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ABSTRACT. We construct special solutions of the quantum Knizhnik-Zamolodchikov
equation on the tensor product of the vector representation of the quantum algebra
of type Ay_1. They are constructed from non-symmetric Macdonald polynomi-
als through the action of the affine Hecke algebra. As a special case the matrix
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Key words. qgKZ equation, affine Hecke algebra, non-symmetric Macdonald polynomial.
2000 Math. Subj. Class. 39A13, 33C52, 81R50.

1. INTRODUCTION

In this paper we construct special solutions of the quantum Knizhnik-Zamolodchikov
(qKZ) equation in terms of non-symmetric Macdonald polynomials.

The qKZ equation, derived by Frenkel and Reshetikhin [FR], is the system of
difference equations satisfied by matrix elements of the vertex operators in the rep-
resentation theory of the quantum affine algebra. In this paper we consider the qKZ
equation on the tensor product of the vector representation of the quantum algebra

U,(sly):
G(21, - DZms -2 2n) = Ringn1 (P Zm1) + Rt (p2m/21) (125" 57
X Rn,m(zn/zm)*1 . Rm+1,m(zm+1/zm)*1 G(Z1y oy Zmy ooy Zn)-

Here G(z1,...,2,) is an unknown function taking values in V®" where V ~ C¥
is the vector representation. The operator R(z) is the R-matrix (see (2.2) below),
h;(j =1,...,N—1) is the basis of the Cartan subalgebra of sly, and p, k1, ..., Kn_1
are parameters of the equation. The indices of the operators in the right hand side
signify the positions of the components in V®" where the operator acts. The value
¢ determined by p = ¢*V*9 is called a level of the gKZ equation.

There are some methods to construct solutions of the qKZ equation. One of
them is to use multiple integrals of the hypergeometric type [Mi, VT, MTT]. This
works for any parameters p, k1, ..., kny_1 such that the multiple integrals converge.
Another method is the bosonization of vertex operators. For the integrable irre-
ducible highest weight U, (sly)-modules of level one, the bosonization is constructed
by Koyama [Ko|. By using it, Nakayashiki calculated the matrix element of the
vertex operators [N]. It gives by definition a solution to the qKZ equation of level

one, where the parameters k1, ..., ky_1 are determined from the highest weight.
1
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Recently Di Francesco and Zinn-Justin constructed a polynomial solution in the
case of level one [DZ] by using the representation theory of the affine Hecke algebra
(AHA). In a similar manner Kasatani and Pasquier obtained a solution of the KZ

equation of level —1/2 associated with Uq(sAlg) [KP]. In this paper we generalize

these results to the case of U,(sly) and other levels.

Let us give a sketch of our construction of solutions. We use the spin basis instead
of the path basis in the construction of [DZ] and [KP]. Expand the unknown function
G(z1,...,2,) into a linear combination of the tensor products v, ® - - - ® v, , where
{v 3V, is the standard basis of V. We consider the set of functions which appear
in the expansion as coefficients. The qKZ equation can be described as a condition
of constraint for the functions. In this paper we consider a stronger condition than
the qKZ equation itself, and call a set of functions satisfying the condition a ¢KZ
family (see Definition 3.3 below).

The defining condition of qKZ family is described in terms of the action of the
AHA on the space of functions. The generators of the AHA consist of two sets
of elements T; (1 < i < n —1) and Y; (1 < j < n) satisfying some relations (see
Definition 3.1 below). The actions of 7; and Y; are given by the Demazure-Lusztig
operator and the ¢-Dunkl operator, respectively. From a viewpoint of the repre-
sentation theory, a qKZ family is a set of vectors which move to each other by the
action of the generators of the AHA. Moreover, if one vector is known, then all the
vectors are determined through the action of the AHA. Hence the linear span of the
vectors of a qKZ family determines a cyclic module of the AHA.

Now we return to the description of our construction of solutions. From the
definition, a qKZ family contains a joint eigenfunction of the ¢g-Dunkl operators Y.
Moreover, it is also an eigenfunction of some of the Demazure-Lusztig operators
T;. We prove that such an eigenfunction, conversely, generates a qKZ family. Thus
construction of a qKZ family is reduced to that of an eigenfunction of the g-Dunkl
operators and the Demazure-Lusztig operators. As is well known, non-symmetric
Macdonald polynomials [Ma] are such eigenfunctions. Therefore we can construct
special solutions of the qKZ equation from non-symmetric Macdonald polynomials.

