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On the origin of the dressing phase in N = 4 Super Yang–Mills
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Abstract

We derive the phase factor proposed by Beisert, Eden and Staudacher for the S-

matrix of planar N = 4 Super Yang–Mills, from the all-loop Bethe ansatz equations

without the dressing factor. We identify a configuration of the Bethe roots, from which

the closed integral formula of the phase factor is reproduced in the thermodynamic limit.

This suggests that our configuration describes the “physical vacuum” in the sense that

the dressing phase is nothing but the effective phase for the scattering of fundamental

excitations above this vacuum, providing an interesting clue to the physical origin of

the dressing phase.
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Integrability has become of increasing importance in the study of N = 4 Super

Yang–Mills (SYM) and of the dual superstrings in AdS5 × S5. The spectral problem

of the dilatation operator at one loop was identified with that of a conventional in-

tegrable spin-chain [1, 2], which can be systematically solved by using Bethe ansatz.

Integrability beyond one loop has also been extensively studied and, in particular, the

all-loop Bethe ansatz equations were postulated [3]. Note, however, that the spin-chain

picture does not fully apply at higher loops due to several new features yet unknown

in the field of integrable models, such as length fluctuation. Nevertheless, conventional

integrability revives by converting the picture into a particle model, at least in the

limit of infinite length of operators, or the large-spin limit [4–6]. Asymptotic particle

states were realized in terms of SYM operators [7]. It is expected that they exhibit the

factorized scattering property and thus all the multi-particle scattering processes are

governed by the elementary two-particle S-matrix. This S-matrix was determined up

to an overall scalar factor by purely algebraic consideration of the centrally extended

su(2|2) symmetry [8] and further algebraic aspects have been investigated [9–11].

As is expected from the AdS/CFT correspondence, this S-matrix with a pair of the

su(2|2) symmetries also emerges on the string theory side [11–14]. The choice of the

gauge breaks the conformal invariance in two dimensions and one obtains a massive

worldsheet theory, where S-matrix is naturally defined as the scattering of elementary

excitations. As the symmetry completely constrains the form of the matrix, what is

left to be determined is again the overall scalar factor.

The determination of the scalar factor, as a function of two momenta and the

coupling, is important in two aspects: Firstly, it is the last missing element for the

systematic construction of the spectrum of the scaling dimension/energy on the Yang–

Mills/string side. Secondly, identification of the scalar factors on both sides serves as

a strong quantitative check of the AdS/CFT correspondence.

The form of the scalar factor was first studied on the string side, based on the data of

classical string spectrum [15]. Succeedingly 1/
√

λ corrections were analyzed [16–18] and

an all-order form was postulated [19]. This form was shown [18,19] to be consistent with

the constraint from the crossing symmetry [20]. On the other hand, the form of scalar

factor was rather obscure on the Yang–Mills side, since it stays trivial up to three loops.

However, it turned out to deviate from the unity at four loops [21, 22]. Meanwhile,

Beisert, Eden and Staudacher managed to construct a closed integral formula [23]

consistent with the above four-loop result as well as a sort of analytic continuation of

the proposal on the string side [19]. The integral formula is highly intricate, but does
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not seem totally hopeless to handle analytically. We refer to a reference [24] for recent

investigations.

In this short article, we present the derivation of the integral formula purely within

the framework of quantum integrable models. Our result is of conceptual importance,

since it would indicate that even the scalar factor has no room to consult model-specific

degrees of freedom. The integrable structure together with the su(2|2) symmetry would

completely determine the S-matrix without knowing which side of the AdS/CFT cor-

respondence we are looking at.

Before getting into our computation, we would like to remind the reader of the

derivation of the Zamolodchikovs’ S-matrix [25]. This S-matrix describes the scatter-

ing of elementary particles of the principal chiral field model. It was originally deter-

mined by imposing three conditions: unitarity, associativity (Yang–Baxter equation),

and crossing symmetry. The first two determine the form of R-matrix, while the last

constrains the overall scalar factor up to the CDD ambiguity. The S-matrix can also be

derived by direct computations [26–28]. In this case, the starting point is bare Bethe

ansatz equations derived from the R-matrix. The physical S-matrix is realized as the

scattering matrix of excitations over the non-trivial physical vacuum state, which is

built on the bare vacuum state by acting with bare Bethe roots filling up the Dirac sea.

Scattering of fundamental excitations above the Dirac sea acquires a phase shift due

to the interaction with those background Bethe roots. The phase shift then turns into

the scalar factor in front of the bare R-matrix, giving the Zamolodchikovs’ S-matrix.

In what follows we consider an analog of this derivation. Along this line, possibilities

of deriving the scalar (dressing) factor for planar N = 4 Super Yang–Mills have been

discussed in a recent work [29]. We refer to a work [30] for a somewhat similar approach.

Our starting point is the all-loop Bethe ansatz equations [3] without the dressing

factor. Most generally the Bethe ansatz equations consist of seven sets of equations.

