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Abstract We show that some of the major existence theorems in mathematical
economics and game theory are equivalent to Brouwer’s fixed point theorem. We
establish new equivalences & la Uzawa for exchange economies and production
economies. Social Equilibrium Existence Theorem is also equivalent to Brouwer’s
fixed point theorem. Moreover, we show that most of the existence theorems in
game theory are included in the equivalence. Namely, Nash equilibrium existence,
the core existence and NTU value existence. Our results tell us that the use of fixed
point theorem in economics and game theory was a logical necessity rather than a
coincidence.

1 Introduction

Since Arrow and Debreu (1954), McKenzie (1954), Nikaido (1956) and Gale
(1955), Brouwer’s fixed point theorem has played a decisive role in general equi-
librium analysis. Uzawa (1962) further proved that Brouwer’s fixed point theo-
rem is equivalent to Walras’ existence theorem which says that for any continuous
function (interpreted as an excess demand function) mapping the price simplex
into the commodity space and satisfying Walras’ law, there exists an equilibrium
price vector. This result is known as Uzawa’s equivalence theorem.

* An earlier version of this paper was presented at the Theory Workshop at University
of Rochester and at Southeastern Economic Theory and International Trade Conference at
University of Virginia in 1994 and also at the 7th World Congress of Econometric Society
in Tokyo, 1995. We are grateful (o the participants, especially John H. Boyd, Lionel W.
McKenzie, and William Thomson for useful comments, discussions, and suggestions. We
are also thankful to Daniel G. Arce and Michael R. Baye for related literature. The second
author acknowledges the financial support from Waseda University. The usual disclaimer
applics.
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The importance of Uzawa’s equivalence theorem comes from the interpreta-
tion that proving the existence of Walrasian equilibria is just as hard as proving
Brouwer’s fixed point theorem, one of the deepest results in topology. See Uzawa
(1962), Nikaido (1968, §16) and Debreu (1982). Nonetheless, we are a bit reluc-
tant to accept this authoritative view on the equivalence theorem in its present form
when we take a closer look at Walras’” existence theorem, following Arrow and
Hahn (1971, p.29): The continuous excess demand function on the price simplex
implies that the demand for free goods is bounded. If the function is generated by
an exchange economy, these preferences must exhibit satiation in every commod-
ity. Unless the satiation point lies above the endowment point for every consumer,
Walras’ law (in equality form) might fail at some prices. What is worse, a contra-
diction may be unavoidable if non-satiation is required. Thus, we find it very hard
to regard the excess demand function as derived from primitive data such as prefer-
ence relations and initial endowments. This observation leads us to reconsidering
Uzawa’s equivalence theorem. To wit, our objective is to establish equivalence be-
tween Brouwer’s fixed point theorem and alternative versions of Walras’ existence
theorem stating that there exists an equilibrium for any excess demand function
satisfying economically reasonable restrictions.

In exchange economies, it is relatively easy to identily the restrictions: Conti-
nuity on the relative interior of the price simplex, Walras’ law, boundedness below
and a boundary condition are derived {rom optimization behavior on the part of
consumers. See Arrow and Hahn (1971, Ch.4, theorem 8). On the other hand,
Debreu’s (1974) theorem on the characterization of excess demand function tells
us that a given excess demand function is approximated off the boundary of the
domain by another one which can be generated by an exchange economy. Thus,
a proper version of Walras® existence theorem for exchange economies seems to
be that any excess demand function satisfying the four restrictions has at least
one equilibrium. Our first equivalence theorem states that this version of Wal-
ras’existence theorem is equivalent to Brouwer’s fixed point theorem. This equiv-
alence theorem has a corollary with a far-reaching implication: Brouwer’s fixed
point theorem is equivalent to the statement that Walrasian equilibria exist for a
class of exchange economies comprised of a finite number of consumers with pos-
itive initial endowments and continuous, monotone, strictly convex preferences.
This equivalence result fully justifies our understanding that proving the existence
of Walrasian equilibria is just as hard as proving Brouwer’s fixed point theorem.
Our argument draws heavily on a powerful theorem of Mas-Colell (1977).

