2) there exists az>au

fk(b2) such that

(1) (fkib-)Pa2,fkHb-),Qk(b2).k(.b)fk<:b2)Pa2,fk<:b^)<CCVk<;b-)-

By the assumption there exists an admissible pair (a3, bs)>(a2> k(b2)) satisfying

(ALP) for f and (a2, k(b*)). Take &4>^3 such that ai;}h<=Vbn>stcvh.. By (AM2)
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there exists a4>a3, fk(b4) such that

(2) (fbzPaA,f(bz~), qkt.bi),b.afk<;bi)Pai,fk<.birXCVbB 311(1

(qk(bi),bifk<.bi)p0a4,fk(b4), fbiP°a4:,
/*(64))<C^64 ･

285

We show that (a4, b4) has the required properties. Clearly (c4, 64) is an

admissible pair of f0 and <24>a, b4>b. Take any (K, K0)^J( and take maps

£:ifo^XOa4, h:K^Yobi such that (fc|/f0, A/^./jK&^gXsf0^. By the choice

of bit (Qbt.bJihlKo, qk<.bo.nfnbi->Pai.fkuoJ2g)<cVbi' Here ji:Yobi-*Ybi and

72: X<)ai-^Xai are inclusion maps. By (2) {fbzpai,jib^j＼g, qkw.bJkibjPti.f *<**･>J*8)

<^b3 and then (fbaPa4.f<b3>jtg, qbt.baJih＼Ko)<st<=Vb3. By the choice of (as, bz)

there exists a map H:K->Xaz such that

(3) (H＼K0, pai,aJ2g)<stcUa2 and

(4) (fk(b2-)Pa2,fku2)H, qbi,kcbo-iJihXstcVk(.b2).

We show that

(5) pa2,aH(K)(ZX0a.

Take any k<BK. Since st(pa(X), cUa)=Xa for all a<BA, there exist igI and

f/1ecua2 such that

(6) H(k),P≪£x)SEUr.

By (AMI) and (AI2) there exists VxCEcy^j such that {fk^Pa^jk^YWd^U,.

Then by (6)

(7) fk(.b≪)Pa.z,fk(.b2-)H(k),fkCb^Pfk^M^Vi.

Since f is an approximative resolution of /, there exists Vz^^ka^ such that

(8) fk^Pfku^ix), gkcb^f(x)(=V2.

By (4) there exists V3(EC＼;kCb^ such that fk(b2-)Pavfk^H(k),qH,k^j＼h(k)

esf(F8, ^tc&a))- Since ^4,k^jih(k)<=Yok^, there exist ^oeFo and F4gc1^k62)

such that qbi,k(b2>jih(k),qk^yo)^V4. Thus by (7) and (8)

(9) qk(.n-if(x),Qkib2^yo)^st(st(Vu CV*(62>),5^q^A(62)).

Since ^ is a 1-refinement function of (<V,c^), by the choice of b2 qulb^.b^b^

st2cVk(b2> Then by (9) there exists y'e^ such that qhf{x), qh{yo)^V. By

the choice of bx there exists FGq/ such that f(x), yo^q^V/(ZV. Since jogFo,

/(x)Gsf(F0) CV). By the choice of <V, x<=f~lst{Y<>,<V)dst(X0, pl＼HJa^ and then

there exist x^X0 and U2^cUai such that paXx), pa (xo)<^U2. By (6) there
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exists Uz(BHJai such that pa2,aiH(k), pai(x)^U3. Thus pa2,aiH(k), pai(x0)^

st(U2,IJa^) and then by the choice of ≪ithere exists U^RJa such that paz,aH(k),

pa(x0)^U. This means pa2,aH(k)<=st(pa(X0), cUa)=Xoa. Hence we have (5).

By (3) and the choice of Gi

(10) (Pa2,aH＼K0, p°ai,ag)<CUoa<StcUoa

Since k is a 1-refinement function, by (1) and (4) it is easy to show that

(.Qku->.bfkwPa2.fk(.b-)H,qbi,bjih)<st<=Vb. By (5) this means

(11) (flpOa.fkWpat.aH, q°bt.bh)<StCVob.

(5), (10) and (11) mean that pa2,aH: K^XOa has the required properties. Then

f0 has ALP with respect to Ji and hence so does f0. R

(2.6) Lemma. Let f: X-+Y be a map and let Y be a normal space. Let Xo

and Yo be subspaces of X and Y, respectively. If f is a closed map and f~＼Y0)

=X0, then for each HJ^CoviX) there exists cv^CoviY) such that f^sttXo, <V)

dst(X0, HJ).

Proof. Take any V(ECov(X). Since st(X0,cU)=sf(X0, cU)=sf(/"1(F0), CU)

and / is closed, W=Y―f(X-st(X0, HJ))is an open set in Y and WZ)YQ. Since

Y is normal, ^―{W, Y―Yo} forms a normal open covering of Y by Theorem

1 of MS [23, p. 324]. Hence /"Wo, (V)=f-1st(70, <=V)=f-W(ZsKX0, CU)=

st(X0, <V). m

(2.7) Corollary. Let (X, Xo) and (Y, Yo) be P-pairs and f: {X, X0)-*(Y, Yo)

a map. Let f: X-*Y be a closed map, Y a normal space and f~1(Y0)= X<>. If

f: X-*Y has ALP with respect to Ji, then so doss f0 '■Xo―>F0. Here f0 is

induced by f.

(2.8) Corollary. Let f: X-^Y be a closed map. We assume any one of

the conditions(i)-(iii)below. If f has ALP with respect to X, then so does

f＼f-＼Yo):f-＼Y0)^Y0 for any closed subset Yo of Y.

(i ) X and Y are collection-wisenormal.

(ii) X and Y are paracompact.

(iii) X and Y are pseudo-compact normal.

(2.7) follows from (2.5)and (2.6). (2.8) follows from (2.7) and the fact that

every closed subset of a space satisfying one of the conditions (i)-(iii)is

P-embedded (see Corollary 15.7, Theorem 15.11 and Corollary 15.15 of Alo-Shapiro

[1]). ■
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(2.9) Theorem. Let all fc: XC->YC be maps between compact spaces for cgC.

Then f=n{fc:c^C}:X=II{Xc:c^C}-^Y=n{Yc:cELC} has ALP with respect

to Ji iff all fc have ALP with respect to Ji.

Proof. We use the same notations as in the proof of (III.2.1).

First we assume that all fc have ALP with respect to JC. Then all fc

satisfy (ALP) with respect to JC. We show that f={f, fh: h^F(B)} :(3C, <U)

->('V, C1^) has ALP with respect to JC. Take any admissible pair (g, h) of f,

that is g>f(h). Put h : m={clf c2, ■■･, ck}->B and g: mr=m＼J{ck+l, ■■■, ck> }-*A

Since g>f(h), g(Ci)>fcih(d) and then (g(cf), h{ct)) is an admissible pair of fci

for l^i^k. By the assumption there exist admissible pairs {ai} bt) of fci,

ai>g(Ci), bi>h(Ci), satisfying (ALP) for fci and (gici), h(ct)) with respect to

JC, l<Li<^k. We define choice functions h':m-*B and g': m'^A as follows:

hr(Ci)=bi for l^i<k, and g'(d)=at for l^^fc, ^/(ci)=^(c<) for k + l^i£k'.

Then g'>g, h'>h and (,§･',/i')is an admissible pair of f.

We show that (gf, h') has the required properties. Take any (K, K0)^JC

and maps u=(ucU uc2, ■■■,uck): K^Yh>, v=(vcl> vc2,■■■, vck, ■■■, vck>): K0-+Xg>

such that (fvpg'.fw>v, u＼K0)<stcVh,. Then (/#ccoPcg>cdx/an'ia^a, uci＼K0)

<stcVch＼c≫ for l^z'^&. By the choice of (at, bi) for i, lf^it^k, there exists a

map Uci: K-^Xcg＼ci^ satisfying

(1) (Pcgi'Uixg(.covci,Uci＼Ka)<stcUcg＼c^ and

(2) ＼f'n(.ci')P<g'(ci),fcih<ici)Uci,Q<h'(.ci^,h(.ci')Uci)<CStCV"n(ci^-

We define U=(Ueu Uc2, ■■■,Uck, vck+u ■■■,vck>): K^Xg. By (1) and (2) it is

easy to show that (pe>,gv, U＼K!>)<stcUg and {fnPg.f^U, qh.,hu)<st<=Vh. Then

f has ALP with respect to JC.

Next we assume that f has ALP with respect to JC and show that all fc

have ALP with respect to JC. Take any ceC and any admissible pair (a, b)

of fc. We define choice functions g:m = {c}^A and h'.m-*B by g{c)―a and

h(c)=b. Then (g, h) is an admissible pair of f. By the assumption there

exists an admissible pair {gf, h') of f, gr>g, h'>h, satisfying (ALP) for /"and

{g, h). Put h'-.m^B and g':m2-^A. Since gr>g, hr>h and g'>f(h'),

m(Zmu mdm2 and miCm2. Then we may put mi={c, clf c2, ･･-, ck] and

m2=miW{cA+1, ･･･, c*'}.

We put a'―g'{c) and b' = hf{c). Trivially (a', 60 is an admissible pair of

fc. We show that it has the required property. Take any (K, Kq)<bJC and

maps v:K0-+Xca', u＼K-+Ycv such that
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(fl'Pi'.fcw.v, u＼K0)<st<=Vfr.

Take any point x=(xe, xeu ･･･,ici-)G^ and put fh'pg>,h-(x)=(yc, yeU ■･■,yck)

<EiYh>. We define v':K0->Xg' and ur:K-+Yh. as follows: v'(z)=(v(z),xcl,xc2,

･･･,xck>) and u'{z)=(u(z), ycl,yc2,･■■, yck) for z^K. By (3) it is easy to show

that (fh.'pg>,foi')V',u'lKoXstcVn'. By the choice of (#', h') there exists a map

U:K-^Xg-Xca such that (pg',gvr,U＼K0)<stcUg and (fhpg,f(h,U, qh-,uu')<stcvh.

This means that (pea>.av,U＼K0)<stcUca and (flpi./c^U, qcb.,bu)<stcvcb.Thus fc

has ALP with respect to JC and hence so does each fc. m

§3. Approximatively n-coimected maps.

Using the approximative lifting property we introduce approximatively

n-connected maps and investigate their properties.

Let 1 be a collection of pairs of spaces. Let (DC, HJ)={(Xa, 11a), Pa',a, A}

and (<y,q7)={(F6, cvb), qb.ib,B} be approximative inverse systems. Let f=

{/,/,: 6 <=J3}:(DC, CU)->(C^,cy) be an approximative system maps.

We say that f: (X, tU)->(£y,CV) has the ^-approximative lifting property, in

notation ALP*, with respect to JC provided that it satisfiesthe following:

(ALP*) For each admissible pair (a, b) of f there exists an admissible pair

(a0, bo)>(a, b) with the following property; for each (K, KQ)^J( and any maps

g:K->YbQ, h:Ko^Xao with (fbopao,fcbo>h,g＼Ko)<st<=Vbo, there exists a map

H:K-*Xa such that paa,ah=H＼K0 and (qbo,bg,fbPa./wHXstcVi,.

We say that f has the **-approximative liftingproperty, in notation ALP**,

with respect to JC provided that it satisfiesthe following:

(ALP**) For each admissible pair (a, b) of f there exists an admissible

pair (a0, bo)>(a, b) with the following property; for each (K, K0)^JC and any

maps g:K-*YH, h:Ko^Xao with fb6Pa0,fcb0^h=g＼K0> there exists a map

H:K->Xao such that pao,a,h=H＼Ko and (qbo,bg,fbPa,fcb>H)<stcvb.

(3.1) Lemma. Let Ji be a collection of polyhedral pairs. Let (2C, 17) and

(y, a^) be approximative inverse systems in POL or in ANR.