Cherednik [C] and Kato [Kat] unveiled the relation between the ¢KZ equation and
the eigenvalue problem of the Macdonald type: a certain linear combination of the
coefficients in a solution of the qKZ equation gives a symmetric joint eigenfunction
of the g-Dunkl operators (see [Mi] for the explicit formula in the case of n = N).
Our construction is consistent with this result because symmetric Macdonald poly-
nomials can be obtained as a linear combination of non-symmetric ones.

The plan of this paper is as follows. First we recall the definition of the qKZ
equation in Section 2. In Section 3 we give the definition of gKZ family, and prove
that a qKZ family is constructed from a joint eigenfunction of the g-Dunkl operators
and some of the Demazure-Lusztig operators. In Section 4 we give explicitly the
construction explained above of solutions of the qKZ equation in the case where the

level is generic or a value of the form % — N, where k and r are positive integers
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such that 1 <k <min{n—1, N}, r > 2 and k+ 1 and r — 1 are coprime. Then the
parameters ki, ..., ky_1 are determined from the eigenvalues of the non-symmetric
Macdonald polynomial for the ¢-Dunkl operators. Here it should be noted that in the
latter case we need to specialize the two parameters in non-symmetric Macdonald
polynomials, some of which are proved to be well-defined in [Kas]. In Section 5 we
see that the matrix element of the vertex operators of level one is reproduced by the
construction in Section 4 in the case where k = N and r = 2.

2. THE QUANTUM KNIZHNIK-ZAMOLODCHIKOV EQUATION

Let V = 69 (C ve be the N-dimensional vector space. We regard V' as the vector
representation of the quantum algebra U,(sly). Define the linear operator R(z)
acting on V®2 by

R(Z) Ve @ Uﬁz E R 6/16/2 Ve, ® Vel

€15€5

D \ii 50 \ij (1—Z)q > ji 1—q2 i>i ) )
R(z); =1, R(2)j = Tz R(z)j; = mze( 2 (i §)

and R(Z)?j, = 0 otherwise. Here

1 if P is true,
(2.1) 0(P) = { 0 if P is false.

Throughout this paper we assume that

0<qg<l1.

O]:

Then the R-matrix R(z) is given as follows

[D
(2.2) R(z) :=r(2)R(2).
Here r(z) is the normalization factor

r(z) = q%_l (24" oo 7, QQN)OO, (2;%) 00 = ﬁ(l —27z).

The matrix R(z) is nothing but the image in End(V®?) of the universal R-matrix

R'(z) of the quantum affine algebra Uq(sAl ~) in the sense of Appendix 1 in [I[LJMNT].
The qKZ equation is the following system of difference equations for an unknown
function G(z1, ..., z,) taking values in V"

(2.3) G(z1,-. s DZms s Zn) = Rinm—1(02Zm/2m-1) - - - Rin1(p2m /1) (va 11 /{h‘)

X Ry (20/2m) " Roni1m(Zma1/2m) PG (2150 Zims o 20)
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for m = 1,...,n. Here R,,;(2) is the operator acting on the tensor product of
the m-th and the [-th components in V®" as the R-matrix R(z) *. The operator

(I1; Iﬁ?j)m acts on the m-th component, where h; (j = 1,..., N — 1) is the basis of
the Cartan subalgebra of sl. The action of h; on V' is given by
h'jvj—l = Vj-1, hjUj = —Vj, hjUi =0 (Z 7é ] — 1,])

The complex numbers k1, ...,ky_1 are parameters of the qKZ equation. For the
sake of simplicity, hereafter we assume that the difference step p is a positive real
number. When p = ¢*™+9 the number ¢ is called level.

3. QKZ rAMILY

3.1. Affine Hecke algebra. Let us summarize the basic facts about the affine
Hecke algebra. We use the notation in [MN].

Definition 3.1. The affine Hecke algebra H* of type G L,, is an associative C(t'/?)-
algebra generated by T; (i =1,...,n—1) and Y; (j = 1, ..., n) satisfying the following
relations:

(T =) T+t =0 (1<i<n-—1),

LT =T, T (1 <i1<n-— 2)7

TT; =T;T (li—jl > 1),

VY, =YY (1<ij<n),

Yil; =TV, (j#1—1,4),

Y=Y, (1<i<n-—1).

