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Introduction

This thesis is composed of four papers [9], [10], [11] and [12], in which we dealt with minimal
immersions and Yang-Mills connections.

In differential geometry, there are many problems which arised from variational problems
in physics. Harmonic mappings, minimal immersions and Yang-Mills connections are the
typical examples. These are the critical points for variational problems on energy, volume
and the square norm of the curvature forms, respectively. We shall deal with these problems
on compact Riemannian homogeneous spaces including spheres and Grassmann manifolds.
Compact Riemannian homogeneous spaces play a central role in the theory of Riemannian
geometry of positive curvature. We can apply group-theoretic methods to these spaces.

In Chapter 1, we shall construct harmonic mappings and minimal immersions from
compact Riemannian homogeneous spaces into Grassmann manifolds in two ways (see
Theorem A and B).

Let M and N be two compact connected Riemannian manifolds. A smooth mapping
I': M — N is called harmonic if it is an extremal of the energy. Moreover, if harmonic
mapping [’ : M — N is an isometric immersion, then /7 is a minimal immersion. An
isometric immersion /' : M — N is called totally geodesic if IV carries every geodesic of M
to a geodesic of N. A totally geodesic immersion is especially minimal. The existence and
construction of minimal immersions and harmonic mappings are interesting and important
problems in various situations. There are many studies on minimal immersions into a
sphere whose starting point is theorem of T. Takahashi(see [3],[4],(29]).

Let (¢ be a compact connected Lie group and K be a closed subgroup of (/. Then
M = (/K is a compact Riemannian homogeneous space with a (;-invariant Riemannian
metric (,). For a field I¥ = R,C or H, put

O(n) (=R,
U, E)={ Un) (E
Sp(n) (F =

Ll
za

Put G, (F) = U(n+m, E)/U(n, I¥) xU(m, I2), which we call the I/-Grassmann manifold
consisting of all n-dimensional //-subspaces in V. Tet I' : M = (/K — (I, ,,(F) be an
equivariant mapping. Then there exists a Lie homomorphism p : (7 — UJ(n + m, IV) with
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p(K) C U(n, E) x U(m, I£) such that I'(¢K) = p(g)U(n, I) x U(mn, I) for each g € .
Put V = E*™ V; = E*, Vo = E™. Then V = V; + V, (direct sum). Put

Homy (Vi, Vo) = {A € Hom(Vi, Vo); p(k)A = Ap(k) for each k€ K}.

Theorem A If Homy (Vi, Vo) = {0} and V(i = 1,2) is not GG-invariant, then I’ is a
nonconstant harmonic mapping. Furthermore, if G acts irreducibly on V', then F' is 1Y-full
(see §1.2 for definition). Moreover, if K acts wrreducibly on T,(M), then I' is a minimal
immerston with respect to a multiple of the (i-invariant Riemannian metric (,) on M.

Take a nontrivial R-spherical representation (p, V) of ((7, K'). Then there exists a nonzero
vector vy € V such that
p(K)vg =vy foreach ke K.

Take a (G-invariant inner product (,) on V. Put

Ww = R,
Vi = p(m)u,
Vy = the orthogonal projection of span{p(X)p(Y)vy; X,Y € m}

to (Vo + Vi)™,

Vi = the orthogonal projection of span{p(X,) --- p(Xx)vo; X1, -+, Xx € m}
to (Vo + -+ Vi)t

?

where we denote the differential representation of p of (¢ by the same symbol p. There
exists an integer m such that

m
¥V = Z V; (the orthogonal direct sum of K-invariant subspaces),
i0

Vi = {0F for0<i<m,

Put S,, = {0,---,m}. For subsets P’(# 0), Q(s# @) with S,,, = P> U Q (disjoint union), put
Ve = 3ep Vi Vo = Yo Ve = dimVp, b = dim V. Then V = Vp + Vi (orthogonal
direct sum of K-invariant subspaces). Put

F:M=G/K — Gu(R)=S0(a+b)/S(O(a) x Ob));
9K — p(g)Vpe = p(9)S(O(a) x O(b)).

Theorem B I is a nonconstant R-full equivariant harmonic mapping. If the linear
isotropy action of K is irreducible, then I is a minimal immersion. In particular, of we

put P = {0}, Q) = {1,---,m}, then I' is a minimal immersion of M into a projective space.