(i) An approximative system map f'.{T, <U)-≫(<V,CV) has ALP with respect

to Ji iff f has ALP* with respect to Ji.

(ii) Let f be commutative, f has ALP* with respect to Ji iff f has ALP**

with respect to Ji.

Proof. We show that (ALP) implies (ALP*). Take any admissible pair

(a, b) of f. Since Xa is a polyhedron or an ANR, there exists <Ue£Oy(Xa)

satisfying (*) in (1.5.5) for <Ua. There exist b,>b and ax>a, f(bi) such that
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^11,6CV6>5^CV6l, pa＼,aCU>StcUai and

(1) (fbPavf(.b-)>qbvbfb1Pa1,f<.b1))<^CVb-

By the assumption there exists an admissible pair (a2, b2)>(au bx) satisfying

(ALP) for f and (au bx).

We show that (a2, bz) has the required property. To do so take any

(K, K0)<=J( and maps g:K-^YH, h:K0-+Xa2 such that (fb2Pa2,/(b2-)h,g＼K0)

<stcVbr By the choice of (a2, b2) there exists a map H: /f―>ZGl such that

(2) (paz,aih, H＼K0)<stcUai and

(3) (fb1Pavfcb1,H, qb2,blg)<sWbl.

By the choice of ax and (2) (pa2>ah, pavaH＼K,)<cU. By the choice of HJ there

exists a homotopy F:K0Xl-*Xa such that F is a 'Ua-homotopy, F0=pavaH＼K(s

and Fx―pa2,ah. By the homotopy extension theorem (see Th. 3 of MS [23,

p. 291]) there exists a homotopy F:KxI-^Xa such that F0―pavaH and

F＼K0Xl=F. Since F is a ^a-homotopy, there exists an open neighborhood U

of if0 in if such that F＼UXI:UXI-*Xa is a cUa-homotopy. Take a map

v:K-*I such that u(2-)=l for zeiiTo and v(z)=0 for z(=K―U. We define a map

H'.K-^Xa as follows: H{z)―F{z, v(z))for zgK It is easy to show that

(4) H＼K0=pavah and

(5) (pavaH,H)<Va.

By (1),(3),(5) and the choice of bx we have that (fbpa,fmH, Q^.bgXst^Vb.

Thus by this and (4) f satisfies(ALP*). Thus (ALP) implies (ALP*). The

converse is trivialand hence we have (i).

We assume that f is commutative and satisfies(ALP**). We show that f

satisfies(ALP*). Take any admissible pair (a, b) of f. Since f is commutative,

there exist bx>b and ax>a, f{bx) such that 9611,6cV6>sfcV6land fbpa1.fm=

^.o/oiKi./csi)- There exists an admissible pair (a2, b2)>(au bx) satisfying

(ALP**) for f and (au bx). Since Yb2 is a polyhedron or an ANR, there exists

cVGCoviYhz) satisfying (*) in (1.5.5)for cvbz. There exist. b3>b2 and as>a2,

f(bs) such that qorlHc[?>stcvH and fb2Pa3,fcb2^=Qb&,b2fb3Pa3,fcb3>･

We show that (g3, bs) has the required properties. Take any (K, K0)^JC

and any maps g:K^Ybi, h:K0->Xa3 such that (fbspa8.f<.i,s)h,g＼K0)<stcVH.

Then by the choices of a3 and b3, (U%pas,fat-)h,qH,Hg＼K*)<cv. Then by the

choice of cy there exists a ci^-homotopy G: K0Xl->Yb2 such that G0=qb3,b2g＼K0

and Gi=fb2pa3,f(.b2-)h.By the same way as in (i) there exist a homotopy

G: Kxl-+Yb , an open neighborhood V of /f0in K and a map :v:K-+I such
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that G0=qH,Hg, G＼K0Xl=G, G＼VxI: VXI^YH is a ^-homotopy and v(z)=0

for ze=K-V, v(z)=l for zz=K0. We define a map g＼K->YH by g(z)=G(z, v(z))

for 2-e/T. It is easy to show that

(6) g＼Ko=fbipaa.fibl)h and (g, q^^gX^^.

By (6) and the choice of (a2, b2) there exists a map H: K-^Xai such that

H＼K0=pas,aih and (fblpavfu>0H, qH,Hg)<st<Vbl. Thus pai.aH＼Ko=pa3,ah. By

the choices of <2xand 6t,(fbpai.fwH, q^.hgX^h and then by (6),(fbpavfwH,

qbt.bg)<st<=Vb.Thus f satisfies(ALP*). Hence (ALP**) implies (ALP*). Trivially

(ALP*) implies (ALP**). Hence we have (ii). Bl

Let Ak be the standard ^-simplex. dJk denotes the boundary of Ak. We

put (A S)n={(Jfe, 8Ak):k=0, 1, -, n+l}and(Z), S)≫={(J*, 9J*): *=0, 1,2, ･･･)

for each n = ―＼.0. 1. 2. ･･･.

(3.2) Lemma. The following statements are equivalentfor each n, n = ―1, 0,

1, 2, ･･･:

(i) f has ALP* with respect to (D, S)n.

(ii) f has ALP* with respect to n+1POLpairs.

Proof. Trivially (ii)implies (i). By induction on n we will show that

(i) implies (ii).

First we take n = ―1. Take any admissible pair (a, b) of f. There exist

bx>b and at>a, f(bi) such that qb~lbcVb>sF<=Vbland (fbpai./w, QbvbfbiPal.ful->)

<cVb. There exists an admissible pair (a2, b2)>(au by) satisfying (ALP*) with

respect to (5, D).l for (au bx). There exists az>a2 such that (fblpas.fcbo>

Qb2,b1fb2PaA.f(.t>2^<^C^bl-

We show that the admissible pair (a3, b2) has the required property. Take

any (P, P0)e°POLpairs and maps g:P-+YH, h:P0^Xas such that (fb2Pas.fcb2>h,

g＼P0)<stcVt>2. There exist a simplicial complex A'and a subcomplex L of K

such that ＼K＼=P, ＼L＼=P0 and dimC^-L^O. Take any vertex v^K―L.

Since (J°,dA°)―(J°,$), by the choice of (a2, b2) there exists a map gv: {v}->Xai

such that (fblpavf(bogv, qbi.blg＼{v})<st<Vbl. Now we define a map H:P->Xa

as follows: H(z)=pas,ah(z) forze|L| and H{v)=pai,agv(v) for v^＼K＼ ―＼L＼.

Clearly H is continuous. It is easy to show that H＼P0=pas,ah and (fbpa.f(.b->H,

<]b2,bg)<stcVb. Hence f has the required property.

Next we assume that (i) implies (ii) for each k, k<n, and show it for

n+1- Take any admissible pair (a, b) of f. There exist bi>b and at>a, f(bt)

such that qb}.bcVb>st<=Vbtand (fbpa,.fw, Q^.bf^Pa^.fcboX^b. There exists an
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admissible pair (a2, b2)>(au bx) satisfying (ALP*) with respect to (S, D)n+1 for

(fli,61). There exists a3>a2 such that (fblpa3,fa,^,?&2,61/42/>a3,/(62))<q'VBy

the inductive assumption there exists an admissible pair (a4> 64)>(a3, b2) satis-

fying (ALP*) with respect to n+1POLpairs for (a3, b2).

We show that (a4, 64)is the required one. Take any (P, Po)e"+2POLpairs

and maps g:P->Yb4, h:P0->Xa4 such that (fhpai,fcb^h, g＼P0)<stQ/b4. There

exist a simplicial complex K and a subcomplex L of K such that |iT| ―P,

＼L＼=P0 and dim(/f-L)^n+2. Let Kn+1 be the (n+l)-skeleton of K. We put

P'=|/f≫+i|Vj|L| and then (/", P0)e"+1POLpairs. By the choice of (c4, 64) there

exists a map //':P'-^Zag such that

(1) H'＼P0=pa4,a3h and (fHpavf^Hf, qbi.Hg＼P')<st<Vbl.

Take any (n+2)-simplex G<=K-(Ka+1＼jL) and then dodP'. By (i;

(fb2Pa^nb^Pa3,a2H'＼da, q^^gldoXst^V^ and then by the choice of (a2, 62;

there exists a map £<;:a-^Xai such that

(2) go＼da=paa.a1H'＼d<r and (fblpai,fcb^ga, qbi,hg＼o)<stcvbl.

Now we define a map H:P-+Xa as follows: H{z)=paz,aHf{z) for zgP' anc

H(z)=pai,ago(z) for ^e<TGJfC-(A:n+1WL). It is easy to show that H is well

defined, continuous, H＼P0=pai,ah and {fbpa,smH, q^.iigXstcVt, by (1) and (2)

Henrft /"has the rennireH nrnnerfv. M

(3.3) Theorem. The following statements are equivalent for each n, n =

-i, o,i

(i

(ii

(iii

(iv

)

)

)

)

A map f has ALP with respectto(D, S)n.

f has ALP with respectto POL£&.

/ has ALP with respectto "+1POLpairs.

/ has ALP with respectto T0P2+U..

Proof. By (1

By (3.1) and (3.2)

.16

(i)

) (ii) and (iv) are equivalent. Trivially (iii)―>(ii)―Ki)hold

) implies (iii). W

We say that an approximative system map f: (3C, *!/)―K<V,CV) is approxi-

matively n-connected, in notation f^ACn, provided f has ALP with respect to

(D, S)n. We say that f is approximatively oo-connected, in notation f^AC°°,

provided f<^ACn for each integer n^―1. We say that f is approximatively

oooo-connected, in notation f^AC0000, provided f has ALP with respect to

(D, SU

We sav that a map f: X-^Y is approximatively n-connected, in notation
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fGACn, provided that / has ALP with respect to (D, S)n. Thus f^ACn iff

it satisfiesany one of the conditions (i)-(iv)in (3.3). Similarly we may define

approximative oo-connectedness, in notation j^AO°, and approximative oooo-

connectedness, in notation f<=AC°°°°.

(3.4) Theorem. // a map f: X-^Y is approximative^ n-connected, then for

each xg! pro-nk{f): pro-itk(X, x)-+pro-itk(Y, /(x)) is an isomorphism in pro-

groups for k^n and an epimorphism for k = n-＼-l.

Proof. By (1.4.9)there exist approximative ANR-resolutions p: X->(DC, HJ),

q: F->(<y, CV) and an approximative resolution f of f with respect to p and q

satisfying (RM1) and (RM2). Take any point xsl Then by (1.3.16)p:(X, x]

->(3f, x, <V) = [(Xa, xa, Va), Pa',a, A} and q :(Y, /(x))->(<y,/(*),<V) = {(Xbl

f(x)b, c^b), Qb＼b,B} form approximative ANR-resolutions. Here Xa=pa(x) and

f(x)b=qbf(x) for a^A and b&B. By (RM2) fb: Xfm^Yb induces fb: (XJm,

Xft≫)-*(Yb,f(x)b) for b&B. Then f:(X, *, V)^(QJ, /(x),q;) forms an approxi-

mative resolution of /: {X, x)->(F, /(*)). By (1.5.10) H(p):(X, x)-+H(X, x)

and //(g):(F, f(x))-*H(<y, /(x)) form HANR0-expansions and H(f): //(3T,x)-*

^(^, /(*)) forms a HANR0-expansion of /: {X, x)-^(Y, f{x)). Here ANR0 is

the pointed category of ANRs. By (1.4.4)and (1.5.5) we may assume that each

(Vb has the property:

(*) if r, s:(Z, z)-+(Yb, f(x)b) are sW^-near, then r^s rel.z for any pointed

space (Z, z).

By (3.2) and (3.3) f has ALP* with respect to POL£&. Take any admis-

sible pair (a, b) of f. Then there exists an admissible pair (au bi)>(a, b)

satisfying (ALP*) with respect to POLJ&J, for (a, b).