Define o € H2 by
o= Tnill .. .7}71}/;7}71 Ty

Note that the right hand side above does not depend on the value ¢. Then it is easy
to see that o™ is central and oT; = T;_y0 (1 < i < n). Moreover the algebra H2T is
generated by T; (i =1,...,n— 1) and o.

Denote the Laurent polynomial ring with n variables by P, = C[zi,..., 2.
Let T; (i = 1,...,n — 1) and w be the linear operators on P, defined by
- t1/2 _ t71/2
3.1 =2 L (-1
(3.1) ot e (m 1),
(3.2) (W21, -y 2n) == f(P2n, 21, - - s Zn—1)-

Here 7; is the permutation of the variables z; and z;,1, and p is a parameter. The
operator T; is called the Demazure-Lusztig operator. We will identify the parameter
p with the difference step p in the qKZ equation.

!Note the order of indices: Ry1(z) = P R(2) P # Ria(z), where P is the transposition P(u®v) :=
VU
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Proposition 3.2. The linear map m : H — End(P,) defined by = (T;) = T, (i =
1,...,n—1) and w(c) = w gives a representation of H2E,

3.2. qKZ family. Hereafter we assume that
n>N > 2.

Let dy,...,dy_1 be positive integers satisfying Zj.\;)l d; = n. Denote by Iy, 4y,
the set of n-tuples € = (e, ..., ¢€,) satisfying

#Halea=jt=d; (0<j<N-1)
Now we give the definition of qKZ family:

Definition 3.3. A set of Laurent polynomials

{f51,~-~7€n € Pn | (617 s 7671) € Ido,m,del}

is called a qKZ family of sign () with exponents (co,...,cn—1) if it satisfies the
following conditions:

o Ife; =€, then ﬁf = j:til/2f.

PRI TS ces€i €Tyt
L4 [f € > €11, then ﬂf...,ei,eprl,... = f...,EiJrl,El’,...‘

o w €n,€1,-0€n—1 Cfnfﬁl,...,ﬁn'

Here the operators T, (it=1,...,n—1) and w are defined by (3.1) and (3.2), respec-
tively.

Note that a qKZ family {f., ..} is uniquely determined from one member of
it through the action of ﬁ Hence the linear span > Cf, .
submodule of P,.

In the rest of this subsection we show that a solution of the qKZ equation can be
constructed from a qKZ family.

Let f = {f., . ..} be a qKZ family with exponents (co,...,cy—1). Now we de-
termine two parameters « and (3, and a function h(z) according to the sign of f as
follows. If the sign of f is plus, we define «a, 3 by

is a cyclic -

n

N-—1
pa — ( Cj)_l/N q—(n-‘rl)(l/N—l)’ pﬁ _ q2(1/N_1)
7=0

Y

and take a solution h(z) of the difference equation

hp™'2) (5@ 26

h(z) (%26 ) oo (PN 225 4%V ) o
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Similarly, in the case where the sign of f is minus, we determine «,  and h(z) by
the following formulas:

N-1
(3.3) P = H ¢;) VN g (D AH/N), PP = P0HUN).
' h(Z) (¢? o )Z qu) (61‘22; ¢*N)oo
Now let us construct a solution of the qKZ equation. Define the function K (z1, ..., z,)

by

(3.5) K(z,.. ., z) = [z [ hz/za)-

a=1 1<a<b<n

and the V®"-valued function F(zy,...,z,) by

F(z1,...,2n) = Z Jeren(Z1y ey 20) Ve @+ @ 0, .
(€1,s€n)€lag,....dn_4
Set
(3.6) G(z1y..oy2n) = K(z1,. .., 20)F(21,. .., 2n).

Proposition 3.4. Let £ = {f., ..} be a ¢KZ family of sign (£) with exponents
(coy... cn—1). Then G(z1,...,2,) is a solution of the ¢KZ equation whose parame-
ters ¢ and k; (j =1,...,N — 1) are determined by q = +t*1/2 and

N-1

(3.7) Kj = HCl : (H c) I,

=0

Proof. Here we give the proof in the case where the sign of f is minus. The proof
for the case of plus sign is similar.