In production economies, we need to take boundary behavior of supply into
account. See Artzner and Neuefeind (1978) and Neuefeind (1980). In general, an
excess demand function may be unbounded from below. Thus our arguments for
lower bounded excess demand functions are no longer in force. To get around the
difficulty, we need to develop a novel approach. Qur equivalence theorem for pro-
duction economies says that Brouwer’s fixed point theorem is equivalent to yet
another version of Walras’ existence theorem stating that an equilibrium exists [or
any excess demand function satisfying continuity, Walras’ law and the boundary
condition used by Arrow and Hahn (1971, Ch. 2). This seems like a fairly satis-
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factory result, considering the situation that there is no analog of Debreu’s (1974)
theorem for characterizing excess demand functions for production economies.

After obtaining our major results, we learned that Nishimura (1978a, Remark
2), along with a reference to Nishimura (1978b, Theorem 1), suggested our first
equivalence theorem. But he did not state what was exactly his version of equiva-
lence theorem so that it is hard to tell what kind of argument he had in mind. More
important, what makes our work beyond Nishimura’s suggestion is 1o realize that
there is a link between Uzawa’s equivalence theorem and the literature on the char-
acterization of excess demand functions. Furthermore, Nishimura’s suggestion is
concerned with only excess demand functions with lower bounds.

Nash (1950) proved the existence of non-cooperative equilibrium for a nor-
mal form game by Kakutani’s fixed point theorem. Debreu (1952) introduced
abstract economies and proved the existence of social equilibrium by Eilenberg-
Montgomery fixed point theorem, a generalization of Kakutani’s fixed point theo-
rem. The social equilibrium existence theorem served as the basis for the existence
theorems of Arrow and Debreu (1954). It is well-known that Scarf’s (1967) core
existence theorem can be proved by Brouwer-type fixed point theorems. See Zhou
(1994), for example. Debreu and Scarf (1963) tells us that the core has close ties
with Walrasian equilibria. Furthermore, Shapley’s (1969) NTU (Non-transferable
Utility) value existence theorem is implied by Kakutani’s fixed point theorem.
Thanks to Champsaur’s (1975) limit theorem, the NTU value is also closely related
to Walrasian equilibria. Thus, the second objective in this paper is concerned with
how to assess the technical overlap between general equilibrium theory and game
theory. We do this by establishing several equivalence theorems. Our equivalence
theorem for exchange economies turns out to be instrumental. To begin with, we
show that social equilibrium existence theorem is equivalent to Brouwer’s fixed
point theorem. We use this result to demonstrate that the existence theorems of
Dasgupta and Maskin (1986) for Nash equilibria are equivalent to Brouwer’s fixed
point theorem. This is remarkable because their theorems permit discontinuous
payoff functions. [inally, we establish that both Scarf’s core existence theorem
and Shapley’s NTU value existence theorem are equivalent to Brouwer’s fixed
point theorem.

The paper is organized as follows. In Section 2, we present the equivalence
theorem for exchange economies and its corollary. In Section 3, we present the
equivalence theorem for production economies. In Sections 4 and 5, we collect
equivalence theorems exhibiting close relationships between general equilibrium
theory and game theory. The last section contains a few concluding remarks.

2 Equivalence Theorems for Exchange Economies

For our purpose, it is convenient to use notation and terminology in Mas-Colell
(1977) as much as possible. The commodity space is the £-dimensional Euclidean
space R', whose generic element is denoted by x = (x1,- - , x/). The consumption
set of all consumers is R, the non-negative orthant of R’. The interior of R is
denoted by R , . The (normalized) price space is P = (p € R,, | p-e = 1}, where
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e=(1,...,1) € Rf and p - e denotes the inner product of p and e. The closure
and relative boundary of P is denoted by P and by 8P, respectively. We sometimes
identify the price space P with § = {p € R., [||pl] = 1}, where ||p|| is the Euclidean
norm of p. This is no harm since p — HL_)II maps P homeomorphically onto S. This
identification is useful for application of Mas-Colell’s theorem. For any € > 0, let

Se={peS|piZzeflorali=1,...,¢.

We say that amap f : P — R’ is an excess demand function if it satisfies the
following conditions;

(C) f: P — R is continuous,
(W) p- f(p)=0Tforevery p e P,
(BB) There is k € R such that forevery p € P, f(p) > ke,
(BC1) If p, > p € P and p, € P, then ,}gli f (Pl = +c0.