When we take the polyhedral pair (Jfe+1,ddk+1), by the choice of (alt bY) it

is easy to show that

(1) Ker7rft(/6l/>ai,/C6l))c:Ker7r*(./>ai,a)for k<n.

When we take a polyhedral pair(9J*+1, v) where v is a vertex of 9J*+1, by the

choice of (alf bx) and (*) it is easy to show that

(2) Imizk(qbvb)CL＼mitk(fbpa,fm) for fe^n + 1.

Here Ker(/z) and lm(h) denote the kernel of h and the image of h for any

homomorphism h.

By Th. 2 of MS [23, p. 108] (1) means that pro-7r*(/) is a monomorphism

for k£n. Also by Th. 4 of MS [23, p. 112] (2) means that pro-nk(f) is an

epimorphism for k^n + l. Hence by Th. 6 of MS [23, p. 114] pro-7rft(/)is an
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isomorphism for k^n. m

(3.5) Corollary. Let f:X^Y be a map. If f^AC, then pro-izk(f):

pro-7tk{X, x)^>pro-7tk(Y,f(x)) is an isomorphism for all k and for any xgI M

(3.6) Corollary. Let f: X-+Y he a map.

(i) // f<=ACn, then #,(/): xn(X, x)―>7in(Y,f{x)) is an isomorphism of shape

groups for any xgI

(ii) // f<^AC°°,then nk{X, x)^Kk(Y, f(x)) is an isomorphism for all k and

for any xgI, m

For a space X, s&X denotes the shape dimension of X. This notion was

introduced by Dydak and he showed that sdZ^dimZ and sd(Z, x)=sdZ (see

Th. 7 of MS [23, p.103]).

(3.7) Theorem. Let f':X-+Y be a map and n+l=Max(sdY, sdZ+l)<oo.

// f^ACn, then for each x<=Xf: (X, x)->(F, f(x)) induces a shape isomorphism.

Proof. Let p:X-*(30, HJ), q : Y-+(<y, cv) and f: (DC,iO->(^, <=V) be as in

the proof of (3.4). Then (<y,<=V)satisfies(*) in the proof of (3.4). By (3.2)

and (3.3) f has ALP* with respect to n+1POLpairs. Take any admissible pair

(a, b) of f and then there exists an admissible pair (au bi)>(a, b) satisfying

(ALP*) with respect to re+1POLpairs for {a, b). Since sd(X, f(x))=sdY, by

Theorem 2 of MS [23, p. 96] there exist b2>bu a pointed polyhedron (P, p)

and maps rl:(P, p)-+(Ybl, f(x＼), sx:{Ybv f(x)H)-^{P, p) such that

(1) dimP^sdF and r1sl^qH,H rel.f{x＼.

Since f satisfies(RM2), there exists az>au f(b2) such that

(2) fb1Pa2,f(.b1^==Qbi,b1fb2Pa2,f<ib2-)･

Since sd(X x)=sdZ, by Theorem 2 of MS [23, p. 96] there exist a3>a2, a

pointed polyhedron (Q, q) and maps r2:(Q, q)-^(Xav xaz), sz:(Xa3, xaa)-+(Q, q)

such that

(3) dimQ^Ls&X and r2s2^pa3iaz rel.xaz.

By the simplicial approximation theorem (see [32, 33]) there exist simplicial

complexes K, L, vertexes q^K, p^L, and a simplicial map k:K―>L such that

＼K＼=Q, ＼L＼=P and

(4) Sifb2Pa2,f^r2-k rel.q.
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Let M(k) be the mapping cylinder of k. Let u: ＼K＼XlR＼L＼-±M(k) be the

identification map. We identify (x, 1) and k(x) for x<b＼K＼. Let T―＼K＼X{0}

＼J{q}Xl. Since k is simplicial, (M(k), u{T)) is a polyhedral pair by Theorem 6

of MS [23, p. 295]. By (1) and (3) (M(k), w(T))e"+IPOLpairs.

By (1) and (4) there exist pointed homotopies H1:QxI-+P and H2:YHXI

->F6l such that H＼ = k, H＼ = sJHpa2,fu,^r2, H＼gXl)=p and H21=r1s1, Hl=qH>H

and H＼f{x)HXl)=f{x)bv We define a map #: ＼K＼Xl^Yh as follows: //(*, t)

= H'＼fb2Pa2,fa>2,r2(x), 2t) for (x, t)e＼K＼ X[0, 1/2] and //(x, t)=rxH＼x, 2t-l) for

(x, 0e|A"|X[l/2, 1]. Then HQm ＼K＼X/c|L|->rBl induces a map H': M{k)

->Y"6l such that H@rx = H'u. We define a map h: u(T)-^Xai as follows:

/z(m(x, 0))=£a2,air2(x) for (x, O)gT and h(u(q, t))=xai for (q, t)^T. Since

m| 1ATj X{0}: |A"| X{Q}->u(＼K＼ X{0}) is a homeomorphism, h is well-defined and

continuous. By (2) fb1pa1,f<.b1->h= H'＼u(T). By the choice of (alf bi) there exists

a map G : M(k)―>Xa such that

(5) G＼u(T)=pai.ah and (fbpa,f^G, qbl,bH')<stcvb.

Let m=Gu＼＼L＼ : ＼L＼->Xa. By the definition of //' and (5) (fbpa.f^m,

q^.briXstcVt. Then by (*) in the proof of (3.4) fbpa..fwmsi.=^qbl.hr1Si rel. f(x＼

and hence by (1)

(6) fbPa.fi≫ms1=zqbi.b rel. f(x)bi.

The homotopy Gu＼＼K＼Xl: ＼K＼Xl-^Xa gives that pa^aTi ―mk rel. q and hence

by (3) and (4)

(7) Paa.a ―mSifbipat.fUi> rd.X^.

By Morita's diagonal lemma (see MS [23, p. 112]) (6) and (7) mean that H(f):

H(3C, x)->//(<3/,f(x)) induces an isomorphism in pro-HANR0. Hence /: {X, x)

―>(Y, f(x)) induces a shape isomorphism. H

(3.8) Corollary. Let f:X-+Y be a map, sdZ<c≪ and sdF<cx3.

f<^AC°°,then f :(X, x)->(Y, /(x))induces a shape isomorphism for each ig!

//

m

In the same way as in (3.7)without the dimension condition,we can show

the following:

(3.9) Lemma. // f: X-^Y has ALP with respect to POLpairs, then f:(X, x)

―>(F,f(x)) induces a shape isomorphism for each igI M

(3.10) Remark, (i) When X and Fare connected, (3.7) follows from (3.4)

and Th. 7 of MS [23, p. 152]. (ii) Since any pointed shape equivalence induces
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a shape equivalence, (3.7)-(3.9)hold for unpointed case.

Kozlowski [14] introduced the notation of hereditary shape equivalence. We

say that a map /: X-*Y is a hereditary shape equivalence provided that for

each closed subset Yo of Y, f＼f'＼Y0):f'＼Y0)-^Y0 is a shape equivalence.

By (2.8),(3.9) and (ii)of (3.10) we have the following:

(3.11) Theorem. Let f: X-+Y be a closed map between paracompact spaces.

If f has ALP with respect to POLpairs, then f is a hereditary shape equivalence. M

§ 4. Approximative extension property.

We introduce the approximative extension property, and investigate relations

between it and approximative n-connectedness.

Let JC be a collection of pairs of spaces. Let (DC, cU)={(Xa> <Ua), Pa1,a, A]

be an approximative inverse system in TOP. We say that (3C, HJ) has the

approximative extension property, in notation AEP, with respect to JC provided

it satisfies the following condition:

(AEP) For each a<=A there exists a^a satisfying that for any (K, K0)^JC

and for any maps h: K0―>Xai, there exists a map H: K^Xa such that

(H＼K0, pavah)<Va.

Let 2C―{Xa, Pa',a, A} be an inverse system in TOP. We say that X has

the approximative extension property, in notation AEP, with respect to JC

provided it satisfies the following condition:

(AEP*) For each a^A and for each 1J^Cov{Xa) there exists ax>a such

that for any (K, K0)^Ji and for any map h:Ka-*Xai there exists a map

H:K^Xa such that (H＼K0, pavah)<cU.

(4.1) Lemma. Let (<y, CV) be an approximative inverse system. We assume

that (Qj,<=V)is dominated by (DC, °U)in Appro-TOF. If (T, tU) has ALP with

respect to
<K,
then so does (QJ,c[S).

(4.2) Corollary. The property AEP with respect to Ji is invariant in

Appro-TOP.

(4.3) Lemma. Let {X, T) be an approximative inverse system. Then (3C, 17)

has AEP with respect to JC iff so doss DC.

By the way similar to (II.1.1)or (II.1.6) we can easily show (4.1) and (4.3).

(4.2) follows from (4.1). m



296 Tadashi Watanabe

We say that (DC, °U)and DC have the extension property, in notation EP,

with respect to X provided they satisfy the following condition:

(EP) For each a(^A there exists ax>a such that for each (K, K0)^J( and

for any map h:K0->Xai there exists a map H:K->Xa with H＼K0―pavah.

(4.4) LEMMA. Let Ji be a collectionof polyhedral pairs. Let (DC, HJ) be an

approximative inverse system in POL or ANR. Then (DC, 17) has AEP with

respect to Ji iff it has EP with respect to Ji.

Using (1.5.7),by the way similar to (3.2), we can show (4.4) for approxi-

mative inverse systems in POL or ANR. W

Let p={pa : a^A} : X-*(2£,<U) be an approximative resolution and p: X->3?

a resolution of a space X. We say that p: X-*(D£,HJ) has AEP with respect

to X provided that (jar,CU) has AEP with respect to Ji. Similarly we define

EP for p: Z-KJ3C, V). Similarly we define AEP and EP for p: X-^30. By the

way similar to (II.1.3) and (II.1.7) we can show the following:

(4.5)Lemma, (i) Let p:X-+(3C, HJ) and p':X^{30, <U)' be approximative

AP-resolutions.If p has AEP with respectto JC, then so does p'.

(ii) Let p: X-^DC and p': X-*30' be AP-resolutions.If p has AEP with

respectto JC, then so doesp'.

From (4.3)-(4.5),by the way similar to (II.1.8) we have the following:

(4.6) Theorem. Let X be a space and JC a collectionof pairs of spaces.

Then (i) and (ii)below are equivalent,and moreover if JC is a polyhedral pair,

then (i)-(iv) below are equivalent.

( i ) Any/some approximative AF-resolution has AEP with respect to JC.

(ii) Any/some AF-resolution has AEP with respect to JC.

(iii) Any/some approximative ANR- or POL-resolution has EP with respect

to JC.

(iv) Any/some ANR- or POh-resolution has EP with respect to JC. m

Thus by (4.6) we say that a space X has the approximative extension

property, in notation AEP, with respect to JC provided it satisfiesany one of

the conditions in (4.6).
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By the way similar to (1.12) we have the following:

(4.7) Lemma. Let JCi and J(2 be collections of P-pairs of spaces and Jix<eJiz.

If a space X has AEP with respect to JC2, then so does X with respect to JCX. m

Borsuk introduced the notion of approximative n-connectedness for spaces.

We say that a space X is approximatively n-connected, in notation X^ACn,

provided pro-7rft(Z,x)=0 for each igZ and for each k, O^k^n. We say that

X is approximatively oo-connected, in notation X<^AC°°,provided that X^ACn

for each n, n=0, 1, 2, ･■･.

(4.8) Lemma. pro-xa(X, x)=0 for some ig! iff X is connected.

Proof. Let p: X->2C be an ANR-resolution and x be a point of X. We

put xa ―pa(x) for aeA Then p: (X, x)-+(2£,x)={(Xa, xa), pa＼a, A} is an

ANRo-resolution of (X, x).