Suppose that two functions F' and G are related by (3.6). Then the qKZ equation
for GG is equivalent to the following equation for F"

(3.8) F(z1y.--yDZmy- -+ %n)
2a/P2m 7T L= @Pom/%
—(—1 n—lq—Q(n—2m+1 1/N —q a m m
Y H H e AL T

N—
X Rm,m—l(pzm/z’m—l> o R sz/Zl H m

]:
X Rmm(zn/zm)_l-- Rovi1m(Zmi1/2m)” V(21,0 Zmy e Zn).
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On the other hand, if f is a qKZ family of sign (—) with exponents (cg,...,cn-1),
we obtain the following equalities by setting t'/2 = —¢ ™'
F(...,Zi+1,ZZ‘,...)
1 —¢*2i/2zi1 _
-2 7 1+
== ‘PZZ Rzzz 1/ <1 F”-viv’i ye )y
(—q )1—Q’2Zi/zi+1 1R yi(2i/ i) F( Ziy Zitls - - -)

where P is the transposition P(u ® v) := v ® u, and

N-1 N-1
Poin - PioF(pzn, 21, ...\ Zn-1) ch I/N Hﬁ?j)nF(zl,...,zn).
Jj=0 Jj=1
Here parameters x; (j = 1,. —1) ared ﬁned by (3.7). It is easy to derive (3.8)
from the equalities above and ng( )7 = Ry (271). O

3.3. Equivalence to the eigenvalue problem. Hereafter we often use the short
notation € = (e1,...,€,) to specify an element of Iy, 4 Let {f.} be a qKZ
family of sign (4). Consider the member fs5, where

§:= (0%, 1% ... (N —1)%v-1),

N—1"

Then it satisfies T} f5 = =t=1/2f; for 1 < i < n — 1 such that §; = d;,;. Moreover it
is an eigenfunction of the q-Dunkl operators

~

Y, =7n(Y;) = jA”] T wT f]:ll

Thus a qKZ family contains a joint eigenfunction of the g-Dunkl operators }A/] and

some of the Demazure-Lusztig operators ﬁ On the contrary we can construct a
gKZ family from such an eigenfunction as follows.

Let us introduce some notation. An element A = (Ay,...,\,) € Z" is called
dominant (or anti-dominant) if Ay > -+ > A, (or Ay < -+ < A, resp.). The
symmetric group S, acts on Z" by oA := (As-1(1), - - -, Ag-1(n)). We denote the orbit
of A € Z" by Sy .

Definition 3.5. For A € Z", we denote by A (A7) the unique dominant (anti-
dominant) element in S,\, respectively. We denote by wi (wy ) the shortest element
in S, such that wi AT = X (wy A = \7), respectively.

Since Iy, 4y, is a subset of Z", we use the notation above also for the elements
of Iy, dy_,- For example, we have w_ e = 0 for any € € Iy, 4y ;-

For w € S, we denote its length by f(w). Let w = s; ---s;, be a reduced
expression, where s; is the transposition s; = (i,741). Then we set T\ T\ ﬁ-m.
This does not depend on the choice of reduced expression of w.

Now we are in position to prove the main theorem which plays a key role in the

next section:
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Theorem 3.6. Fiz positive integers dy,...,dn_1 satisfying Z?ZOI d; = n and set
§=(0d% 14 ... (N —1)4n-1). Suppose that E = E(z1,...,2,) is a solution to the
following eigenvalue problem:

(3.9) V;E = uE (1<Vj<n)
3.10 T.E = +t*'2E if 6§, = 6.,
+

Here the sign in the right hand side (3.10) should be independent on i. Set f. :=
(T, )'E for e € Iay,.ay_,- Then {fc} is a ¢KZ family of sign (£) with exponents
Ci = Xdottas (EEY2)ET(0<i < N —1).

Remark 3.7. The consistency of the eigenvalue problem (3.9) and (3.10) implies
that the eigenvalues y; should satisfy x; = tT'xip1 if 6 = 0i41. Hence all the
eigenvalues x; are restored from the exponents c;.

Proof of Theorem 3.6. Let E be a solution to the eigenvalue problem (3.9) and
(3.10), and set f. = (fw;)*lE. Note that fs = E. Let us check that the fam-
ily of the functions { f.}ees " satisfies the three properties in Definition 3.3 in
order.

Take € € 1y, ay_,- Suppose ¢ = €;41 and let j = w_ (7). Since w_ is taken to be
shortest, we see that §; = d,;41, w_s; = s;w. and L(w_s;) = (s;w.) = L(w.) + 1.
Hence

..... dn_1

T,-Tife = TiT,-f.

We

— (:l:til/Q)f(;.