For every excess demand function f, let E; = {p € P|f(p) = 0}. This is
the equilibrium price set for f. Let & be the set of all continuous, monotone,
strictly convex, complete preorderings on R . The initial endowment space is RS, .
Hence the space of possible consumer characteristics is 4 x R, . An exchange
economy in this paper is a finite collection of elements in & x R, , denoted by
& = {(z;, u)_,-)}’}‘:l. An exchange economy & = {(>, zuj-)}’}’:1 generates a given
excess demand function f if for all p € P,

m

f(p) = Z o(p, >, w;) — Z Wi, ()
=

=1
where
ep,zwj)=1xe€ R | p-x< prwjand x >;yforally e R
suchthatp-y < p-w;}.
The function defined by the right hand side of equation (1) is indeed an excess
demand function. See Arrow and Hahn (1971, Ch.4, Theorem 8). Hence this defi-
nition is consistent with that of an excess demand function. We are concerned with

excess demand functions which can be generated by some exchange economies.
Now, let us review what Uzawa (1962) called Walras’ Existence Theorem.

Theorem (Walras’ Existence Theorem A) Let a function f . P — R satisfy the
following conditions:

(C) f: P — R is continuous,
(W) p-f(p)=0forallpe P.

Then, there exists p* € P such that f(p*) < 0.

Uzawa (1962) calls the function f an excess demand function. But, observe
that (C) implies that f (restricted to P) cannot be an excess demand function in
our sense since it violates (BC1). Hence f cannot be generated by any exchange
economy. Thus Uzawa’s Equivalence Theorem, establishing equivalence between
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Walras’ Existence Theorem A and Brouwer’s fixed point theorem, cannot fully
support the interpretation that proving the existence of Walrasian equilibria is just
as hard as proving Brouwer’s fixed point theorem. Lo justify this interpretation, we
need to reformulate Uzawa’s Equivalence Theorem. Toward this end, we state an
alternative existence theorem.

Theorem (Walras® Existence Theorem B) If f : P — R’ is an excess demand
function, then we have E; + 0.

Our first equivalence theorem is the following.

Theorem 1 Walras’ Existence Theorem B and Brouwer’s fixed point theorem are
equivalent.

Proof 1t is well-known that Brouwer’s fixed point theorem implies Walras’ Exis-
tence Theorem B. To prove the converse, we show that Walras’ Existence Theorem
B implies Walras’ Existence Theorem A, which is equivalent to Brouwer’s fixed
point theorem by Uzawa (1962). Let f : P — R’ be any function satis{ying (C)
and (W). We wish to show that there exists p* € P such that f(p*) < 0. Pick some
excess demand function g : P — RY, say g(p) = (= — 1,.... & — 1). For each

721 *pr
n € N, define

= 1
h(p) = f(p)+ ;g(p) forall p € P.

Then, it is easy to see that /2" is an excess demand function. By Walras® Existence
Theorem B, there exists p" € P such that

- 1
0=r"p" = 7"+ (")
By compactness of P, we may assume that p" — p* € P. Since g is bounded from
below by —e and f is continuous on P, we gel

_ _ 1 1
Fp*) = lim f(p™") = lim ——g(p") < lim ~e = 0.
n—o0 R 7]

n—eo p

This completes the proof. O

Before asking further questions, let us formulate yet another existence theo-
rem.

Theorem (Walras’ Existence Theorem C) For anv excess demand function f
generated by some exchange economy, we have E; # .

At this stage, we need to recall that whether every excess demand function can
be generated by some exchange economy is an open question. This suggests that
investigating the equivalence between Brouwer’s fixed point theorem and Walras’
Existence Theorem C is a non-trivial task. We give an affirmative answer by in-
voking Mas-Colell’s theorem (1977) and demonstrate that Brouwer’s fixed point
theorem is necessary and sufficient to lay a solid foundation for general equilib-
rium analysis.
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Corollary 1 Walras’ Existence Theorem C is equivalent to Brouwer’s fixed point
theorem.

Proof 1t is sufficient to prove that Walras” Existence Theorem C implies Walras’
Existence Theorem B. Let f : P — R’ be an excess demand function. We may
identify the domain P with S via the homeomorphism p — ﬁ Pick any € > 0. By
Mas-Colell’s theorem (1977), there exist u € (0, €) and an economy whose excess

demand function f* satisfies
ff=foverS,andEpr =E;C Sy

By Walras® Existence Theorem C, we have Ep- # Q and hence E; 2 0. O

3 Equivalence Theorem for Production Economies.

In production economies, excess demand functions may be unbounded below when
the underlying production sets are unbounded above. Our argument in the previous
section is no longer available in this context since it crucially depends on the lower
boundedness property of excess demand functions. We need to employ novel argu-
ments for equivalence theorem 4 la Uzawa for production economies. Since there
is no production economy counterpart of Mas-Colell’s theorem (1977), the equiv-
alence theorem is stated in terms of excess demand functions. We follow Neue-
feind (1980) for the formulation of production economies. We say that a function
f: D — R is an excess demand function for a production economy if it satisfies
the following conditions;