First we assume that X is connected and show that pro-7T0(^ x)=Q. Take

any qgA Since Xa is an ANR, Xa is locally path-connected. Then all path-

connected components are open and closed. Since X is connected, there exists

a path-connected component T of Xa such that pa(X)dT. Since T is open, by

(B3) there exists a'>a such that pa',a(Xa.)CLT.

We show that pa＼a induces the zero homomorphism pa',a*: 7to(Xa'>#,-)―>

no(Xa, xa). Take any map r:(dl, 0)^(Xa>, xa'). By the choice of a',

pa',ar(dI)C.T. Since T is path-connected, there exists an extension r': I^-TaXa

of pa'.af. Thus pa'.a* is the zero homomorphism and hence pro-jr0(X, x)=0.

Next we assume that X is not connected and show that pro-7r0(^,x)^0.

By the assumption there exist open subsets XQ, Xx of X such that X0VJXi=X,

Xor＼X1=0) Xo, X^0. There exists a map /: X-^dI={0, 1} such that f(Xo)=O

and /(Zi)=l. By (Rl) there exist ae^4 and a map g:Xa-+dI such that

(f^PaXV, where <U={{0}, {l}}e<?0≫(3/). By the choice of <U, /=g/>o and

then pa^dg'XO) and ^(^Cg'^l). We assume that pro-7T0(X,x)=0. Then

there exists af>a such that pa1,a induces the zero homomorphism.

We may assume that igI0. Take any point x^X^.. We define a map

k:(dl, 0)-*(Xa., x^) by k(0)=xa- and £(l)=/vOi). By the choice of a' there

exists an extension k': I->Xa of pa-,ak. Then gk': I->dI is an extension of

gpa.,ak. Since ^',≪*(0)=j;aGg-1(0) and pa',ak(l)=pa(x1)^g-＼l), gpa',ak :dl

―>dlis the identity map. Thus la/: dl-^dl is extendable to g-^: /->37. This

is a contradiction and hence pro-7T0(X x)^0. s
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(4.9) Lemma. Let (X, x) be a pointed space. Then pro-K0(X, x)=0 iff any

POL- or ANH-resolution of X has EP with respect to {(J＼ 9J1)}.

Proof. We use the same notation as in the proof of (4.8). We assume

that pro-7r0(Z,x)=Q, and show the property EP. Take any a<=A. Since

pro-7T0(X,x)=0, there exists a'>a such that pa',a*' Xo(Xa>, xa>)->7t0(Xa,xa) is

the zero homomorphism. Take any map /: d/={0, 1}―>Za'. Take another

point 2. We define maps /0: {0, ＼}-^Xa> and fx: {1, 2}->Xa. as follows: fo(0)=

/(0), /o(l)=jca'=/i(l) and /i(2)=/(l). By the choice of a' there exist maps

g0: [0, Y＼-*Xa and ^i: [1, 2~]-^Xasuch that g0 and g1 are extensions of pa>,afo

and pa'.afi,respectively. Thus we define a map g: I->Xa as follows: g(t)=go(2t)

for 0^^1/2 and g{t)=g^2t) for 1/2^^1. It is easy to show that g is well-

defined and is an extension of pa>,af- Hence p has the required property. The

converse is trivial. M

(4.10) Lemma. Let (X, x) be a pointed space and let n be an integer. Then

pro-7t0(X,x)=0 and pro-7tn(X, x)~0 iff any POL- or ANR-resolution of X has

EP with respect to {{A1, dA1),(An+l, dAn+l)}.

Proof. We use the same notations as in the proof of (4.8). We assume

that pro-7r0(X,x)―0 and pro-7cn(X, x)=0. Take any geA Since pro-;rre(Z,x)

―0, there exists ax>a such that pava*'-7tn(Xai,xai)-*7rn(Xa> xa) is the zero

homomorphism. By (4.9) there exists a2>a1 satisfying (EP) with respect to

{{A1, dJ1)} for p and a.

We show that a2 has the required property. Take any map f :dAn+1^Xa2

and any point v^dJn+1. By the choice of a2 there exists a map h: I―>Xai

such that h(0)=xai and h(l)=pa2,aJ(v). Put T=dJn+1X{l}U{v} XlddJn+1xL

We define a map k:T->Xai as follows: k(x, I)=pa2,aif(x) for xe3Jre+1 and

k(v, t)―h(t)for ^g/. By the homotopy extension theorem there exists a map

K:ddn+1Xl-+Xai such that K＼T=k. We define a map w:(dJn+1, v)-^{Xav xai)

by iv(x)=K(x, 0) for x<=9Jn+1. By the choice of ax there exists a map

fl^:Jn+1^Za such that W＼ddn+I = pai,aw. Put S=Jn+1X{O}w3Jn+1X/CZl"+1X/.

We can define a map m: S->Xa as follows: m(x, Q)―W{x) for (x, 0)eJn+1X{0}

and m(x, t)=pai,aK(x, t) for (x, t)^dJn+1Xl. By the homotopy extension theo-

rem there exists a map M: An+lXl->Xa such that M|S=m. We define a map

g:dn+1->Xa by g(x)=M(x, 1) for xejn+1. It is easy to show that g＼dJn+1

= Pa,,af.

By the choice of a2, for any map f:dI->Xa2, pa2,af is extendable to /

Hence p has the required property. The converse is trivial, m
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(4.11) Lemma. Let (X, x) be a pointed space. Then pro-izk{X, x)=0 for k,

0<Lk<n iff any POL- or ANR-resolution of X has EP with respect to

＼(Jk+1,3J*+1): k=0, 1. ･･･,nh

(4.12) Lemma. Let (X, x) be a pointed space. Then pro-7rk(X, x)=0 for k

O^k^n iff any POL- or ANR-resolution of X has EP with respect to (D, S)n.

By induction on n we easily show (4.11) from (4.9) and (4.10). (4.12) fol-

lows from (4.11) and the fact that any resolution has EP with respect to

0POLnaira. m

(4.13) Corollary. Let X be a space and let n be an integer.

(i) For any points xu x2 of a connected space X, pro-itn{X, Xi)=0 iff

pro-7tn{X, x2)=0.

(ii) For any xu x2^X, pro-7ik(X, ^0=0 for k, O^k^n iff pro-7rk(X, x2)―0

for k. 0<k<n.

lent

(4.13) follows from (4.8)-(4.12). m

(4.14) Theorem. For each integer nSgO the following statements are equiva-

(i)

(ii)(ii)

(Hi)

(iv)

(v)

(vi)

pro-TVk(X, x)=0 for any x^X and for k, O^k^n.

pro-itk{X, x)=0 for some xg! and for k, Of^kf^n

X has AEP with respect to (D, S)n.

X has AEP with respect to POL£&.

X has AEP with respect to "+1POLpairs.

X has AEP with respect to TOP^airs-

Proof, (i) and (ii)are equivalent by (4.13). (ii) and (iii)are equivalent

by (4.6) and (4.12). (iv) and (vi) are equivalent by (1.3.16) and (4.7). Trivially

(v)―Kiv)―Kiii).By the way similar to (4.12) we can show that the property

EP with respect to (D, S)n implies the property EP with respect to n+1POLpairs

for polyhedral resolutions. Hence (iii)implies (v). M

Approximative n-connectedness can be defined by (i) in (4.14). Thus it is

equivalent to the other conditions in (4.14). We say that X is approximatively

oooo-connected, in notation X^AC0000, provided that it has AEP with respect

to (D, S)oc. Also we need to consider spaces having AEP with respect to

POLDairs. These properties are characterized as follows:
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(4.15) THEOREM. The following statements are equivalent:

( i ) A space X has trivialshape.

(ii) X has AEP with respect to POLpairs.

(iii) X has AEP with respect to TOPP.pairs.

(ii) and (iii) are equivalent by (1.3.16) and (4.3). By

(4.16) below we can show the equivalence of (i) and (ii).

the way similar to

m

(4.16)Theorem. Let X be a space and sdX=n<oo. Then X is approxi-

mativelyn-connectediff X has trivialshape.

Proof. Let p:X-+DC be an POL-resolution. We assume that X^ACn.

Take any aeA By (4.4) and (4.14) there exists a'ya satisfyingEP with

respect to POL&& for a. Since sdX=n, by Theorem 2 of MS [23, p.96]

there exista">a', a polyhedron P and maps f: Xa,,->P,g:P-+Xa> such that

pa'.a^―gfand dimP^n. Put T=Px{0, l}cPx/ and take any pointxa-eZa..

We define a map h:T->Xa> as follows: h(x,0)―g(x) and h{x,l)=xa' for

xeP. Since (Pxl, T)ePOL£&, by the choice of a' there exists a map

H: Pxl-+Xa such that H＼T= pa',ah. Thus pa-,agis homotopic to a constant

map. Since pa≫,a'―gf,Pa",ais homotopic to a constant map. Hence X has

trivialshape.

We assume that X has trivialshape. We show that p has EP with respect

to POLpairs. By the assumption for any aei there exists a'>a such that

pa',ais homotopic to a constant map k:Xa>-^>Xa. We put k(Xa<)=xa. Let

H: Xa'Xl-^-Xa be a homotopy such that H0=pa',a and H1―k. Take any

polyhedral pair (P, Po) and any map f'.PQ-*Xa>. We definea map G:Px{l}

UP0X/->Xa by G(x, l)=jca for xeP and G(x, t)=H(f(x),t) for (*, t)^P0Xl.

By the homotopy extension theorem (see MS [23, p. 291]) there exists an

extension G:PXI-^Xa of G. We put g:P-+Xa by g(jc)=S(x,0) and then g

is an extension of pa'.af- Thus j? has EP with respectto POLpairs. Hence

X^ACn by (4.14). R

(4.17)Corollary. Let X be a space and sdX<oo. Then X<=AC~ if X

has trivialshape. B

§5. Partial realizations for decompositions.

In this section we introduced partial realizations for decompositions and

the approximative fullextension property.
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We say that (K, L) is a simplicial pair provided L is a subcomplex of a

simplicial complex K. SCpairs denotes the category of all simplicial pairs and

simplicial maps among them. Let n be an integer. "SCpairs denotes the full

subcategory of SCpairs consisting of all simplicial pairs (K, L) with dim(K― L)^n.

SCpairs denotes the full subcategory of SCpairs consisting of all simplicial pairs

(K, L) with dimK^n. Kn denotes the n-skeleton of K.
0SCpairs

is the full

subcategory of SCpairs consisting of all simplicial pairs (K, L) with K°dL. We

pUt okLpairs= k^pairsl^ok^pairs an" oSCpairs:=SCpairsrN＼oSCpairs.

Let I be a space and 17 a collection of subsets of X. Let (K, L)

eOb0SCpairs. We say that a map g: ＼L＼->X is a partial realization of (K, L)

in X relative to HJ provided for each (closed) simplex s of K there exists U^IJ

such that g(＼sr＼L＼)c.U. In case L―K, we say that g is a full realization of

(K, L) in X relative to 17. Sometimes we identify a simplicial complex K and

its geometrical realization ＼K＼(endowed with the CW-topology).

Hereafter we assume that Y is a paracompact space and /: X-+Y is a

closed onto map with the following property:

(#) f~1(Yo) is P-embedded in X for each closed subset Yo of Y.

Let I be a subcollection of O60SCpairs. Let p={pa: a^A}: X^(2C, 1J)

= {(Xa, HJa), pa1,a, A) be an approximative resolution. We put Dy=f~＼y),

D(y, cU)=st(pa{Dy), °U) for any a^A, y^Y and <Ue<?oy(Xa), and thus W(HJ)

-{D{y,cU):y^Y}^Cov{Xa). We put D(y, a)=D(y, <Ua) and £Da=£)(cUa) for

y^Y and aeA

We say that p has the approximative full extension property, in notation

AFEP, with respect to Ji and / provided it satisfies the following property:

(AFEP) For each a<=A there exists af>a such that for each (K, L)gJ{

and each partial realization g:L-^Xa> of (K, L) in Xa> relative to 3)a> there

exists a full realization G: K―>Xa of (K, L) in Xa relative to S)a such that

(G＼L, pa'.agXVa.