For our purpose, we set the number of Bethe roots as1

(K1, . . . , K7) = (2M,M, 0, K4, 0,M, 2M). (1)

Bethe roots u3,k u5,k as well as equations for them are absent in this case. Throughout

this article we consider configurations of Bethe roots symmetric with respect to the

1This set of occupation numbers is not allowed at one loop, but in the present case it is consistent
with the bound from the consistency of the nested Bethe ansatz K2 ≤ K1+K3 ≤ K4 ≥ K5+K7 ≥ K6,
as long as K4 ≥ 2M is satisfied [10]. (We would like to thank A. Rej, M. Staudacher and S. Zieme
for discussions making us clarify this point.) The numbers of Bethe roots are determined so that the
corresponding state is neutral under the pair of su(2|2) symmetries. See for details [34].
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interchange of the two su(2|2) sectors: distribution of roots u1,k, u2,k is just the same

as that of u7,k, u6,k, respectively. We thus omit the equations for u1,k, u2,k below. After

all, we are left with the following reduced sets of equations

(
x+

4,k

x−4,k

)L

=

K4∏

j 6=k

u4,k − u4,j + i

u4,k − u4,j − i

2M∏
j=1

1− g2/x−4,k x1,j

1− g2/x+
4,k x1,j

2M∏
j=1

1− g2/x−4,k x7,j

1− g2/x+
4,k x7,j

, (2)

1 =
M∏

j 6=1

u6,k − u6,j − i

u6,k − u6,j + i

2M∏
j=1

u6,k − u7,j + i/2

u6,k − u7,j − i/2
, (3)

1 =
M∏

j=1

u7,k − u6,j + i/2

u7,k − u6,j − i/2

K4∏
j=1

1− g2/x7,k x+
4,j

1− g2/x7,k x−4,j

. (4)

It turns out that these equations describe, among others, a generalization of the anti-

ferromagnetic state of the su(2) Heisenberg spin-chain. We consider the case where

both M and K4 are of order L, which will be sent to infinity in the thermodynamic

limit. We follow the standard parametrization that rapidity variables x, u are related

by

x±(u) = x(u± i
2
), x(u) =

u

2

(
1 +

√
1− 4g2/u2

)
, (5)

and

g =

√
λ

4π
(6)

is the normalized coupling constant.

We first recall that neighboring roots u6,k and u7,j attract each other and may form

bound states called stacks [31]. Here we consider a particular type of stacks studied

in [29] that every bosonic root u6,k is combined with a 2-string of fermionic roots u7,k.

The center of the 2-string coincides with the bosonic root up to O( 1
L
) correction. With

appropriate ordering of Bethe roots, one can express the present formation of stacks as

u7,2k−1 ≈ u6,k + i
2
, u7,2k ≈ u6,k − i

2
, for k = 1, . . . , M, (7)

where we let ≈ denote equality up to O( 1
L
) correction. After substituting (7), (2) read

(
x+

4,k

x−4,k

)L

≈
K4∏

j 6=k

u4,k − u4,j + i

u4,k − u4,j − i

M∏
j=1

1− g2/x−4,k x+
2,j

1− g2/x+
4,k x+

2,j

M∏
j=1

1− g2/x−4,k x−2,j

1− g2/x+
4,k x−2,j

×
M∏

j=1

1− g2/x−4,k x+
6,j

1− g2/x+
4,k x+

6,j

M∏
j=1

1− g2/x−4,k x−6,j

1− g2/x+
4,k x−6,j

, (8)
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while (3) are identically satisfied2. Equations (4) split up into two kinds, namely, for

u7,2k−1 and for u7,2k. Multiplying the former by the latter for the same k, we obtain a

set of center equations

1 ≈
M∏

j 6=k

u6,k − u6,j + i

u6,k − u6,j − i

K4∏
j=1

1− g2/x+
6,k x+

4,j

1− g2/x+
6,k x−4,j

1− g2/x−6,k x+
4,j

1− g2/x−6,k x−4,j

. (9)

Let us next consider the thermodynamic limit L →∞ of these effective equations.

We are looking for a solution analogous to the anti-ferromagnetic state of spin-chains,

for which all the Bethe roots sit along the real axis with consecutive mode numbers.

For such a solution we may well assume the distribution of roots to be symmetric

under u 7→ −u. For the sake of simplicity we set K4 = L/2, which may be the possible

maximal number for the real roots u4,k. The number of stacks M should also be

fixed3, but in the following discussion we merely need it to be macroscopic. By taking

logarithm, differentiating with respect to the spectral parameter u and performing

Fourier transform successively, (8), (9) give rise to the following set of integral equations

J0(2gt) = e|t|ρ̂4(t) + ρ̂4(t)− 4g2t

∫ ∞

0

dt′K̂1(2gt, 2gt′) [ρ̂2(t
′) + ρ̂6(t

′)] , (10)

0 = −e|t|ρ̂6(t) + ρ̂6(t)− 4g2t

∫ ∞

0

dt′K̂0(2gt, 2gt′)ρ̂4(t
′) . (11)

The computation is almost parallel with that in [29], where Fourier transform of the

density function is defined by

ρ̂(t) = e−|t|/2

∫ ∞

−∞
eituρ(u)du , (12)

and the integration kernels are given by

K̂0(t, t
′) =

tJ1(t)J0(t
′)− t′J0(t)J1(t

′)
t2 − t′2

, K̂1(t, t
′) =

t′J1(t)J0(t
′)− tJ0(t)J1(t

′)
t2 − t′2

. (13)

Jk(u) is the Bessel function of the first kind.