A~

By applying (7, w;)_1 on both sides, we obtain the first property.
If €; > €41, then w; = w, s; and f(w]) = L(w;,) + 1. Hence

Tyofoe = Js
= T, f
= T,..Tife
This gives the second property.
Let us check the third property. Let € € Iy, 4, , and set

ip:=w_(n)=dy+---+d

Then d;, = €,. Since §{1 < i <ig|d; = 0;,} = d.,, — 1, we have
(3.11) Fro= X' T ToawTy e TN
_ (itilm)—dmﬂxi_olTiO .. .Tn_lf,u]féioﬁ1 7777 5
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~

Set &' = (0iy,01,--+,0i5,--.,0n) and € = (€,,€1,...,€6,-1). Let w; be the shortest
element such that wye’ = ¢’. Then w, = wyw; and {(w_) = l(wy ) + ¢(w;). Hence

(3.12) fy =T, fo.

On the other hand, let wo be the shortest element such that wae = (61, ..., 04, - - -, On, 4 )-
Since there is no 7 such that 7o < ¢ <n and 0; = 9;,, we see that w_ = s;, - - - Sp,_1Ws
and {(w_ ) =n —ip + £(ws). Therefore
(3.13) fs = T, I

- E o fn—lfwzfe‘

N g’ﬂ>

Combining (3.11), (3.12) and (3.13), we get
Tw,fe = (iti1/2)_d€"+lxz’_olWTwlen,q,---yenfr

Since wﬁul = fww, the third property holds. 0

4. CONSTRUCTION OF SPECIAL SOLUTIONS

From the result in the foregoing sections we can construct special solutions of
the qKZ equation as follows. Find a solution E to the eigenvalue problem (3.9)
and (3.10). Setting f. = (T\we—)_lE, we obtain a qKZ family f = {f.} of sign (£)
according to the sign + in the right hand side of (3.10). Define the parameters
a, # and take a function h(z) as explained in Section 3.2. Using these ingredients
above we define G(zy,..., 2,) by the formula (3.6). Then from Proposition 3.4 G
is a solution of the qKZ equation whose parameter ¢ = +t*'/2. Thus the first step
of our construction is to solve the eigenvalue problem (3.9) and (3.10), and we can
find a solution in terms of non-symmetric Macdonald polynomials.

In the following we use the wording “the eigenvalue problem of sign (4)” to refer
the eigenvalue problem (3.9) and (3.10) where the sign in the right hand side is =+,
respectively.

4.1. Non-symmetric Macdonald polynomials. For A = (\y,...,\,) € Z", we
set 2* = 2} - z)». We introduce the dominance order > on the set Z":

A> <, T N> forany 1< <n,

and a partial order »>:

A=l <, At > pt o oor AT =ptand A > .

Definition 4.1. For A = (\y,..., \,) € Z", the non-symmetric Macdonald polyno-
mial E) = Ex(z1,...,2n;t,p) with two parameters t and p is a Laurent polynomial
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satisfying
(4.1) VB, = t"VpNE,
E, = 2+ Z et
H=<A
where p(A) = wip, p:= (54,152, ..., —"50).

Let us recall the action of 7; on Ej following [Kas|. Put
fi(\) = tp(A)Hrp(/\)ip/\mf,\i'
If \; < Aig1, then
T,E\ = 1B\ — —tlf/j(;) t_ll/z E,.

If \; = A\iy1, then
(4.2) T.E, = t\2E,.
If \; > A1, then
Ap AN = DESN =D R

(fi(A) —1)2 RN =1
The parameters ¢t and p are called generic if

tlpm#l for any 0 <! <nand 0 <m.

(43)  TEy=t

For generic parameters, F) is well-defined for any A € Z".

4.2. GGeneric case. First we consider the case where the parameters ¢t and p are
generic. From the properties (4.1) and (4.2), the non-symmetric polynomials give
solutions of the eigenvalue problem of sign (4). Hence we can get solutions of the
qKZ equation:

Proposition 4.2. Suppose that the parameterst and p are generic. Let dy,...,dn_1
be positive integers satisfying Z;V:_Ol dj =n and set § = (0%, 1% ... (N —1)dn-1),
Take N\ € Z" such that \; = \i11 if ; = 0;41. Then the non-symmetric Macdonald
polynomial Ey is a solution of the eigenvalue problem of sign (+), and we obtain a
solution of the ¢KZ equation from it by setting t'/?> = q. The parameters ky, . .., Kn_1

in the ¢KZ equation are determined by (3.7) from the exponents

¢; = qdi_1+2p()‘)d0+m+dip)\d0+~-+d,bv‘

We note that in the case where dy = -+ = dy_; = 1 the requirement (3.10)
becomes empty. Hence any non-symmetric Macdonald polynomial is also a solution
to the eigenvalue problem of sign (—) in this special case, and we obtain the following
proposition:
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Proposition 4.3. Suppose that the parameters t and p are generic. In the case
where dy = --+ = dy_1 = 1, and hence n = N, any non-symmetric Macdonald
polynomial E creates a solution of the ¢KZ equation. The parameters ki, ..., Ky_1
are determined by (3.7), where ¢; = (—1)""1g= 2PN phist,