(D) D is a non-empty, convex, open subset of P,
(C) f: D — R is continuous,
(W) p-f(p)=0forevery pe D,
(UBB) f is unbounded below, i.e. there exist p € 4D, a sequence {p"} in D
with p" — p, and a commodity { such that f;(p") — —oo,
(BC2) There exists p € D such that - f(p"") — +oo for any sequence {p"} in
D with p" — p e dD.
To motivate the conditions, let ¥ be a production set satisfying the following con-
ditions;

Y is a non-empty, closed and strictly convex subset of R containing 0 and
allowing free disposal, i.e., —‘Ri +YcCY.

For any p € R , define the supply set,
sipy={yeY|p-y=supp-Y}
and let
¢
D:[pe]R{KIZpiz 1 and s(p) = @}.
i=1
It follows from Neuefeid (1980, Proposition) that condition (D) holds and that if

{p"} is a sequence in D with p* — p € 9D, then the supply function obeys the
following boundary behavior:
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There exists a commodity ¢ such that s;(p") — +oo and for each p € D,
there exists &€ > O such that p - s(p™) < —¢l|s(p)|| for sufficiently large n.

To complete the description of the economy, let (X}, >, w;) be the characteristics
of consumer j = 1,---,m where,

(i) X; c R is closed, convex, bounded below, and satisfies X; + R c X},
(ii) >, is a continuous, strictly convex, monotone, complete preordering on X;,
(i) wj € illth.
For any (p,w) € Rf x R, define the demand sel of consumer j by,
pippw)={xeX;|p-x=wandx>; yforally € X; with p-y <w).
Let 6; be the profit share of j: 6; > 0, 37, 6; = 1. Finally, let

i

F) =D 6ipip-wj+ 07(p) = s(p) = ). ),

j=1 =1
where n(p) =supp-Yand p € D.

Then, it follows from the standard arguments that (W) and (C) hold. Condition
(BC2) follows from lower boundedness of demand and the boundary behavior of
supply mentioned above. There is a possibility that f is bounded below because
boundary behavior of demand may completely offset that of supply. To exclude
this unusual phenomena, suppose there exists p € 3D N P with n(p) < +0o. Then,
condition (UBB) holds. Indeed, let ¢ € D and let p” = %q +(1 - %)p forn € N. By
convexity of the support function 7, n(p") < ,1—77r(q) +(1 - ,l—l)n(p) for all n. Hence
the sequence {(p", p" - w;+8;m(p"))} is contained in a compact subset of {(p, w) €
PXR | w>infp-X;}. Since d; is continuous there, {d(py, pr * wj + ;7(pa))}
is bounded. On the other hand, the boundary behavior of supply implies that there
exists a commodity i such that s;(p,) — +o0. Hence, fi(p,) — —oo and condition
(UBB) holds.

We first formulate Walras’ Existence Theorem in production economies.

Theorem (Walras’ Existence Theorem D) If f is an excess demand function for
a production economy, E; % 0.

Our second equivalence theorem is the following.

Theorem 2 Walras’ Existence Theorem D is equivalent to Brouwer’s fixed point
theorem.

To prove theorem 2, we need a lemma due to Neuefeind (1980).

Lemma 1 Let f be an excess demand function for a production economy such that
there exists p € D such that the set {p € D | p- f(p) < 0} has positive distance
from D. Then, E; # 0.

Proof See Neuefeind (1980, Lemma 1). Note that this result is derived from Brouwer’s
fixed point theorem. O
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Proof of Theorem 2 First, we prove that Brouwer’s fixed point theorem implies
Walras® Existence Theorem D. Let f be an excess demand function for a produc-
tion economy and let p be the price given in (BC2). By (BC2), the set {p € D |
P - f(p) < 0} has positive distance [rom dD. By Lemma 1, E; # 0.