Theorem C If ((, K) is a compact irreducible symmetric pair and pul P = {even}, ) =
{odd}, then IV is a totally geodesic immersion.

A minimal immersion is said to be stable if the second variation of the volume is non-
negative. There doe not exist a stable minimal immersion into a sphere. A minimal
immersion is stable if and only if the minimum eigenvalue of the Jacobi operator is non-
negative. In §1.5, we shall calculate the eigenvalues of the Jacobi operator by using group
theoretic methods.

In Chapter 2, we shall study Yang-Mills connections on compact simple Lie groups.

Maxwell’s electromagnetic theory provides the simplest example of a gauge theory, with
the field equation being given by Maxwell’s equations (see [5],[20],[25]). We therefore begin
with a brief review of Maxwell’s equations. We denote by R; = (R*, di? — 33 rdzd)
the four dimensional Minkowski space-time. We denote the magnetic field, the electric
field, the charge density and the current density by B = (B, By, B3) (I; : R':i — R),
E = (I, Iy, I53) (B : Ry > R), p: R —» Rand J : R' - R, respectively. We define
2-form I on Rj by

= [‘/‘1(1.’1/'] A dl HE 152([./1?2 A dl I 1‘1'3(/,’1';; A dl } 13]([J'2 N (/.’),'3‘ S [32([.’1'3 N (/J'] = l)’;;(/il'] N (I’J'z.

Then we have

aB;
ol

3
dFF = (divB)dz; A dzy A dxs + < + (I‘OﬁE),;) dt N dx; ANdxgy g,
i1

and

E
01" = (divE)dt + ( (7)[ 1 rotB) ~dr, where we put dr = (dxy,dxy, dxy).
ot

Maxwell’s equations are given by:
diF =0, o6F =3, whereweput j= pdt+ Jdr.

The first equation, which means Faraday’s law of induction and the non-existence of the
magnetic monopoles, holds regardless of the charge density or the current density. The
second means Gauss’ law and Ampere’s law. We rewrite the above equations by using
a scalar potential ¢ and a vector potential A : The equation dF = 0 implies that the
electromagnetic field I’ is derivative from a 1-form A = Agdt + ZI‘ gAidsy, de. Fe=Fy=
dA. We call A the gauge potential. Remark that ['4,4, = 4 for x € O®(R3). If we put
v = —Ap and A = (A}, Ag, A3), then

O0A
ot

B =rotA, E = —gradyp —




The equation 8/ = j implies that

1% 0?A .
B —egradp + o AA + grad divA = J.

)
—Ap — .(JdivA =4 ("
ol

The source-free field equations are obtained by setting 7 = 0 and can be written as
dI' = 0 (Bianchi’s identity), 61" = 0 (Yang-Mills equation).

The above formulation admits immediate generalization to the case when the Minkowski

space-time and gauge potential A is replaced by a semi-Euclidean space R, = (R", ds? =

SR S0 LT (l:l,"‘,jf) and a g-valued 1-form A = 3"} | Ayda; (A; € C®(R}),g)) on R},

where g is a Lie algebra of a compact Lie group (;: Fix a bi-invariant Riemannian metric
on (i. For a g-valued 1-form A we define a g-valued 2-form /4 by

dA;  OA;

Fa=dA+ - [A/\A L/’,J(/J A dx;, where [; = —2 :

gty Ony

+ [Ai, Aj].

For a g-valued k-form 0 = $ 304 iy dayy A -+ - Adxy, we define a g-valued (k + 1)-form d 40
by
1 P50
dat= L(V 038, ) a5 A dg I+ A day, where Vi = + Al

k! Mk o

The Bianchi’s identity d4 /4 = 0 holds. A gauge potential A is called a Yang-Mills con-
nection if A satisfies the following:

dy*x I'y =0 (Yang-Mills equation).
We donote the set of all gauge potentials and the set of all g-valued k-forms by A and

Q%(g), respectively. The gauge tansformation group G = C*(Rj, (i) acts on Q¥(g) and A
as follows:

(1) f*€=Ad(f~1)¢ for £€Q¥(g), f e,
(2) ffFA=fYf +Ad(f)A for A€ A feq.
Here f~!df is a pull-back of the Maurer-Cartan form on (¢ by f. We have:

il
(2) If Ais Yang-Mills, then f*A is also Yang-Mills.