We say that p: X-*(2£, CU) has the full extension property, in notation FEP,

with respect to Ji and / provided that it satisfies the following condition:

(FEP) For each a^A there exists a'>a such that for each (K, I)eJ(

and each partial realization g＼L-+Xa- of (K, L) in Xa> relative to 2)a> there

exists a full realization G: K-*Xa of (K, L) relative to 3)a such that

G＼L = pa',ag.

(5.1) Lemma. Let p and p' be approximative AP-re solutionsof X. If p has

AFEP with respect to JC and f, then so does p'.
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(5.2)Lemma. Let p be an approximativePOL- or ANR-resolution of X.

Then p has AFEP with respect to JC and f iffp has FEP with respectto X

and f.

Let p={pa' a^A} : X―>3C={Xa, Pa',a, A} be a resolution. We say that p

has the approximative full extension property, in notation AFEP, with respect

to Ji f provided it satisfiesthe following condition:

(AFEP)* For each ckeA and each VeC^IJ there exist a'>a and

HJ'^CoviXa') such that for each (K, L)e JC and each partialrealizationg: L->Xa'

of (K, L) in Xa> relative to ZDiHJ')there exists a full realization G: K-+Xa of

(K, L) in Xa relative to ^)(CU) such that (G＼L, pa'.agXV.

We say that p has the fullextension property, in notation FEP, with

respect to JC and / provided it satisfiesthe following property:

(FEP)* For each a^A and each HJ^Cov{Xa) there exist a'>a and

HJ'&CovtXa*) such that for each (K, L)^JC and each partial realization

g:L->Xa' of (K, L) in Xa< relative to ^)(<U') there exists a fullrealization

GiK^Xa of (K, L) in Xa relative to 3)(HJ) such that G＼L = pa, ag.

(5.3) Lemma. Let p and p' be AP-resolutions of X. If p has AFEP with

respect to Ji and f, then so does p'.

(5.4) Lemma. Let p: X-*(3£,HJ) be an approximative AF'-resolution. Then

p: X-*(2£,HJ) has AFEP with respect to Ji and f iff p: X^3C has AFEP with

respect to JC and f.

(5.5) Lemma. Let p be an ANR- or POh-resolution of X. Then p has

AFEP with respect to JC and f iff p has FEP with respect to JC and f.

(5.6)Theorem. The followingstatementsare equivalent:

( i ) Any/some approximativeAP-resolutionof X has AFEP with respectto

Ji and f.

(ii) Any/some AP-resolutionof X has AFEP with respectto Ji and f.

(iii)Any/some approximativeANR- or POh-resolutionhas FEP with respect

to JC and f.

(iv) Any/some ANR- or FOh-resolutionhas FEP with respectto <X and f.

Proofs of (5.1)-(5.6). (5.6) follows from (5.1)-(5.5).In a way similar to

(4.4) we can show (5.2) and (5.5). (5.4) is an easy consequence of the defini-

tions. (5.1) follows from (1.3.3),(5.3) and (5.4).
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We show (5.3). We need an elementary fact:

Claim. Let p:X^R, q:X->S and g:R->S be maps. Let 3l^Cov(R) and

S(ECov(S). If g-＼S)>3i and (gp, q)<S, then g(st(p(Dy), 3l))(Zst{q(Dy),stS) for

each )≫gF.

Let p:X^3C and q = {qb: b^B}: X-^cq={Yb, qv ,b,B) be AP-resolutions.

We assume that p has AFEP with respect to JC and /, and show that q has

also AFEP.

Take any b<=B and any cv^.CaV(Yb). Then there exist <Vlf cy2, cv^CoviYb)

such that stcv^cv, cV2<cVi, stcvs<cv2 and cy2 satisfies(R2) for q and <Vlm

By (Rl) there exist a^A and a map g:Za―>F6 such that

(1) {qb,gPaXcV,.

By the assumption there exist ax>a and cU^Cov(Xai) satisfying (AFEP) for a

and g-'cVs. Take HJ^Cov^X^) such that stcU1<cUA(gpava)'lcV3. By (Rl)

there exist fti>6 and a map h: Ybl―>Xai such that

(2) (pa1,hqbl)<cU1.

By the choice of <Ui and (2) (g/>a,gpai,ahqbl)<<=V3. Then by (1) (qh,bqbv

gpavahqb^<stcVz<cV2. By the choice of ci^ there exists 62>6i such that

(3) (fti.b^i.a^.iiX^l"

We show that 62 and cV/=(/i^2,6l)~1(:Uie^Oy(F62)have the required proper-

ties. Take any (K, L)ej( and any partial realizationt:L->Yb2 of (K, L) in

YH relative to 3)(FS'). By (2) and the Claim, hqh,blt:L-^Xai is a partial

realization of (K, L) relative to ^(stHJi) and then relative to GDi^U), because

st'VxKHJ. By the choice of al and V there exists a fullrealization T':K-^>Xa

of (if,L) relative to 3)(g-l<=Vs)such that

(4) (T'＼L, pavahqb,,ht)<g-lcvs.

By (3) and (4) (gT'＼L, q^JXstcv^cv. By the Claim and (1), gT':K-*Yb is

a full realization of (K, L) relative to 2)(stcV3) and then relative to 2){pj),

because $,tcV%<cV. Hence q has AFEP. m

Thus by (5.6) we may say that / and the decomposition D={Dy: y<=Y} of

X have the approximative full extension property, in notation AFEP, with

respect to JC provided they satisfy any one of the conditions in (5.6). Let K

be a subcategory of 0SCpairs. We say that / and D have AFEP with respect

to K provided that they have AFEP with respect to ObK, respectively.
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Hereafter we assume that p: X-+(3£,HJ)is an approximative ANR-resolution

such that st(pa(X), cUa)=Xa for all cgA By (2.3) any space admits an ANR-

resolution satisfying the above condition.

(5.7) Lemma. For each a<=A there exists ax>a such that pa＼,a^a>stS)al

Proof. Take any a(=A and then there exists ax>a such that pa＼,acUa>stcUai.

Since /: X->Y is closed, for each y<=Y there exists an open neighborhood Vy

of y in Y such that Dydf~＼Vy)CLst{Dy, pl^aj)- Since Y is paracompact,

cV={Vv:y(EY)<=C0V(Y) and then there exists q^etf^QO such that c^>sf2^1.

There exists c2>g1 such that /"'(^^^a^^). Put 1/tt2={f/e:≪G£}. Since

Za2 is metrizable, by Theorem 2 of Kuratowski [17, p. 226] for each ee£

there exists an open subset G(Ue) of Xa satisfying

(1)

(2)

Uenpa2(X)=G(Ue)npa9(X) and

for each finiteset {eltez>･･■, en}dE, Ueir＼Ue2n---nUenr＼pa2(X)=0

implies G{Uei)C＼G{Ue2)r＼-r＼G{Uen)=0 .

By (1) <W={Xa2-pa2(X)}V{G(Ue):ee=E} is an open covering of Xar Then

there exists as>a2 such that pal.ai(<^)><Uas.

We show that a3 has the required property. Take any y<=Y and then

there exists Voe^i such that 3>eF0. By the choice of cvx there exists V^Gcy

such that sf(V0,sf(^,))cy}, Take any /gF such that £>(?,as)r＼D(y',as)^ 0.

Thus there exist Uu Uz^cUas such that pas(Dy)r＼U1^0, paz(DV')r＼U2i-0 and

Uir＼U2^0. By the choice of a3 there exist eu ez^E such that pal,a2(G(Uei))

ZDU, and p-a＼.a2{G(UeJ)^>Ut. Then

(3) PaXDy)r＼G(Ue,)*0, palDy.)r＼G{Ue9)^0 and G(t7e,)nG(f/e2)^0.

By (2) and (3), Ueir＼Ue2r＼pa2(X)^0 and then U eiC＼U
^r＼p a%{X)±

0. This

means that

(4) Pal(Uei)nPal(Ue2)^0.

By (1) and (3), pa2(Dy)r＼Uei=pa2(Dy)r＼p^JX)nUei=pa2(Dy)npaz(X)r＼G(Uei)

=pa2(Dy)r＼G(Uei)^0 and pa2(Dy.)r＼Ue2^0. This means that Dyr＼p-a＼(JUey)i-0

and Dv-r＼pa＼(JJe^0. By the choice of a2 there exist VU V^cv^ such that

f-＼V,)^p-a＼{Uei) and f-＼Vt)Z>p*＼{Ue2). Then by (4), Dyr＼f~1(V1)^0, Dy>r＼

f-＼Va)±0 and f-＼V1)nf-＼V2)^0. That is, f(Dy)^Vu f(Dy.)<=Vt and

V1r＼V2^0. This means that y'(Est{y, st(=v1). Since jyeFo, y'esfCFo, sfc^O

CVVO. By the choice of Vyo, Dy.(Zf-＼VV0)Clst(DVo, pl＼HJai) and then £(/, aO
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(Zst(pai(Dy0),stHJa^. By the choices of ax and a3, pa3.aiD(y', a3)cD(yf, ad,

Pal,aSt{pa1{Dyo)}stcUai)(Z.D{y<s,a) and then D{y', a3)(Zpal3.aD(y0,a). By the

choice of Dy> st(D(y, a3),@a3)Cpa＼.aD(ya, a) and hence pa＼.a@a>st3)a3. ■

Let JC be a collection of polyhedral pairs. Let Yo be a closed subset of Y.

Let a^A and IJ^CoviXa). We say that Yo has the extension property with

respect to a, V and S, in notation EP(a, 1/, JC), provided it satisfies the

following condition:

EP(a, "U, Jf): There exists c^a with the property; for each point y of

Yo, for any (/C,K0)^Ji and for each map g: K0-*st(pai(Dy), HJa^ there exist a

point y' of yo and a map G: K-+st(pa(Dy>), HJ) such that G＼K0=pavag-

(5.8) Lemma. lef Fx and Y2 be closedsubsets of Y. If Y1 has EP(a, HJ, <K)

and Y2cYu then Y2 has EP(a, st{st(pa(Dy),<V):y(EY}, JC).

Proof. By the assumption there exists ai>a satisfying EP(a, HJ, JC) for

7,. By (AI3) there exists a2>at such that ^U<:u>cu≫2- We snow that fla

has the required property. Take any point y of Y2 and any map g: Ko-+

st(pa2(Dy),<Uai). Since pa2,aig: K'0^st(pai(Dy), V^), by the choice of ax there

exist a point y' of Yx and a map G: K-*st(pa(Dy>), HJ) such that /jO2.a^^GI/STo-

By the choice of a2, pa2,ag: K0->st(pa(Dy), <V). Thus G(K)dst(pa(Dr), <U) and

G(K0)=pai.ag(K0)c:st(pa(Dv), V). Thus G(K)dst(pa(Dy), st{st(pa(Dy),HJ):y(E

Y＼). Hence Y2 has the required property. M

(5.9) Lemma. Let Ylf Y2, ■■■,Yn be closed subsets of Y. If all Yt have

EPCa, CU, JC), then so does F0=U{Fi: z= l, 2, ･■･, n＼.

(5.9)is an easy consequence of the definition, m

(5.10) Lemma. Let {Ys: s^S} be a discrete family of closed subsets in Y,

If all Ys have EP(a, <V, JC), then Y0=＼J{Yt: sgS} has EP(a, stHJ, JC).