To prove the converse, let y : P — P be a continuous function. We shall show
that  has a fixed point by means of Walras’ Existence Theorem D. Pick 7 > 0

with 775 — 7 > 0. For each p € 9P, we have
o 1 S 1
PP ——>-=p-c,
p-p -0 7 14
where ¢ = (%, e %). This gives
-p—p-c> - 1.
p-pP—p-c w- 7

Therefore, for each p € P, there exist an open neighborhood N, of p and an open
neighborhood N.(p) of ¢ such that for all p’ € N, and for all z € N.(p),

1

? . ’ _ 7 . - 0
p-p-p-z> W-n n>
It follows from compactness of dP that there exists a {inite subset {p',-,p¥tof
AP such that 6P c UX N, = N(OP). Let N, = ﬁ;(leC(pJ'). Then, by definition,
forall p’ € N(9P) and for all z € N,,

1
I. /_ I‘ - 0 2
PP P> Ty T €3]

For g € (0, }), define
P.={peP|pizetoralli=1,--- £}

We can choose ¢ sufficiently near % so that we have P, € N.. Define g : P, — P
by

L
8p) = g (= pr=8).

Then, g gives a homeomorphism between P, and P. Let f = g7 oy o g. Then i
maps P, continuously into itsell. It is clear that ¢ has a fixed point if and only if
¥ has a fixed point. Next, for each p € P, let p(p) be the unique point in P, which
minimizes the Euclidean distance from p. Then, p is a well-defined continuous
function with the property that if p € P, then p(p) = p. Now, define & = J o p.
Since & maps P into P, a fixed point of k gives that of ¢, hence that of . Let
Blp) = ma.x{pil, s, pl«} and let D = P. Define a continuous function f : D — Rf
by

p-h(p)

f(p) =B(p)h(p) —( pt
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Then, we have

/
’(;’)} By PP )

!l
D fp) = Bp)i -
PP

i=1

J-

Let p" — p € 6P, p" € P. Then p" € N(JP) for sufficiently large n. Since
h(p") € P, it follows from equation (2) that p" - p" — p" - h(p™) > ﬁ — 1. Then,
for sufficiently large n,

v

p . p?l _ p"l h(pﬂ)} S ﬁ(pll)

pn . pn ()([ —

Thus, we obtain Z,’;l fi(p") = +oo and (BC2) holds for p = e. Since B(p) — +oo
as p — 9P, f is unbounded below by Walras’ Law. Therefore, f is an excess
demand function for a production economy. By Walras” Existence Theorem D,
there exists p* € P such that f(p*) =. Since B(p*) > 0, we have

Bp™!

h(p™) =

[pil(p)}pl, foreachi=1,---,¢.

Summing over i gives ”p"% = 1. Thus, A(p*) = p*. Therefore, p* is a fixed point
of . O

4 Equivalence Theorems for Nash Equilibria

Let us turn to game theoretical equilibrium concept: Nash equilibrium. Nash (1950)
established an existence theorem for Nash equilibria by means of Kakutani’s fixed
point theorem. Dasgupta and Maskin (1986) further generalized the result by al-
lowing discontinuous payoff functions. Our findings about Nash equilibria are new
and somewhat striking: The existence theorems of Dasgupta and Maskin are in fact
equivalent to Brouwer’s fixed point theorem. It has been long recognized that gen-
eral equilibrium theory and non-cooperative game theory share the same grounds
via fixed point theorems. Yet, our equivalence theorems clearly say more than that:
the technical overlap was not a mere coincidence but a logical necessity.

An abstract economy is a list § = (I, S, {u;}er, {Fi}ier), consisting of a finite
player set I, § = IT4S;, where §; is a non-emply, compact, convex subset ol
some finite dimensional Euclidean space, representing the strategy set of player
i, u; © § — R, the payoff function of player i and a correspondence F; from S _;
into §;, where S _; = I1}4,S ;. F; is the feasibility correspondence of player i. When
none of F; implies any restrictions, i.e., Fy(s_;) = §; forall s_; € §_; and for all
i € I, £ can be identified with a normal form game " = (I, S, {u;}ic;). We say that
s* € § is a social equilibrium [or an abstract economy £ il s7 maximize u;(s;, s*,)
subject to 5; € Fi(s”,;) for each i € 1. If, in addition, & is a normal form game, then
we say that s* is a Nash equilibrium.