(1) Fpoa=[*Fa, ||Fya

o
Ally
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If we set ( = UU(1), then the Yang-Mills equation is equivalent to Maxwell’s equations.
(= SU(2) x U(1) was used in Weinberg-Salam theory combining the weak interaction and
electromagnetic theory, and (¢ = SU(3) was used in QCD(=quantum chronodynamics).
G = SU(5),S0(10), Iy and Poincare group were used in order to unify the electromagnetic
interaction, the weak interaction, the strong interaction and the gravity into one geometry.

The above formulation admits immediate generalization to the case when the semi-
Fuclidean space and the gauge potential are replaced by a Riemannian manifold M and
a connection on a principal GG-bundle P? over M: Let €24 denote the curvature form of a
connection A on P. A critical point of the Yang-M:ills functional

1 ‘
A [ 110l
4 JM

is called a Yang-Mills connection. A Yang-Mills connection A is said to be stable if the
second variation of the Yang-Mills functional is non-negative. A flat connection is a stable
Yang-Mills connection. H. T. Laquer dealt with Yang-Mills connection on compact sym-
metric spaces (see [17],[18],[19]) and he [16] proved that (0)-connection on a compact Lie
group is an instable Yang-Mills connection. A compact Riemannian manifold M is said to
be Yang-Mills instable if, for every choice of (i and every principal (;~bundle P’ over M,
stable Yang-Mills connection is always flat. S. Kobayashi, Y. Ohnita and M.Takeuchi [15]
classified the compact simply connected irreducible symmetric spaces of type I which are
Yang-Mills instable. In their paper, they gave a following question:

[s every simply connected compact simple Lie group Yang-Mills instable?

We consider an equivariant (;~-bundle /” over a compact connected simple Lie group
L, and invariant connections on F’. Every equivariant (;-bundle P’ is obtained by a Lie
homomorphism p : L. — (3. The space of invariant connections on the principal (;-bundle
P = K x, (/ over L is identified with

Hom, (I, g) = {A € Hom(l, g); [p(X), A(Y)] = A([X,Y]) for X,Y €l},
where Hom(l, g) is the space of linear mappings from the vector space | to the vector space
g.
We determine the structure of the space of invariant connections when p(l) is a regular

subalgebra of g (see §2.2 for definition).

Theorem D Assume p(l) is a reqular subalgebra of g and that (7 is simple.

(1) Ifrank(l) > 2, then Hom,(l,g) = Ry.




(2) Ifrank(L) =1, then there exist I'y,- -+, Iy € Hom, (I, g) such that

2s
Hom,(l,g) = Rp + > RIY;

=1

and the set of flat invariant connections 1s gien by

1 3z 2, ]
{:tél)} U {?41(14-1 3 L.Z‘l“i = é} :

and the set of Yang-Mills invariant connections except flat connections is given by
1

1 1 2 2
{0 U {Jf ’i’/’ £y 9 L(Liri; L(L,f = 8} 3
’ <=l il

Applying this result to Yang-Mills invariant connection, we get that any non-flat Yang-
Mills invariant connection is instable when p(l) is a regular subalgebra of g (Corollary 2.2.

1).

Theorem E  Assume p(l) contains a reqular element of g. Then any non-flat Yang-Mills
homogeneous connection s instable.
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Chapter 1

Equivariant minimal immersions
between compact Riemannian
homogeneous spaces

1.1 Preliminaries

Let (& (resp. U/) be a compact connected Lie group with Lie algebra g(resp. u)and K (resp.
L) be a closed subgroup of (7 (resp. /) with Lie algebra €(resp. [). Then M = /K (resp.
N = UJ/L) is a compact Riemannian homogeneous space with a (/(resp. U)-invariant
Riemannian metric. Since K (resp. [ ) is compact, M (resp. N) is reductive, that is,
there exists an Ad(K')(resp. Ad(L))-invariant subspace m (resp. p) such that

g = €+ m(direct sum) (resp. u =1+ p).

We call m(resp. p) a Lie subspace of M (resp. N). We identify the tanget space 1, (M )(resp.
T,(N)) at 0 = m(e) with m(resp. p) in a natural manner, where 7 is the natural projection
of G(resp. U) onto M(resp. N). The differential mapping k,(k € K)(resp. L (Il € L))
acting on 1,(M) (resp. 1,(N)) corresponds to Ad(k)(resp. Ad(l)) on m (resp. p), that is,

ke X = m,Ad(k)X foreach X € m.