Proof. Since Y is paracompact, then by Theorem 5.1.17 of Engelking [9,

p. 379] there exists a collection{Vs: s<^S＼ such that YsaVs, Vs are open sub-

sets of Y, Vsr＼VS'―0 for s, s'^S with s^s'. Since {YS: s^S} is discrete,

Yo is closed and then cv={Vs: seS}W{F―Y0＼(ECov(Y). There exists a^>a

such that f-1<=V>pa＼cUai. Put <UOl={[/e: ee=£} and £'={ee£: Uer＼paif-＼Y9)

=£0}. By Theorem 2 of Kuratowski [17, p. 226] there exists a collection

{G(Ue): e^E'} such that
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(1)

(2)
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G{Ue) are open in Xav G{Ue)r＼paJ-＼Ya)=Utr＼p≪J-＼Y*)

for all gG£' and

for each finitesubset {eu ez,■■■,en} of E',

Uelr＼-nuennpalf-1(Xo)=0 implies G(Uei)r＼G(Ue2)n-nG(Ue)=0

By the choice of E' and (1) V^iGiUe): e^E')＼J{Xai-paJ-＼Y,)}(ECov{Xai)

By (AI3) thereexists g2>g1 such that pl＼.ai<Ui>tVav

We put Xsa=st(paf-l(Ys),HJa) for <keA and s<^S. We show that

(3) Xsa2r＼X*;2=0 for s^s'.

To prove (3) we assume that for some s^s' (3) does not hold. Then there

exist Uu U2<=cUa2 such that U1r＼paJ~＼Ys)^0, Uzr＼paJ~＼Yt-)^0 andUinUt

=£0. By the choice of a2 there exist eu ez^Ef such that G(Uei)'Dpa2,a1(Ui)

and G(Ue2)Z)pa2,ai(U2). Then G{Utl)r＼G{U^0, G(Uei)npaJ-＼Ys)^0 and

G{Ue2)r＼paJ-＼Ys.)*0. Thus by (1) and (2)

(4) Ueir＼paJ-＼Ys)*0, Uetnpalf-1(Y,.)±0 and

Ueir＼Ue2r＼paJ-KYo)^0.

By the choice of <V and (4),VsZDfp-a＼(Uei),V,Z)fp-a＼(JJe2)and fp?l(Uei)nfp?l(Uu)

=£0. Thus l/JnFsO#a;([/ei)n#al(t/e^0 and then s=s' by the choice of

{Vs}. However s=£s'by the assumption. This is a contradiction. Hence we

have (3).

We put X^stipaf'XYi), Va), V^HJalXl for a^A. The maps pa and

pa.,a induce pi'.f-＼Y*)-*X*a and p°a',a:X°a^X°a for fl'>a. By (2.1) p°=

{p°a:a^A}:f-1(Yo)-^(3COf cU0)={(X°a,<U°),/>≫..≪,^4} is an approximative ANR-

resolution. By (I.3.2) p°:f-＼Yo)->2£ois an ANR-resolution.

By the assumption for each sg5 there exists as>a satisfying EP(a, HJ, Ji)

for Ys. We put Z―R{XsasX{s}: s^S} (topological sum). We define maps

q＼f-＼Y≫)-*Z and q': Z-+X°a as follows: q(x)=(pa$(x), s) for x^f~＼Ys) and

q＼z,s)=pas,a(z) for zeEXsasX{s}. Since {Fs:sgS} is discrete in Y, {f~＼Ys):

s(ES＼ is discrete in X. Using Theorem 5.1.17 of Engelking [9, p. 379] we can

easily show that /-1(^o)=W{/-1(F,): seS): 5e5}=c{/-1(Fs): s^S} (topologi-

cal sum). Then q is well-defined and continuous. Also q' is well-defined and

continuous, and qfq=pa＼f~1(Y(l).

Since X°ais an ANR, there exists <Vi^Cov(X°a) satisfying (*) in (1.5.7) for

HJl. There exists cv^CoviXl) satisfying (R2) for j>°and <VU Since Z is a

topological sum, there exist <Wt^Cov(X'at), s<^S, such that q'-1cvz>'W=＼J{'WsX

{s}: s^S} and sfW^VaJXl for sgS. By (Rl) for i?°there exist a,>a2 and
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a map g: X＼z-+Z such that

(5) (q,gP°az)<'W.

By the choice of CW, (q'q,q'gpoa.^<<:Vzand then by the choices of q and q'

(Pas,aP°a3,q'gPl^X^z- By the choice of ^2 there exists a4>a3 such that

(6) (/>as.a/>°a4.as,q'gP°aA,a.X^l .

Take any s^S and any point xg/''(Fs). Since q(x)^X'aaX{s}, by (5)

there exists WX&W* such that q{%), gpa3(x)^W1X{s}dXsasX{s}. Then

gpaaf-＼Ys)dXsasX{s} and hence paJ-＼Ys)c:Rs=Xsa3ng-＼XsasX{s}), because

XsasX{s} is closedin Z. Since as>a2, by (3),

(7)

Since Xsa

(8)

Xsa/＼Xs;z=0 for s^s'.

sX{s} is open in Z, by (7)

Rs is open in Xaz, paJ~＼Ys)CLRs and 7?sni?s<= 0

for s, s'eS with s^s'.

We will show the following:

(9) 3'={paJ~＼Ys):s^S} is a discretecollectionin Xas.

Indeed, let u be any point of Xar We willfindan open neighborhood N

of u in Xaz such that N meets at most one member of £T.

If u^Xa3―Xl3, we choose for N any member of cUa3 which contains u.

Then Af misses all members of 3". To see thisassume that for a given sgS

we have Nr＼pa3f~1(Ys)^0. Then also Nr＼paaf~＼Y,)&0 and this implies

u^NdstipaJ'KY,), <Ua)=X'ac:Xoa , which is a contradiction.

Now assume that ugIL Then ^(m)gZ=cI≪,X(s}. Therefore, there

exists an s'^S such that g(u)(EXsas,X{s'}. We put N=g-＼X'a,,X{s'}). This

set is open in X°a and therefore open in Xa . Moreover, weiV. Finally, by

(8), for all si^s' we have pa f-＼Ys)cRsClg-＼XsasX{s}), which is disjointfrom

N―g~＼Xsas,X{s'}). Consequently, only paJ~＼YS') can meet N. Hence we

have (9).

By (9) and the definition of collectionwise normality (see Engelking [9, p.

379]), there exists a discrete family of open sets {R's: s^S} such that paj 1(YS)

(ZR't, s<=S. We may assume that RlcR,, s<=S. Then paJ~＼Y0)=＼j{paJ-＼Yt)＼

s^S}dU{R's: s(BS}dX0a3. By (B3) for p", there exists ab>a^ such that

Pa5,aSX°as)ClVJ{R's: s(ES}. Since pa5,a(Xsa5)c:Xsa3, we see that pa5.aAXsaB)r＼
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R's,cXsaar＼Rs.c:Xsa,r＼Xs(;3=0 for s^s'. Consequently, pa&,a3(Xsa5)c:pa5,as(Xoa&)

CU{#J:s ES} implies pa5,a3(Xsa5)dRfs and then pa5,as(X0a!.)(Zpas,as(X0a5)c:

U^a^^ycuI^uItW^CUl^i;. Also note that gpa5,aR(Xsa5)(Z

g(R's)Clg(Rs)c:Xsasx{s} for sgS. Now it is clear that W1=U{(g/>aB.a8)"W*X

{s}): seS}vj{A"as―AT6}e^ol;(A'aB). Then there exists a6>a5 such that pa＼.asWi

We will show that a6 has the required property. Take any point jyeFc

and any map h : K0-^st(pa6(Dv), 17a6)- Then there exists sogS such that y(=YSo,

and then gpa6,a3h(K0)ClXsa0SoX{s0}. Take any feif0. Then there exist x^Dy

and U1^cUae such that /i(0, Pa6(x)(EUi. By the choice of a6 there exists

W2(EW such that gpae.aaKt), gpaJix)^Wtx{s0}. By (5) ^(x), ^e3(x)Glf3X{s0}

for some fsG^i Then by the choice of WSo there exists Uz^cUag such that

V(x), gpa6,azh{t)^UzX{s,}. Thus, rgpae.aih(K0)<Zst(pat0(Dy),cUa,l) where r:

-^a°sX{so}-*^a°s is the projection. By the choice of cSo there exist /g7,,

and a map g': K-*st(pa(Dy-), °U)such that

(10) g'＼Ko= PaSo.argpa6.a3h= qrgpa,.,ash.

By (6), (pat,ah,q'gpa6.aih)<cVi- By the choice of cvx there exists a

17-homotopy M:/f0X/-^^a such that uo~q'gpae.a3h and ul=pae,ah. We define

a map g":lirx{0}U/foX/->Z£ as follows: g"(t,0)=g'(t) for (f,0) EJfCx{0} and

g'＼t,t')=u{t,tf)for (f, t')(EK0Xl. By (10), g* is well-defined and continuous.

Since g'(K)(Zst(pa(Dy>), HJ) and a is a ^U-homotopy, lmg"czst(pa(Dy'), stHJ).

Since (K, Ko) is a polyhedral pair, by the homotopy extension theorem (see Th.

3 of MS [23, p. 291]) there exists an extension G": KxI^st(pa{Dy,), stHJ) of

g". Then we put G:K->st(pa(Dy.), sfU) as follows; G(x)=G"(x, 1) for x^K.

Thus G is an extension of pa≪.ah. Hence Yo has the required property, m

(5.11) Lemma. // Dy has AEP with respect to JC, then for each a<E:A there

exists an open neighborhood V y of y in Y such that Vy has EP(a, <Ua, JC).

Proof. By (1.3.2) and (2.1) po={p°a: a^A}: Dy-^{D(y, a), p°a.,a,A} is an

ANE-resolution of Dy. Here p°aand poa_aare induced by pa and pa＼a, respec-

tively. Since Ji is a collection of polyhedral pairs, by (4.4) p° has EP with

respect to JC. Thus for each aei there exists ax>a satisfying (EP) with

respect to JC for a. Since pa^Dy^stipa^Dy), 1/ai), there exists an open subset

W＼nXai such that pai(Dy)dW(ZWCLst(pai(Dy), HJaJ=D{y, a1). Since pi＼(W) is

an open neighborhood of Dy in Zand /: X-+Y is a closed map, Y―f(X―pa＼(W))

is an open neighborhood of y in Y. Since Y is paracompact, there exists an
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open neighborhood Vy of y in Y such that y^VyCL Vy(zY―f{X― pa＼(W)),and

then

(1) PaJ~＼ Vy)C WZlSt{Pai{Dy), HJaJCStipaJ-K Vy), <Uai).

By (1.3.2)and (2.1) p"={p'i: a^A} : f-＼Vy)-^{st(paf-＼Vy), <Ue),pfr.a, A]

is an ANR-resolution. Here pa and p"a,taare induced by pa and pa',a, respec-

tively. By (1) and (B3) for p" there exists a2>fli such that

(2) Paz.a^StiPaJ-XVy), HJ as))dSt(pai(Dy),Vffll).

We show that Vy and a2 have required property. Take any y'<=Vy and

any map h＼K≪-+st(pat(Dy.),RJaJ. Since pa2,aih: K0-+st(pai(Dv), Vai) by (2),

by the choice of ax there exists a map G: K―>st(pa(Dy), <Ua) such that G| i^0

―pa9,ah. Hence we have the required property. M

(5.12) Proposition. Let X be a collectionof potyhedral pairs. If Dy―f-l{y)

has AEP with respect to Ji for any jieF, then any approximative ANIl-resolution

p: X->(2C, V) has the following property :

(*) For each a^A there existsc1>a such thatfor any jgF, any {K, KQ)^JC

and any map h: Ka-^st{pai{Dy), Va^, there exist y'^Y and a map H:K-+

st(pa(Dy'),IJa) satisfying H＼K0=pauah.

To prove (5.12) we need the Michael method as follows: Let Z be a space

and <V a collectionof subsets of Z. We introduce the following notations:

fi*(cW)={AdZ: A is closed in Z and A is a subset of some element of ci?}.

a*(cW)={A(zZ: A is the union of a finitecollection of closed subsets of Z,

whose interiors with respect to A cover A, and which are elements of cv).