Note that the first term of the r.h.s. of equations (10), (11) comes from the growth of

the mode number along the real axis, while the second term comes from the scattering

2There appear seemingly indeterminate factors 0/0 at the leading order of the large L approxima-
tion. This indeterminateness is resolved if one takes account of the 1/L correction. The requirement
for the correction is that u7,2k−1 − u6,k = i/2 + εk and u7,2k − u6,k = −i/2 − εk, with εk = O(1/L).
Such adjustments are possible stack by stack.

3M may be fixed so that the vacuum is maximally neutral with respect to the global symmetry.
For K4 = 2M = L/2, global charges listed in [3] vanish (except for the scaling dimension).
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of the Bethe roots of the same flavor. Observe that the relative signs of these two terms

are different in (10) and (11). This is due to the fact that u4,k correspond to excitations

in the compact so(6) sector, while u6,k correspond to the non-compact so(4, 2) sector.

By eliminating ρ̂2, ρ̂6, one obtains a single integral equation for ρ̂4(t)

J0(2gt) = (e|t| + 1)ρ̂4(t) + 4g2t

∫ ∞

0

dt′K̂d(2gt, 2gt′)ρ̂4(t
′) , (14)

where the integration kernel reads

K̂d(t, t
′) = 8g2

∫ ∞

0

dt′′K̂1(t, 2gt′′)
t′′

et′′ − 1
K̂0(2gt′′, t′) . (15)

We obtain the very kernel describing the dressing phase proposed in [23].

The meaning of the result is as follows. Let us first see what state we have at one

loop by taking the limit g → 0 in our starting equations (2)–(4). One immediately

sees that equations (3) and (4) decouple from (2). In fact, they reduce to trivial

equations via a duality transformation and we are left only with the simple Bethe

ansatz equations for u4,k describing the su(2) Heisenberg spin-chain. In particular, our

solution with maximally filling real u4,k corresponds to the anti-ferromagnetic state

of the su(2) chain. In fact, (14) has the form of the continuous all-loop Bethe ansatz

equation for the su(2) anti-ferromagnetic state [32,33], plus the integral term expressing

the contribution from the background stacks.

Next, let us consider the su(2) anti-ferromagnetic state using the all-loop Bethe

ansatz equations with the dressing factor of Beisert, Eden and Staudacher [23] instead

of introducing our background stacks. In the thermodynamic limit, the same equation

(14) appears [29], but now the integral term comes from the dressing factor. This

shows that introduction of the background stacks is equivalent to that of the dressing

factor. In other words, the dressing phase is nothing but the effective phase due to the

existence of our background stacks, which provides an interesting clue to the physical

origin of the dressing factor.

In this letter, we have focused on the su(2) anti-ferromagnetic state. Other states

are also described similarly to the hole excitations above the anti-ferromagnetic vacuum

of the su(2) Heisenberg spin-chain [34].

Now, one can argue that there are two equivalent formulations also for planar N = 4

Super Yang–Mills, as discussed in the introduction: one could start either from phys-

ical Bethe ansatz equations with a trivial reference state, or from bare Bethe ansatz

equations with a non-trivial reference state. The former is derived from the physical

5



S-matrix involving the dressing factor, which is analogous to the Bethe ansatz formula-

tion of quantum sigma-models [25]. The latter is derived from a bare R-matrix without

the dressing factor, which is analogous to the lattice (spin-chain) realization of particle

models.

Our result indicates the possibility of the latter. In this formulation, the funda-

mental R-matrix can be determined by purely algebraic consideration [8, 9], while the

physical S-matrix is dynamically generated as the scattering matrix of fundamental

excitations over the Fermi surface. The dressing phase is then regarded as the effective

phase over the Fermi surface, or the “physical vacuum” with the stacks. To pursue

this program, there are still many questions open for further investigations. One has

to examine, for example, what are the allowed excitations, how a small number of exci-

tations is described, and how each Yang–Mills field is realized in terms of Bethe roots.

We leave detailed analysis for future publication [34].

Note added: After the submission of this article we were informed by A. Rej,

M. Staudacher and S. Zieme that they were aware of similar results, which were later

presented in the revised version of [29]. Despite the formal resemblance, our approach is

different from theirs in several ways, in particular conceptually, and the open questions

in [29] are resolved in ours [34].
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