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A DIRECT PROOF THAT EACH PEANO CONTINUUM
WITH A FREE ARC ADMITS NO
EXPANSIVE HOMEOMORPHISMS

By

Kazuhiro KAWAMURA

A homeomorphism f: X—X of a compact metric space X is said to be
expansive if there exists a constant ¢>0 (called expansive constant) such that

(%) for each pair x, y of distinct points of X, there exists an integer n such
that d(f™x), f™(»))>c, where d is a metric for X. Expansiveness does not
depend on the choice of metrics for compact metric spaces.

A compact connected metric space is called a continuum. A Peano continuum
means a locally connected continuum. An arc A in a continuum X with end
points {a, b} is denoted by [a, b]. bd A means {g, b} and int A=A—bd A. An
arc A in X is called a free arc if int A is open in X. Let (X, d) be a conti-
nuum. For a point x&€X and ¢>0, U(x, ¢) denotes the e-neighbourhood of x.
The Hausdorff metric is denoted by d .

In this paper, we give a direct proof of the following theorem, which is a
consequence of Proposition C in Hiraide [2].

THEOREM. Let X be a Peano continuum with a free arc. Then there does

not exist expansive homeomorphisms of X.

The author benefits from reading Proposition C in [2] and wishes to thank
to Professor K. Sakai for his helpful suggestions.
First we list known results which are necessary for the proof of Theorem.

LEMMA 1 ([3] p. 257, theorem 4). Let (X, d) be a Peano continuum. For
each £>0, there exists a 0>0 such that each pair of points x, ye X with d(x, y)
<0 can be joined by an arc whose diameter is less than e.

LEMMA 2 ([3] p. 179, theorem 1). A continuum X is homeomorphic to an
arc if and only if there exist two poinis a and b of X such that

1) X—a and X—b are connected and

2) for each x=X with a+ x+b, X—x is not connected.
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LEMMA 3 ([1] p. 63-68). Let f: X—X be an expansive homeomorphism of a
compoct metric space X.

1) For each integer k, f* is also expansive.

2) Suppose a closed subset A of X satisfies f(A)=A. Then f|A is also
expansive.

3) There exist no expansive homeomorphisms of arcs and simple closed curves.

To prove Theorem, we first show the following.
(A) Let (L,) be an increasing sequence of free arcs in X and M=Lim L,
(Lim means the limit by the Hausdorff metric).

Then M is either a free arc or
a simple closed curve such that MN\cl(X—M) is a point.

Let L,=[pa, gn]. It is easy to see that M=cl(\UL,). Without loss of
generality, we may assume that there exist two points p and ¢ of M such that
p=lim p, and ¢=limg,. We consider two cases.

Case a) p+gq. In this case, M is a free arc. To see this, we show

Suppose that there exists a point uccl(\JL,)—\JL,\J{p, q}. We can choose a
sequence u,’s of points in L,’s which converges to u. Since p#*u+¢q, we may
assume that u,=int L,. By Lemma 1, there exists a sequence A,’s of arcs
joing » and u, and diam A,—0 as n-—oco. On the other hand, u,<int L, and
u&EL,, and so A,Nbd L,#@. Therefore there exists an integer N>0 such
that for each n>N, diam A,>min{d(u, p), d(u, ¢)}/2>0, which is a contra-
diction. Hence cl(\JL,)C\UL,\J{p,q}. Clearly c/(\JL,)DUL,J{p, q}, and
therefore M=\UL,\U{p, q}. It is easy to see that M—p and M—g are con-
nected and M—x is not connected for each xeM—{p, ¢q}. By Lemma 2, M is
an arc. M—{p, q} is open in X, so M is a free are.