Hence we have /
f{[,(exp[,Y)*m/\’l,_ o=m|Y,X] Yet, X em. (1.1.1)
t

Let I' : M — N be an equivariant mapping, that is, there exists a [.ie homomorphism
p: G — U with p(K) C L such that I'(gK) = p(¢)L for each g € (7. We get

F.X (/)*X)p for each X € m. (1.1.2)




We denote by V and R the covariant derivative and the Riemannian curvature tensor of
M, respectively. We denote by V and R for N in the same way. For each X € g we define
a Killing vector field X* € X(M) by

/k
X; = S expiX -alio € Tu(M).
(9175

We have by the Koszul formula (see [7, p. 48, (2)])

r % 7 ]' e o "4 r ‘

(Vx:Y"), = -[)&m , Y ] — 5[)\m 4 ]m for X,Y €g. (1.1.3)
From the above equation, we have

VA G %(exp(—/Ad(g)‘u))*X‘(,,,XP,,,,A/\*|1 o+ %y*l'u,g:‘X.‘/K]m (1.1.4)

forvem,ge G, X € X(M), -

I{(X7Y)Z "ﬁ”‘x,vy/]nl 7Z]n1 %HY? Z]In 7"X1]]n 1 %H‘\,’Z]nl 7Y]n] H‘Xﬁylt‘ )Z}

for X,Y,Z em.

(1.1.5)

Let I': M — N be an equivariant isometric immersion. Then there exists a Lie homomor-
phism p : G — U with p(K) C L such that I'(9K) = p(g)L for each g € (&. Let A and B
denote the shape operator and the second fundamental form of /) respectively. Take an
orthonormal basis {X;}1<i<p, of g with {X;}i<i<p Cmoand {X;},1<j<p C £

Proposition 1.1.1 (1)

BUXY) = ~[(pX )y, (Y W] = S 100X)y, (0uY )]y + 5 (01X Y1),

L

for XY € m.
(2)F' is manimal if and only if Z{[(ﬂ* Xi)[, (/)*Xi)p] ki

Proof: (1) is obtained from (1.1.2) and (1.1.3). (2) is clear from (1). '

We review some elementary results on representation theory of compact connected Lie
groups without proof.

Lemma 1.1.2 Let (p,V) be a real irreducible representation of (i. (p©,V®) is not a
complex wrreducible representation of (i if and only if there exists a complex irreducible
representation (1, W) of (i such that (p,V) = (v, Wi), where we denote by (p©, V®) (resp.
(7w, Wi)) the complex(resp. real) representation of (! oblained by extension(resp. restric-
tion) of the coefficient field of (p, V) (resp. (1,W)) to C (resp. R).

10




Lemma 1.1.3 Let (p,V) be a complex irreducible representation of (i. (pgr, Vi) is not a
real irreducible representation of (i if and only if there exists a real irreducible representation

(r,W) of G such that (p,V) = (e LAY,

Lemma 1.1.4 Let (p,V) be a complex irreducible representation of GG. (p'', V') is not a
quaternion irreducible representalion of ¢ if and only if there exists a quaternion irreducible
representation (1, W) of G such that (p, V) = (1¢, W), where we denote by (p"', V) (resp.
(1¢, We)) the quaternion (resp. complex) representation of (i oblained by extension (resp.

restriction) of the coefficient field of (p,V') (resp. (1,W)) to H (resp. C).

Lemma 1.1.5 Let (p,V) be a quaternion irreducible representation of (i. (pc¢, Vi) is not
a complex wrreducible representation of (¢ if and only if there exists a complex irreducible
representation (1, W) of GG such that (p,V) = (v'', W').

1.2 A construction of equivariant minimal immer-
sions of compact Riemannian homogeneous spaces
into Grassmann manifolds

Let (' be a compact connected Lie group and K be a closed subgroup of (7. Then M = (/K

is a compact Riemannian homogeneous space with a (;-invariant Riemannian metric (| ).
For a field IV = R,C or H, put

O(n) (=R},
Un,E)=< U(n) (=G,
Sp(n) (FE = H).