Proof. Here we only give the calculation of the exponents. From Theorem 3.6 we
have ¢; = tPMdo+-+di pro+-+d; - To construct the solution of the qKZ equation we set
t1/2 = —¢~1. Since 2p(A\); = n — 1 (mod2) for all 4, we find

c; = (—q_l)2p(>\)d0+'"+dip)\d0+"'+di _ (—1)n_lq_2p(>\)d0+'"+dip)‘d0+"'+di

= (- 1)n—lq—2p(/\)i+1p>\i+1 )

O

Remark 4.4. When we determine k;’s and o by (3.7) and (3.3) in practice, the
branch of (I]; ¢;)Y/N should be settled suitably. In the situation described in Proposi-
tion 4.3 the exponent c; is a value of the form (—1)""'¢;, where ¢; is a positive real
number. Then we set ([[, c;)V/N = (=1)" Y[, &)Y and determine r;’s and o. In

Theorem 4.6 below the situation is the same, and we take the same branch.

4.3. Specialized case. In Proposition 4.3 we saw that any non-symmetric Mac-
donald polynomial gives a solution to the eigenvalue problem of sign (—), but it is
in the very special case. In order to solve this problem in general, we need to find
an eigenfunction of the Demazure-Lusztig operator with the eigenvalue —t /2, and
this is not the situation in (4.2). However, if f;(A\) = ¢ in (4.3), then E) becomes
such an eigenfunction. It should be noted that the relation f;(A) = ¢ implies that
the parameters t and p are not generic. In the rest of this paper we consider this
kind of case.

Let k and r be integers such that 1 < k < min{n — 1, N}, r > 2, and k + 1 and
r—1 are coprime. We assume that ¢, p are not roots of unity and take a specialization

tF+1pr=1 = 1. To be more precise we specialize t and p as follows:
where v is not root of unity. We will set ¢ = —t~/2 and take u = q_%. Then we

2(k+1)

have p = ¢ =1 and the level of the qKZ equation is equal to % — N.
We call A = (\y,...,\,) € Z" admissible if

AN =Ny =r—1 forany 1 <i<n—k, and

A=A =r—1 onlyif wi(i) <wi(i+k).

The following statement is a corollary of Theorem 3.11 in [Kas]:

Lemma 4.5. For any admissible A\ € Z, the non-symmetric Macdonald polynomial
E\ is well-defined under the specialization (4.4). If X € Z" is admissible and s;\ is

not admissible, then YA}E,\ = —t712E,.
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Let m and [ be integers satisfying n = km + [0 and 0 < [ < k — 1. Let
(d9, ..., d* V) be a permutation of ((m + 1)), m*~!). Note that Zf;é d9) = n.
Take a dominant element a = (ay,...,a;) € Z* satisfying

(45) a;—a,<r—1 and w, ((m+ D! mP ) = (d(O)’ o ’d(k—l))’
where w, € Sy (see Definition 3.5). Now define A € Z" by

ANi=a; for 1<i:<k, and
Ai—Agp=r—1 for 1<i<n-—k.

Then A is admissible. For simplicity, we write w = w, and define p € S, A by
o= (Aw=1(1)s Aw=1 (1) ks Aw—1(1)42k> - - > Aw—1(1)+bi ks
Aw=1(2)5 Aw—1(2)4ks Aw—1(2)42k - - - » Aw—1(2)+bok>

ey

Aw=1(k)> Aw=1 (k) Aw—1 (k) 42k - - - » Mo (k)+bk) >

where b; :=m — O(w(j) > 1) (see (2.1) for the definition of §(P)).

Ezample. Set n = 13 and k = 5, and consider the case of (d©,d", d® d®) d¥) =
(3,2,2,3,3). Then the condition (4.5) for a dominant a = (ay, .. .,as) € Z° implies
that a; > as > a3 = a4 = as. Now suppose that r = 6 and take a = (13,10,9,9,9).
Then A and p are given by

A= (13,10,9,9,9,8,5,4,4,4,3,0, —1),
p=1(9,4,-1,9,4,9,4,10,5,0,13,8, 3).