Debreu (1952) first studied abstract economies and proved the following.
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Theorem (S.E.E.Theorem) There exists a social equilibrium for any abstract
economy & = (I, S, {u;}ie, \Fitier) satisfying the following conditions. For each
i € 1, u; is continuous and u;(s;, s_;) is quasi-concave in s; for each fixed s_;.
Furthermore, F; is a compact, convex valued, continuous correspondence.

The original version of the theorem does not require quasi-concavity of pay-
off functions but assumes that the best response correspondences are contractible
valued. We took the above version from Debreu (1982).

The following theorem is a consequence of well-known results combined with
Corollary 1.

Theorem 3 S.E.E. Theorem is equivalent to Brouwer’s fixed point theorem.

Proof Debreu (1952) tells us that Kakutani’s fixed point theorem implies S.E.E.
Theorem. On the other hand, Arrow and Debreu (1954) shows that S.E.E. Theorem
implies Walras® Existence Theorem C. It is well-known that Brouwer’s fixed point
theorem is equivalent to Kakutani’s fixed point theorem (see Ichiishi (1983)). Since
Walras’ Existence Theorem C is equivalent to Brouwer’s fixed point theorem by
Corollary 1, the proof is complete. O

Let I" = (1, S, {i;)icr) be a normal form game. The payoff function u; : § - R
is graph-continuousif for each § € §, there exists a function f; : §_; — §; such that
Ji(52) = 5 and w;(fi(s-5), s—;) 1s continuous at §_;. Dasgupta and Maskin (1986)
proved the [ollowing two theorems using Kakutani’s fixed point theorem.

Theorem (D-M Theorem 1) There exists a Nash equilibrium for any normal form
game I' = (1, S, {t;}ics) satisfying the following conditions. Each u; is upper semi-
continuous, graph-continuous and quasi-concave in s;.

Theorem (D-M Theorem 2) There exists a Nash equilibrium for any normal form
game I' = (I, S, {1i)ies) satisfving the following conditions. Each u; is upper senti-
continuous and quasi-concave in s; and the function v; defined by

vi(s—) = max{u(si, s_) | s; € 84},
is lower semi-continuous.
These two would be the most general existence theorems for Nash equilibria
(in pure strategies). Since graph continuity of #; implies lower semi-continuity of

v;, D-M Theorem 2 implies D-M Theorem 1. The following theorem shows not
only the converse holds but also D-M Theorem 1 implies S.E.E. Theorem.

Theorem 4 Both D-M Theorems 1 and 2 are equivalent to Brouwer's fixed point
theorem.

Proof In view of Theorem 3 and the remark in the previous paragraph, it is suf-
ficient to show that D-M Theorem 1 implies S.S.E. Theorem. Let us be given an
abstract economy & = (I, S, {#4;}ier, {Fi}ier). Then, we can choose a real number A
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such that ming; min{u;(s) | s € S} > A. For each player i, define a modified payoff
function g; : § — R by

wi(sg, s-) if 8 € Fi(s-y),
A otherwise.

8i(sins ) = {

We show that the resulting normal form game I = (I, S, {g;}i;) satisfies the con-
ditions of D-M Theorem 1.
Let s;, sl’. €S, 0<t<l,ands_;eS_;. Ifes;i+(1 - t)slf € F(s_;), then we have

gitsi + (1= 0)s}, 5_) = wi(es; + (1 — 1)s7, 5))
> min{u;(s;, s-), ui(s, 5-i)}
> min{g(si, s-i), gi(s}, s-1)}-

I s; + (1 = ns) ¢ Fi(s_y), then we have either s; ¢ Fi(s_;) or 5] ¢ Fi(s;) by
convexity of Fi(s_;). Hence,

gi(tsi + (1 = s, s-) = min{gi(si, s-1), gi(s}, s-i)} = A

Therefore, g;(s;, s_;) 1s quasi-concave in s; for each fixed s_;.

Lets" € S and s" — s € 5. I{'s; € Fi(s-;), then g;(s) = w;(s) = lim sup u;(s") >
limsup g;(s™). If 5; € F(s-;), then s7 ¢ F;(s",) for sufficiently large n since F;
is compact-valued and upper semi-continuous. Hence, we have lim sup g,(s*) =
gi(s) = A. Therefore, g; is upper semi-continuous.