I*(cV)={AaZ: A is the union of a discrete collectionof closed subsets of

Z which are elements of c＼7}.

(5.13) Lemma (Michael [24]). // Z is a paracompact space and cv covers Z,

then ZG<;*I*ff*i;*≪*(^).

Proof of (5.12). From any approximative ANR-resolution p: X^(3C, HJ), by

(2.1) we have an approximative ANR-resolution p'={p'a: a^A}: X-^(DC, 1])'=

{{X'a, HJ'a),p'a,,a,A}. Here X'a=st(pa(X), °Ua)and maps p'a,p'a..aare induced

by pa, Pa',a for a'>a. Trivially if p' has the property (*), then so does p.

Thus without loss of generality we may assume that p satisfiesst(pa(X), HJa)

=Xn for all aeA
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Take any aeA By (5.7) there exist a2>ax>a such that pa＼,a^a>stWai

and pa12,a1£>a1>st3£)a2-By the assumption and (5.11) there exist open neighbor-

hoods Vy of y such that Vy has EP(a2, ^a2,
<K)
for any y^Y. Since Y is

paracompact, cV={Vy: y^Y} covers Y"and then by (5.13) Y^o*I*a*2*ft*(cv).

By (5.8)-(5.10)any element of o*I*o*2*p*(<=V) has EP(a2, st*Wa2,
<K)
and hence

so does Y. Then there exists az>a2 satisfying EP(c2, sf£)az,Ji).

We show that a3 is the required index. Take any jg7, any (K, K0)^J(

and any map h: K0-*st(pa3(Dy), 1Ja3). By the choice of a3 there exist jy'eF

and a map H: K->st(pa!l(Dy>),sts<Da2)such that H＼K0―Pa3,a2h. By the choices

of fli and a2 it is easy to show that there exists /gF such that pa2,aH(K)

Cst(pa(Dv≫),Va). Hence we have the required property, m

(5.14) Theorem. Let Y be a paracompact space and f: X-+Y a closed onto

map with (#). Let n^O be an integer. If f~＼y)is approximatively n-connected

for each y^Y, then f has FEP with respect to "+JSCpairs.

Proof. Let p: X-^(2C, II) be an approximative ANR-resolution such that

st(pa(X), cUa)=Xa for aeA By (4.14) and Dv has AEP with respect to

We show (5.14) by induction on n. First we show this for n=0. Take

any ce^l and then there exists ao>a satisfying (*) in (5.12) for TOL^^ and

a. We show that a0 is the required index. Take any {K, L)eJSCpairs and any

partial realization g:L-+Xao of (K, L) relative to Wao. Take any 1-simplex

s=[v0, v{]^K-L. Then g(ds)=g(sr＼L)Clst(pao(Dy), Uao) for some y^Y. By

the choice of a0 there exists a map gs:s^Xa such that 5"s|3s=/)ao,ag＼ds and

gs(s)(Zst(pa(Dy>),IJa) for some /gF. We define a map G'.K->Xa as follows:

G(x)=pao,ag(x) for xgeL and G(x)=,g-S(x) for x^s^K―L. Obviously G is a

fullrealization of (K, L) relative to £Daand G＼L-=pao,ag.

We assume that (5.14) holds for n and show it for n + 1. Take any a^A

and then there exists ax>a satisfying (*) in (5.12) for n+2POLpairs and a. By

(5.7) there exists g2>Gi such that p~a＼,ax2)ax>stS)arBy the inductive assumption

there exists a3>a2 satisfying (FEP) for a2 and "+JSCpairs.

We show that a3 is the required index. Take any (K, L)G"+^SCpairs and

any partial realization g: L-+Xaa of (K, L) relative to 3)a%. By the choice of

a3 there exists a fullrealization g': Kn+1-^Xa2 of {Kn+l＼jL, L) relative to £>a2

such that g'＼L―pava2g. Take any (n+2)-simplex s of K―L. Since g'(ds)d

st(st(pa2(Dy),1/a2),£)a2)for some y^Y, by the choice of a2, Pa2,aig'(ds)(Z

st(paXDV'), Va,) for some v'eF. Then by the choice of ar there exist v"e7
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and a map g's: s-+st(pa(Dy.), HJa) such that g's＼ds―pa2,ag'＼ds. Now we define

a map G:K-^Xa as follows: G(x)=pai.ag'(x) for x^Kn+1＼jL and G(x)=g't(x)

for x^s<=K―(Kn+l＼jL). Obviously G＼L ―pa<l>ag and for each simplex s of K,

G(s)Cst(pa(Dy), HJa) for some jyeF. Hence / has FEP with respect to

O'J^pairs-

§6. The Vietoris-Smale theorem in shape.

In this section we shall give a characterization of approximatively n-con-

nected maps and the Vietoris-Smale theorem in shape theory.

Let f:X->Y be a map. Let p={pa : aei|: A-K3T, cU)={(Xa, <UO),pa~,a,A)

and q = {qb＼b<EB) : F->(≪/,cV)={(y6, ^t), qb>,b,B) be approximative ANR-re-

solutions. Let f={f, fb- b^B} :(DC, cU)-^(ci}>CV) be an approximative resolution

of / with respect to p and q.

(6.1) Proposition. Let f:X^Y be a map and Y a normal space. Then f

is approximatively {-―l)-connectediff f(X)=Y.

Proof. First we assume that / is approximatively (―l)-connected. Take

any jigF and any open neighborhood V of y in Y. Since Y is normal, CV=

{V, Y-{y}}(ECov(Y). By (AI3) there exists b^B such that cv>qb1st*<=Vb. Since

f is an approximative resolution of /,

(1) (qbf.fbP/mX^b.

By (AR2) there exists a>f(b) such that st(pfm(X), cU/(W)3/)a,/(6)(Za). Since

f is approximatively (―l)-connected, there exists an admissible pair (au bi)>(a, b)

satisfying (ALP) with respect to {(A°,<j>)}for (a, b).

Take a map g: J°―>F6lsuch that g(J°)=qbl(y). By the choice of (au bx)

there exists a map H: J°-^Xa such that

(2) (fbPa,finH,qh.bg)<st<Vb.

By the choice of a, pa,fmH{Ao)^s,t{pfW{X), Vf^) and then there exist xg!

and U^HJfm such that pfm{x), pa,fmH(Aa)(^U. By (AMI) there exists V^cvb

such that

(3) fbPfm(x), fbPa.fwH(^)^V1.

By (1) and (2) there exist V2, F3gcfs such that

(4) Qbf(x),fbPfw(x)^V2, and

(5) fbpa.fa≫H(4°),Qb1.bg(^)^st(y3f cvb).
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Since qH,bg(A*)=qb(y), by (3)-(5),qhf{x), qb(y)(Est(st(V3,q/6), c^). By the choice

of b and the definition of V, f(x), y^V and then VC＼f(X)i-0. Hence f(X)

is dense in Y.

Next we assume that f(X) is dense in Y. Take any admissible pair {a, h)

of f. By (B4) there exists b^b such that st(qb(Y),cvb)Z)qbl,b(Yh). Take any

Gi>a, /(6i). We will show that the admissible pair (au bi) has the required

property. Take any map g:A°-^Ybl. By the choice of bY there exist y&Y

and V^cVb such that

(6) qly),q,v,g{^)^V,.

Since /(Z) is dense in Y, there exists xg! such that

(7) /(x)g^T/4.

We define a map H:A°-+Xa by H(J°)=pa(x). By (1) there exists y5ecy6 such

that

(8) qbf(x),fbpfw(x)<EVB.

Since fbpnb>(x)=fbpa,fwH(4°), by (6)-(8) fbpa.fmH(A°), qbl,bg(A°)^st(yt, <Vb).

Thus (fbPa.fmH, qbi.bgXst^b and hence / is approximatively (―l)-connected. B

(6.2) Corollary. Let f: X-+Y be a closed map and Y a normal space. Then

f is approximatively {―l)-connected iff f(X)=Y.

(6.3) Theorem. Let Y be a paracompact space and f: X-+Y a closed maf-

with (#);

(#) f~＼Yo) is P-embedded in X for any closed subset Fo of Y.

For each integer n^ ―1 the following statements are equivalent:

(i ) f is onto and f~＼y) is approximatively n-connected for any y^Y.

(ii) / is onto and the decomposition D={f~＼y): y^Y} has AFEP with

respect to n+oSCpairs.

(iii) / is approximatively n-connected.

Proof. When n = ―1 (6.3) follows from (6.2). We assume rc^O. We show

(iii)-≫(i). By (6.2) / is onto. By (3.3) / has ALP with respect to nPOLpairs

and then by (2.7) and (#) so does f＼f~＼y): f~Ky)-^{y} for each jyeF. By (3.4)

VVQ-Ttk(f＼f~＼y)):vro-i:k{f-＼y), *)-*pro-7r*({;y}, *)=0 is an isomorphism for 0^

k^n. Then pro-nk(f'＼y), *)=0 for Q£k^n. By (4.14) f~＼y) is approxima-

tively n-connected.

(5.14) means that (i)->(ii). We show (ii)->(iii). By (1.4.9) there exist
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approximative ANR-resolutions p: X―>(2C}HJ), q : F―>(£V,CV) and an approxi-

mative resolution f:(x, £U)-*('V,c^7)of / with respect to p and q satisfying

(RM1) and (RM2). By (RM2) and (2.1) we may assume that st(pa(X), <Va)=Xa

and st(qb(Y),cVb)=Yb for all a^A and all b^B.

Claim 1. f has (ALP**) with respect to (D, S)n.

Take any admissible pair (a, b) of f and then there exists bx>b such that

^611,6c^6>s^c^6l.By (RM1) for f there exists ax>a, /(&0 such that fbpavfm

=zQb1.bfb1Pa1,f(.b1->-By the assumption and (5.2) there exists <22>fli satisfying

(FEP) with respect to n+JSC for ax. By (5.7) there exists az>az such that

^..^≪,>s^.,. Here £(;y,a)=st(pa(Dy), <Va) and 3>a={£(;y, fl):^F} for

a<BA and jieF. Since / is closed, there exists an open neighborhood Vy of y

in Y such that

(1) Dydf-＼Vy)cip-al(st(pa3(Dy), HJa3))for each ^F.

Since Y is paracompact, ^―{Vv: j'eyjGCo^F) and then there exists b2>bi

such that CV>^21CV62.

Let %={ys: me!} and M'={m£M:FBn?42(F)^0}. By Theorem 2

of Kuratowski [17, p. 226] there exist open sets G(Vm) in YH for m^M' such

that

(2) Fmn^(F)=G(7Jn^(F) and G(Fm)cFm for m^M',

(3) for each finitesubset {mu m2> ･･･, ms＼ of M', Fmin7ro2n-

r＼Vmtnqbt(Y)=0 implies G(7mi)nG(Fm2)n---nG(Fms)=0.

Since jJJFjcu{G(7J:m6M'} by (2), by (B3) there exists b3>b2 such that

^3.62(F63)CW{G(Fm):meM'}. Since {q^＼G(Vm): m^M'}^Cov{Yh), by (AI3)

there exists b4>b3 such that {qil,bfi{Vm)＼meM'}>q/64. By (RM1) for f there

exists a4>a3, f(b4) such that fb,PaA.nbo=QbA.bJbiPal.fuA-)' Let 17a,= {f/e: ee£)

and E' = {e^E:Uer＼paA{X)^0}. Since pai(X)(ZKJ{Ue: etEE'}=st(pai(X), VaJ,

by (B3) there exists a^a^ such that pa5,ai{Xa^(Z＼J{Ue:e<^Er), and then there

exists a2>a& such that {pz＼.aBUe:ee£'}>cUa6.