Now let (dy,...,dy_1) be a subdivision of (d®,...,d®*V) that is, d; > 0 and

di, + -+ di;,, 1 = @) for some 0 = iy < 44 < -+ < fp_q < ip = N. It is
easy to see that p is also admissible and s;u is not admissible if §; = 9,1, where
§=(0%,1% ... (N —1)%-1). From Lemma 4.5, E, is a solution of the eigenvalue

problem of sign (—). Therefore we get the following theorem (see Remark 4.4).

Theorem 4.6. The non-symmetric Macdonald polynomial E,, with the specialization
(4.4) and t'/? = —q~' creates a solution of the ¢KZ equation of level % — N. The
parameters Ky, . .., kx_1 are determined by (3.7) from the exponents ¢; = (—1)"1q™,
where

2k + 1)

Api=di = 1 = 2p(W)dg+-ta; + 1 Hdo+--+d; -
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5. THE MATRIX ELEMENT OF THE VERTEX OPERATORS

Here we see that our special solutions constructed in Theorem 4.6 contain the
matrix element of the vertex operators in the case where k = N and r = 2.

First we recall the definition and the properties of the vertex operators follow-
ing [DO]. Let A;(I = 0,...,N — 1) be the fundamental weights of U,(sly). The
symmetric bilinear form (-|-) on the weight lattice is defined by

wiay =" gy
Hereafter the index [ in A; should read modulo N. The weight of v, € V' is given by
wtve = A1 — A, where A; = A; — Ay.

Denote by V (A;) the irreducible integrable highest weight module of Uq(;\l ~) with
the highest weight A;, and by |A;) its highest weight vector. Let (A;| € V(A;)* be
the dual vector satisfying (A;|A;) = 1.

The vertex operator ®0(2) (0 <1< N —1) of type I 2 is the intertwiner
D (2): V(A1) = V(A @V

normalized as &1 (2)[A11) = [A) ® v + ---. In the following we often omit the
upper index (I) of the vertex operators. Write the operator ®(z) as ®(z)(-) =
Z?{:Bl ®.(2)(+) ® ve. Then the following commutation relation holds:

N
(5.1) Do, (22) e, (21) = K(2) Y Rlz1/2)d 2Dy (21)De (22),
€} eh=1
where
(2) = e (@21 V) oo (22 2V o
(72 Y )oo(6®2715 ¢V oo
Set @0 (z) = 2221100 (), where A, : l(J2VN Consider the matrix element

GO (21, z) = (M| ®(21) - D(z)|A) € VO,

Theorem 5.1. [FR] The function G satisfies the qKZ equatwn of level one.

The parameters Ky, ...,kn_1 are determined by Hz 1 /-@ =q _A'_Qp, where p :=

YA
From the definition of the vertex operators we have G¥) = 0 unless i — j +n =

0 (mod N). In the following we assume that n > N and i — j+n = 0 (mod N). The
function G#) is expanded as

G(ij)(zhuwzn): Z ng) En(Zh‘"JZn)UEl®”.®U€n’

,,,,,

G (21, zn) 1= (Ng] D, (21) -+ Do, (20) | A).

2This operator 1) (z) is equal to 5%:;(1)(2) in [DOJ.
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Then Ggij) = ng)en = 0 unless € € Iy, . 4y_,, Where dy,...,dy_1 are determined
by St dy = n and
(5.2) dy=di—1+01; — 0 (0<I<N-1).

Here the index [ should read modulo V.
The following formula is due to Nakayashiki [N]:

Proposition 5.2. Set § = (0%,... (N — 1)%-1). Then we have

N do+++dj—1
Gz, .. z) = KD (21, ..., 2) H z ! H (2o — ¢ 2).
a=1 1<a<b<n

5a=0y,
Here KU is defined by
(5.3) K9(z,...,2,)

n

= cz(;l) H Z

a=1 1<a<b<n

2N+2

QZ"“

at S (20424 N—1) H (@Y 22/ 203 ¢ )
(@ 2/ 2a; ¢*N ) o 7

(n)

where ¢;;° s a certain constant.

We have the following proposition.