Now, we show that g; is also graph-continuous. Let § € S. First, we consider
the case §; € Fi(s;). Let F",-(s,,-) = {&}if s_.; = 5_; and let F;(s,i) = Fi(s_))
otherwise. Since F; is closed and convex valued and lower semi-continuous, it
admits a continuous selection f; : S_; — §;. See, for example, Hildenbrand and
Kirman (1988, Mathematical Appendix IV). Then, g;(fi(s=;), s=) = w;(fi{(s=i), $-;)
is clearly continuous in s_; and f;(5_;) = 5. If 5 ¢ Fi(3_;), then let fi(s_;) = 5;
for all s_;. Let 57 — 5. Since F; is compact-valued and upper semi-continuous,
5 ¢ Fi(s") for sufficienty large n. Hence, gi(fi(s")),s") = gi(5i,5",) = 4 =
gi(fi(5-)), s_;) for sufficiently large n. Therefore, g; is graph-continuous.

By D-M Theorem 1, there exists a Nash equilibrium s* € § for I'. Suppose
s* ¢ Fi(st). Pick s € Fi(s*). Then gi(s7,s") = A < wi(si,57) = gi{si,57), a
contradiction. Hence, s* is a social equilibrium for . This completes the proof.
O

5 Equivalence Theorems for the Core and Non-transferable Utility Value.

In this section, we discuss two major solution concepts for NTU (Non transferable
Utility) games, i.e. the core and the NTU value. An NTU game is a triple (N, F, V)
satisfying the following conditions:

(1) N is a finite set of players.
(2) F is a non-empty closed subset of RV,
(3) Foreach S € N =2V \ [0}, V(S)is a closed subset of RY.

11
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(4) For each § € N, V(§) is comprehensive, i.e. if x € V(S) and y < x, then
ye V(S).

(5) For each x € V(N), there exists y € F with x < y.

(6) Foreach S e N,if x € V(S) and x; = y; forevery i € S, theny € V(§).

(7) There exists M € R such that for every § € N, [x € V(S) and x > b] implies
[x; < M forevery i € S, where b is defined by b; = sup{y;|ly € V({i})} for each
IeN.

The core of an NTU game (N, F, V) is the set C(N, F,V)of x € RY such that
(1) x € F and (ii) there do not exist § € N and y € V(§) such that x; < y; for all
ies.

A subfamily B of N is balanced if there exist non-negative numbers Ag for
S € B such that }geggs;As = | forevery i € §. An NTU game (N, F,V) is
balanced if for every balanced subfamily B of N we have (g5 V(S) € V(N).
Scarf (1967) proved the fundamental existence theorem for the core of an NTU
game.

Theorem (The Core Existence Theorem) The core of a balanced NTU game is
not empty.

It is known that the Core Existence Theorem can be proved by fixed point
theorems. [or example, Zhou (1994) used Brouwer’s [ixed point theorem to prove
The Core Existence Theorem, With the limit theorem of Debreu and Scarf (1963),
we can show the converse.

Theorem 5 The Core Existence Theorem is equivalent to Brouwer’s fixed point
theorem.

Proof 1t 1s sufficient to prove that the Core Existence Theorem implies Walras®
Existence Theorem C. Thus, the arguments reduce to those in Hildenbrand and
Kirman (1988, Proposition 5.2, p.169 and Theorem 5.2, p.176). We include them
for completeness. Let & = {(>}, “)J')}';l:l be an exchange economy. For each ¢ € N,
let &9 = {(Z‘fk,wjk)};’zlz:l be the g-fold replica economy of &, ie., (>, wi) =
(>jpwpforall j=1,--- ,mandk = 1,---, g. Pick a utility representation u; of >;
for each j and consider the NTU game (N9, F9, V9) corresponding to &7, i.e.,

Ni={pli=1,- mj=1--q}

¢ B 4
F?={v e RY | There exists (x;) € RV
q,m my

such that Z X = Z wj and for all (j,k) € N, vy = u;(x;l,
j=lk=1 j=lk=1

and foreach S ¢ N9,
V9(S) = {v € RY | There exists (xp) € RY

such that Z Xj = Z wpy and forall (i, j) € S, vy < uj(xzp).
(jhyes (fRES
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It follows from a well-known argument that (N9, F4, V¥) is balanced. By the Core
Existence Theorem, there exists v7 € C(NY, F9, V4). Then, there exists (xj’.k)( ke
such that u j(x‘;k) = U‘J’.k for all j, k and ¢. By the equal treatment property (Debreu
and Scarf 1963), for each ¢ and for each j, there exists x;’ such that x‘;. = x;{k for
all k. Since {x?} is a bounded sequence for each j, we may assume that xf’ — X} as
g — oo. Then, for each ¢, x* = (x;i)f;lzl cannot be improved upon by any coalition
in &9. By Debreu and Scarf’s (1963) limit theorem, x™ is a competilive equilibrium
for &. This completes the proof. O