Case b) p=gq. In this case, M is a simple closed curve and MNcl(X—M)
is a point. To prove this, take c=int L, and let A,=[p,, ¢] and B,=[g¢,, c].
Since L,’s are free arcs, p=qg+c. Applying the argument of Case a), we see
that A=Lim A, and B=Lim B, are free arcs with end points {p, ¢} and {g, c}
respectively. Clearly M=AUB and since A4,N\B,={c}, A=UA,UJ{p} and
B=UB,\U{q}, we have ANB={c, p=qg}. Therefore M is a simple closed
curve. Since M is a limit of free arcs, MNcl(X—M) is a point.
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Let & be the collection defined by

_— { ' K is a subcontinuum of X and there exists an 1ncreasmg}
sequence of free arcs which converges to K

 is a partially ordered set by the usual inclusions. We show

(B) Each totally ordered subset of & has an upper bound.

Let 4 be a totally ordered subset of F and K,=c/(\JUX). We must find an
increasing sequence of free arcs which converges to K, Notice that each
Ke & is either a free arc or a simple closed curve by (A). We consider two
cases.

Case a) Each K& is a free arc. Let {x,, -, x.)CK, be a finite set

such that KOCQU(x,-, 1/2). For each 7=1, ---, n, there exist K,,€9 and a

point p,€K,, such that d(p;, x;)<<1/2. Take a K,=F which contains all of
Ko, -, K Then it is easy to see that d4(K,, K)<1.

Take a finite set {y,, -, yn}CK, such that K,C QU(yi, 1/4). For each

i=1, ---, m, there exist K, and a point g€ K,, such that d(¢;, y,)<<1/4. Take
a K,=4 which contains all of K,, K, -+, K, . Then du(K,, K)<1/2--
Continuing this processes, we can take an increasing sequence of free arcs
which converges to K.

Case b) There exists an L& which is a simple closed curve. Each
Ne KX which contains L is a simple closed curve. Hence K,=L which is the
limit of an increasing sequence of free arcs. Therefore K, is an upper bound
of X. This proves (B).

Using Zorn’s lemma, we can find a maximal element M of <.

Now suppose that f: X—X is an expansive homeomorphism with expansive
constant ¢>0. If f*(M)=M for some integer n+0, we have a contradiction
by Lemma 3, 2) and 3). Thus we have f"(M)#M for each n+0. Then the
following holds.

(C) C-1) diam f"(M)—0 as n—oco and

C-2) diam f~™(M)—0 as n—co.

We prove C-1). Suppose that there exist an ¢>0 and a subsequence (7;)
such that diam f"#(M)>e. Taking a subsequence if necessary, we may assume
that f"(M) converges to a continuum M, Set M,=j"i(M). Again, we con-
sider two cases.

Case a) M is a free arc. By the maximality of M, M;N\M,Cbd M, N\bd M;
for each :#;. For each 7, take a point x;=M; such that d(x;, bd M;)=¢e/2.
Without loss of generality, we may assume that x,’s converge to a point
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xe M, By Lemma 1, there exists a sequence (A;) of arcs joing x and x; such
that diam 4,0 as i—oco. If x&M, for each ¢, then A;N\bd M;+ @ for each i.
If xeM, for some i, then for each j=#i, either x&M; or x&bd M;Nbd M..
Therefore A;Nbd M;# @ for each j. In any case, diam A,=¢e/2 for each k&,
which is a contradiction.

Case b) M is a simple closed curve. Let MNcl(X—M)={b} and b= f"i(b).
In this case, Mi"\M,;=@ or {b;=b;}=M;"\M; for each i#j. For each 7, take
a point x;EM; such that d(x;, by)=¢/2. Using the same argument as in Case
a), we have a contradiction.

The proof of C-2) is similar, so we omit it.

Finally we take an integer m such that for each n>m, diam A (M)<c/2
and diam f-"(M)<c/2. There exists a 6>0 such that if d(x, y)<<d(x, yEM),
then i\r__rllg;gmd(fi(x), fi(y))<c. Then, for distinct points x, y of M with

d(x, y)<8, d(fi(x), fi(y)<c for each integer 7. This contradiction completes
the proof.
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