Proposition 5.3. Set F\'7) := G’Eij)/K(j) foree€ 1y,  ay_,- Then {Fe(ij)} is a ¢qKZ

family of sign (=) whose parameter t'/> = —q='. The exponents are given by
(5.4) ¢ = (_1)n—1qn—2N—2j+2e—9(e<i)—0(e<j)+%.

Proof. Set F) = G /K. From the commutation relation (5.1) and the defini-
tion (5.3) of K, we have

(5.5) FD (. 2041, 20, .. .)
2
Za+1 — 4" Zq S i
= ————P a1 Roui1(z4/ 24 F(”)...,za,za o)y
re— Prury | S at+1(Za/za41) F( +15---)

where P is the transposition P(u ® v) := v ® u. This is equivalent to the first and
second properties in Definition 3.3. A
From (5.5) and the qKZ equation for G we see that

F(ij)(QQ(N—&—l)Zl, 2o, -,Zn) _ (_1)n—1qn—N—2j—1+(n—2j)/N (Q—/’\i—/’\j—m)l
X PLQ"'Pn,LnF(ij)(ZQ,...,Zn72'1>.
It is easy to derive the third property in Definition 3.3 from this equality. ([l

2(N+1

For the exponents (5.4) and p = ¢ ), the parameters o and 3 are determined

by (3.3) as follows:

1 1
= —(-2 27+ N -1 = —.
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Moreover the function h(z) = (¢*V722;¢*M)u/(¢*V 2;¢* ) is a solution to the
difference equation (3.4). Thus the function K ) is restored from the ingredients
above by the definition (3.5) up to constant multiplication.

Let us check that the matrix element G#) is contained in our special solutions
constructed in Theorem 4.6 in the case where k = N and r = 2. Since the function
K is restored as described above, it suffices to show that the extremal component

do+-+dj—1
(i5) _ -1 2
CUE | G T
a=1 1<a<b<n

Sa=5y,

is equal to the non-symmetric Macdonald polynomial E,, for a suitable 1 € Z" with
the specialization tV+1p = 1.
Recall that d; (0 <1 < N — 1) is defined by (5.2). More explicitly we have

7 j—i N—j p o .
d:<d0,7dN1):{(m’(m+1) , ) leS.Jv

(m+ 1), m~ (m+ 1N ifi>j.
Here m := [n/N]. Now set a = (ay,...,ay) € ZN by
_ [ (m =D (m —2)) ifi <,
T (mN (m = 1)) ifi> ;.
It satisfies w, (d*) = d. This element a determines u € Z" as described in Section
4.3, and it is given by
S m=2,.., =D (m—1,...,—1)"  (m—1,...,00V ) ifi <j,
F=V (m=1,...,=1)Y, (m—1,...,0)79, (m,...,0)¥) ifi> ;.

Proposition 5.4. For p € Z" defined above, E,, is equal to F(S(”) with the special-
ization tNtp = 1 and t'/? = —q~'. Therefore the solution of the ¢KZ equation
determined from E, coincides with the matriz element G9) of the vertex operators
up to constant multiplication.

To prove the proposition we use the following lemma obtained in [Kas]:

Lemma 5.5. Suppose 1 < N < n — 1. For a Laurent polynomial f we call the
following vanishing property the wheel condition: f(z1,...,2,) =0 if z;; =t 'z, =
cee = thziN+1 forany 1 <iy <--- <iny1 < n. Then the set of the non-symmetric
Macdonald polynomials

{E\| X is admissible}

with the specialization t"'p = 1 forms a basis of the space of all Laurent polynomials
satisfying the wheel condition.

Proof of Proposition 5.4. In the case of n = N the equality F (s(ij ) = E, follows from
the definition of E,. Let us consider the case of n > N. Note that F! 5(” ) satisfies the
wheel condition and the top term in F 5(” ) is equal to z*. Hence, from Lemma 5.5,
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F{7 is a linear combination of £, where v is admissible, v < y and |v| = |u|. Let v
be such an element. By definition, vt < pu* or “vt =yt and v < p”. I v < ut,
then vt = puf,...,vl, = pl |, and v} < puf for some s. Since v is admissible, v
is also admissible. However, the admissibility of v and the definition of y impose
an upper bound for the other components uj < ul (s > s). It is inconsistent with
the condition || = |u*|. Thus v must satisfy v* = u and v < p. If v < p, then
vy = i1, ..., Vs 1 = Jhs_1, and vy < ug for some s. However it is not compatible with

the admissibility of . Hence the only possibility is v = pu. 0
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