Now, we turn to the NTU value. First, we need to recall TU (transferable util-
ity) games and the Shapley value. A TU game is a pair (N, v), where N is a non-
empty finite set of players and v is a real-valued function on N. The Shapley value
¢ is defined by foreachi e N,

~ SIN=8 — 1t
%(N,v)—s;\m[—lw 1- (S U iD= w(S)l,

where [S] denotes the cardinality of § € N. Let (N, F, V) be an NTU game and let
A={aeRY | Tix A = 1}. We say that a payoff allocation u* € RY is an NTU
value of (N, F, V) if,

() e F,
(2) There exists 2* € 4 such that ¢;(N, vy-) = u; foralli € N, where v,- is a TU
game defined by v+ (§) = sup{X;cs Aju; | u € V(S)} foreach S € N.

Using Kakutani’s fixed point theorem, Shapley (1969) proved the following.

Theorem (The NTU Value Existence Theorem) There exists an NTU value for
any NTU game (N, F, V) satisfying the following conditions: F is compact convex
and forany S, T € NwithS NT =0 and foranyu € V(S) andv € V(T), we have
w e V(S UT), where w; = u; fori € S, w; = v; fori € T and wy is arbitrary for
any otheri € N.

We show that the NTU Value Existence Theorem implies Kakntani’s fixed
point theorem. To do this, we use Champsaur’s (1975) limit theorem of Value Al-
locations. Since the limit theorem requires strictly concave utility functions, our
argument necessarily involves approximation of preferences by strictly concavifi-
able ones (see Kannai (1977)).

Theorem 6 The NTU Value Existence Theorem is equivalent to Brouwer’s fixed
point theorem.

Proof ltis sufficient to show that the NTU Value [ixistence Theorem implies Wal-
ras” Existence Theorem C. Let & = {(>}, wj)};.”zl be an exchange economy. For
each J, there exists a sequence {z;} in &2 converging to > ; in the topology of closed
convergence such that each 2'] has a strictly concave utility representation ufi (see
Kannai (1977)). Fix r and consider the “strictly concavified economy” &(r) =
{(u_’i, wj)}’;‘:l. Then, replicate &(r) ¢ times to obtain &9(r) = {(Il;k, wjk)}f;’zlzzl,

13
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where u;k = u; and wy = w;. Now, consider the NTU game (N7, F4, V¥) cor-
responding to &(#)9. Let A9 = {(/1;0_',112’:1 | A = A;forall j,kand 372, 4; = (11}.
Applying the NTU Value Existence Theorem to (N?, F4, V?), we have a symmet-
ric value allocation (x47), i.e., xj/,r = j{' for all (k) € N4, X, x‘;r < BT ;)
and /iji.;u;(x‘j’.;) = (N9, vir) for all (j k) € N9, where 19 € A9 with strictly
positive components. (see Theorems 6.3.1 and 6.4.1 in Ichiishi (1983) for ex-
plicit arguments). By Champsaur’s (1975) limit theorem, a limit point x” of the
sequence {x4" };":1 is a competitive allocation for £(r) (see also Ichiishi (1983, The-
orem 6.5.2, p.130)). Finally, consider the sequence {x"}}7,. We may assume that it
has a limit point x*. Since the sequence {z'jﬁ} converge to >; in the topology of
closed convergence foreach j = 1,---,m, x™ is a competitive allocation for & (see
Hildenbrand (1974, Ch. 1)). O

6 Concluding Remarks

‘We have displayed an array of equivalence theorems that encompasses game the-
ory and mathematical economics. The technical overlap between these two fields
turned out to be a logical necessity rather than a mere coincidence. This is the main
lesson we have learned from our exercises.

It is possible to develop variants of our equivalence theorems in several ways.
For example, some of our equivalence theorems can be put in terms of excess de-
mand correspondences and Kakutani’s Fixed Point Theorem without any technical
difficulties. Using a well-known fact that convex preferences are approximated by
strongly convex preferences, we could provide another variant of equivalence the-
orem for exchange economies.

Issues pertinent to infinite dimensional spaces would also pose yet another
question to us for future research.
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