We will show that the admissible pair (a6, 64) has the required property.

To do so we take any (J*+1, dAk+1)tE(D, S)n and any maps g:dk+1-+Ybi,

h: ddk+1->Xa6 such that g＼ddk+1=fb4pae,ftb^h. Take We<?o*(J*+1) such that

cW<g-＼cVbi) and W|9J*+1</i"lcUa6. There exists a simplicial complex AT and

a subcomplex L of K such that ＼K＼=Jk+1, ＼L＼=dAk+1, L is a full subcomplex

of K and for each simplex s of K there exists WS<^W such that |s|cPFs. Take

any simplex s of K. By the choices of bA and Ws there exist Fsecv6 and



314 Tadashi Watanabe

m{s)^M' such that g(Ws)dVs and qh,b2(Vs)(ZG(VmCs,). Thus

(4) ^64.B2^(|s|)cG(7mC,)) for each simplex s of K.

Sines VmWr＼qb2{Y)^0, by the choice of bz there exists j>(s)eF such that

Vy^ZDQbzVmas-), and then there exists x(s)^X such that x(s)e/"1^21Fm(s)c

/■'F≫(,).Then by (1)

(5) Pa3(x(s))^st(pa3(DyW), HJa.j)for each simplex s of K.

Now we define a map g°:K°＼jL-+Xa2 as follows: g°(z)=pa(.,azh(z)for z^L

and g＼z)―pa2{x{v))for z=v<=K°―L. It is easy to show that g°is well-defined

and rnnfrnnnns

Claim 2. For each simplex s of K there exists jyeF such that g＼sr＼(K(l＼jL))

^St(pa2(Dy), <Va2).

To prove Claim 2 we take any simplex s = [v0, vu ■■■,vp~]of K. By (4) for

each i, 0<i£p, qbi,Hg(vt)(BG{V mW)r^G{V mivO)i-0 and then by (2) VmWf~＼VmCvO

r＼q^y)^0. Since VmWr＼VmiVtir＼gb2(Y)^0, VyWr＼VyCv0^q^(VmWnVm^0)

^0 and then by (1) st(pas(DyW), <Vaa)nst(pa3(Dyiv0), HJa3)ZDpa3{f'＼V' yWC＼

Vy^o))^0, that is,

(6) st{pas{DyW), HJajnsKpaJiDyw), Va^0 for 0£i£p.

We consider the following cases: (i) All vertexes of s are in K°―L. (ii)

All vertexes of s are in L. (iii) Some vertexes of s are in K°―L and some

vertexes of s are in L.

We consider the case (i). In this case sr＼(K°＼jL)―{v0> vu ･■･, vv) and then

go(sn(KoVjL))={pa2(x(vo)), pa^xM), ■■■,pa2(x(vp))}. Since pa8(x(vt))(=

st(paa(Dylv0), Va3) for *=0, 1, ･･･, p by (5), then by (6) {pa,{x{vi)): i=0, 1, - , p]

dst{st(pa3(DyW), HJa^), £)a3}. By the choice of a3 there exists /(s)eF such

that Pa3,a2(st{st(pa3(DyM), <Vaa), <Da3})(Zst(pa2(Dr,w), <Va2). Hence g＼sr＼(K°＼jL))

(ZSt(pa2(Dy,,w), <Va2).

Next we consider the case (ii). Since L is a full subcomplex of K, s<bL

and then go(sr＼(KoUL))=pa6,a2h(s). By the choice of Ws there exists Us(BcUai

such that h(s)dh(Wsr＼L)aUs. By the choice of a6 there exists e(s)^E' such

that pat.aJJJt)CLUeW. Since UeWr＼pai(X)±0, there exists x'(s)g! such that

pai(x'(s))(=Uels-). Put y'(s)=fx'(s)(BY and then x'(s)g^(s). Then we have

(7) £a6.a4/z(s)cs^a4(x'(s)), <Uai)c:st(pai(Dy.w), <Uai)

and then

g°(sn(/S:0WZ0) = £afi,aMs)dpa.. aM(PaXDyl (s)),Vai)dSt(PaWy. (s)), ^a9) .
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Finally we consider the case (iii).In this case we may assume that vQ,vu

va are vertexes in K°―L and vu+u vu+2,･■■, v≫ are vertexes in L for some

u, O£u£p. Since L is full,t=[vu+1, vu+2,■■■,vp~]^L and then sn(if°WL)=

{v0, vu ■■■,vu}yjt. Since fei, by the case (ii) pa6,aih(t)ClUecn and paix'(f)

e£/ec≫. Since (/64/)a4,/(6))~lc^ft4>cl/a4,there exists Vi^cv^ such that

/≫^b4,/≪4)(^c≫)C7;. Since g＼L=fbipae.fibiih＼L, fHpf^x'{t)^V't and g(f)=

/64/>a6./≫4)^(0c7{, Since ^f)c^(s)C^,)cF,, F,n7jD^(O^0. By the

choice of 64 there exists mo(t)^M' such that qbi.b2V'tcG(Vmo(f)). Since ^4,62FS

cG(Fm(s)), G(Fmo(n)nG(Fm(s))=)^4,62(FsnFD^0. By (3), Fm(s)nFmoa)n

qb2(Y)^0 and then FmCs)nFmo(0ng6z(F)^ 0. By the choice of b2 there exists

jyo(f)eF such that Vyoit->Z)qb*VmoU->.Since Fj(S)nFjO(OD(?j-21(Fm(s)nFraoa))^0,

by (1) stipaXDycv, VaJnsKPaXDy^o), Va,)Z)paJ-＼VyWnVynCn)^ 0, that is,

(8) St(pas(DyW), VaJnStipa^Dy^), Va^ 0 .

Since / satisfies(RM2), qbj=fbipf^ and then by (8) qbJx'{t)^V't. By the

choice of mo(t), qbJx'{t)^G(y m^a) and then by (2) qbJx＼t)^G(Vm^o)rM^X)

= VmoCnnqb2(Y). Thus y'(t)=fx＼t)^q^VmoCnClVyoCO and then by (1) pat(Dy.w)

ClpaJ-'Vy^oClstipa^Dy^), <Uas). This means that

(9) st(pa3(DyoCn),HJas)r＼st(paa(Dy.w),cUa^0.

Since t^L, by (5)-(9) {Pa,x{vi): i^u + l, ■■■, p}＼jpa6,a3h{t)CL^J{st(paz{Dv,vO),

HJas):i=u+＼, ■■■,p}yJst(pas(Dy,cn), <Vas)asKst(pas(DyW), HJaz),st3)as). By the

choice of a3 there exists y^Y such that pa3,a2st(st(pas(DyCs)),VaJ, st3)ai)CZ

st(pa2(Dy),Va,). Thus g＼sn(KouL))={patx(vt):i=O, 1, - , u}＼Jpa6,a2h(t)d

st(pa2(Dy),HJa2). Thus we have completed the proof of Claim 2.

Since (K, i^VL)en+1POLpairs, by Claim 2 and the choice of a2 there exists

a map g1: K―>Xa, satisfying the following conditions:

(10)

(11)

g^K'uL^p^^g* and

for each simplex s of K there existsy^Y such that

g＼s)cist(paXDy),<Va,).

Claim 3. (fb1Pavfcbo§1> Qh-hS)<st2c^h.

Take any z<=K and then there exists a simplex s of K with ?es. First

we assume that s<bL. In this case by the choices of aif g and (10), fblPavfcb1)S1＼s

=
fblPavfib^Pa2,aig°I s = fblpae,

fcb^hI s = qbi,bJb.Pa^fcb^h＼s = qH.blg＼s. Thus

Claim 3 holds in this case.

Next we assume that s£L. We nut s = [vn.v,, ･■■,yBl. Since L is full.
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we may assume that vo^K° ―L. By (11) there exists j>eF such that gl{s)d

st(pai{Dy),<Uai). By (RM2) for f

(12) Qb1f=fb1PfCb1->.

Since fhpavfih)pai(Dy)=qh(y) by (12) and (/6l/>ai,/(6l))-1cy6l>cUai,fblpai,s^x)g＼s)

^fblPavs^st{pa1{Dy), Vai))Clst(qbl{y),<=Vbl). Since z, v.gs,

(13) fb1Pavfcb1^g＼z),fb1Pavfcb^g＼v0)est(qbl(y)>q/6l).

By (10) and (12), fblpavfcbog1(vo)=QbJ(x(v0)). Since VmW, VmiVo^cVbt, there

exist 7i, V2ecv6l such that ^62>6l(Fm(S))c:Fiand <?62>6l(Vu,0))cF2. By the

choice of x(v0), qbJ(x(y0))&VmcVn-> and then

(14) fblPavfCb^g＼v0)(EVz

By (2),(4) and the choice of Vu qb2,blqb4,hg(s)aqb2,hG(VmW)(Zqb2,hV mMaV:

and then

(15) Qb^^giz), qbi,blg{va)^Vx.

By (2),(4) and the choice of V2, qbi>hg(v0)^qh,hG{Vm^)Cqh,h(Vm^)ClV2:

that is,

(16) qb4,blg(v0)^V2.

From (13)-(16), fHpavfcWg＼z), qbi,hg(z)^st(st(Vz,cvbl),st<Vbl). Thus in this

case we have the required condition and hence we have Claim 3.

We put G=pa1,ag1: Ak+l-*Xa. By the choices of au bu (10) and Claim 3,

(fbPa./wG, qbi,bg)<stcVb and G＼dJk+1= pae,ah. Thus / satisfies(ALP**) with

respect to (D, S)n and hence we have Claim 1.

By Claim 1 and (3.1) f has ALP with respect to (D, S)n. Thus / is approxi-

matively n-connected. Hence we have completed the proof. M

(6.4) Corollary. Let Y be a paracompact space and f: X-+Y a closed onto

map with (#). // f~1(y)is approximatively n-connected for each jgF, then we

have the following:

( i) pro-itk(f):pro-itk(X, x)-+pro-7ik{Y,f(x)) is an isomorphism for 0<Lk-£n

and epimorphism for k~n + l in pro-groups for each xgX

(ii) %k(f): 7zk{X, x)-^:i{Y, f(x)) is an isomorphism for 0<Lk^n and for

each xeX

(iii) // n + l=Max(sdX+l,sdY)<oo, then f:(X, xWY, f(x)) induces a

shape equivalence for each xeX



Approximative Shape IV 317

(6.5) Corollary. Let f:X―>Y be a closed onto map from a paracompact

space X. If f~＼y) is approximatively n-connected for each y^Y, then (i)-(iii)

in (6.4) hold.

(6.4) follows from (3.4),(3.6),(3.7) and (6.3). (6.5) follows from (6.5) and

Michael's Theorem (see Engelking [9, p. 3851). M

We say that f: X-+Y is a cell-likemap, in notation CE-map, provided that

f~1(y)has trivialshape for any vgF.

(6.6) Corollary. Let f: X―>Y be a closed map from a paracompact space

X. If f is a CE-map, then we have the following:

(i) pro-itk(f):pro-itk(X, x)―>pro-7tk(Y,f(x))is an isomorphism in pro-groups

for each k and each igX

(ii) %k(f)' %k(X, x)^nk{Y, f(x)) is an isomorphism for each k and each

IGI.

(iii) // sdX, sdF<oo, f:(X, x)―>(Y,f(x)) induces a shape equivalence for

aar.h xeX

(6.6) follows from (6.5). m

(6.7) Remark. Usually approximatively n-connected maps are called UVn-

maps (see Lacher [18]). Smale [30] and Kozlowski [13] studied these maps

and showed special cases of theorems (6.4) and (6.3). Various Vietoris-Smale

theorems in shape theory were studied by many authors, Bogatyi [2, 3], Dydak

[4-7], Kodama [11, 12], Kuperberg [16], Kozlowski-Segal [15], Morita [27, 28].

Our results are the most general.
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