Put (7, (F) = U(n+m, I2)/U(n, I2) x U(m, IV), which we call the I'- Grassmann manifold
consisting of all n-dimensional /J-subspaces in V. Let I': M = G/K — G, (F) (n >
1,m > 1) be an equivariant mapping. Then there exists a Lie homomorphism p : (¢ —
U(n+m, ) with p(K) C U(n, E) x U(m, I2) such that I'(¢K) = p(g)U(n, I£) x U(m, IV)
foreach g € G. Put V = E™™ V; = ™ Vo = E™. Then V = V; + Vy(direct sum) and the
Lie algebra u of U(n + m, I) acts on V, naturally. Put [ = Lie({/(n) x U(m)) and

p={Aeu;AV; C V,, AV, C V; }.
Then u = [+ p is the canonical decomposition of u . Put
Homy (V1, Vo) = {A € Hom(V}, Va); p(k)A = Ap(k) for each k € K}.

We will define that /7 is Io-full. Let V] and VJ be subspaces of V; and V,, respectively. Put
n' = dimg V/ and ' = dimy V. Then U(n/ + )/, I)) is considered as a closed subgroup

11




of U(n + m, IY) in a natural manner. So Gy e (F) 1s a totally geodesic submanifold of

Gtom(E). The mapping [’ is said to be [.-full when the image I'(M) is not contained in
these totally geodesic submanifolds (4, () with ' +m' < n +m.

Theorem A If Homy(Vy, Vo) = {0} and V(i = 1,2) is not G-invariant, then F' is a
nonconstant harmonic mapping. Furthermore, if (i acts wrreducibly on V', then I is IV-full.
Moreover, if K acts irreducibly on T,(M), then I' is a minimal itmmersion with respect to
a multiple of the Gi-invariant Riemannian metric (,) on M.

Proof: Let I € p denote the tension field of I at o (see [6, Chap. I, §2] for the definition
of tension field). Then by homogeneity /' is harmonic if and only if // = 0. Since Hp(k) =
p(k)H for each k € K, we have H = 0. So I' is a nonconstant harmonic mapping.

We assume that K acts irreducibly on 7,(M). We define a symmetric linear transforma-
tion A of T,(M) by

(X,AY) = (X, I.Y) for X,Y €T,(M),

I
{

where (,) denote a {/(n + m, [V)-invariant Riemannian metric on (,,,,(F). Since A is a
K-homomorphism, A is a scalar operator by the irreducibility of the action of K. The
scalar is clearly nonnegative. So if /' were not an isometric (more precisely, homothetic)
immersion, then /7, = 0. Thus V; is G-invariant from (1.1.2) and the connectedness of (7.
So I is an isometric minimal immersion. If (& acts irreducibly on V| then [ is clearly

[7-full. 1

Example (Equivariant minimal immersions of 5% into Grassmann manifolds)
Let (p,V) be any SU(2)-Is-irreducible representation. Put K = S(U(1) x UJ(1)). Let
V =3, W, be a K-I'-irreducible decomposition of V. We have

W; =2 W; (K-isomorphic) <= i = j (see §1.6, Lemmal.6. 1 ). (1.2.6)

Let V; # {0}(i = 1,2) be a K-/I-invariant subspace of V such that V = V| + V, (direct
sum). Put n = dimg V),m = dimg Vo. If we put F': §? = SU(2)/K — G,.(E); g1 v
p(g)U(n, I2) x U(m, I)) for g € i, then I’ is a full minimal immersion from (1.2.6) and
Theorem A. 1

We will apply Theorem A. Let M (#{a single point}) be a compact Riemannian homoge-
neous space. The identity component (7 of the group of all isometries of M is compact.
The action of (¢ on M is effective and transitive. The subgroup K = {g € (G;g-0 — o} of
(i is closed and called isotropy group of M at o.

A (i-I-irreducible representation (p, V) is called an Iv-spherical representation of the pair
(G K), if Vig = {v € V; p(k)v = v for each k € K} # {0}(IY = R,C,H). The dimension of
V and Vi is called the degree and the multiplicity of (p, V'), respectively.
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Lemma 1.2.1 If K # {e}, then there exists an I2-spherical representation (p,V) such
HL(Lt V]\' # V

Proof: We may assume that /2 = C by Lemma 1.1. 3 and Lemma 1.1. 4. Let L*(G/K)
denote the space of complex valued functions f on (v/K with

/ | f(x) 'z(l;l: < 00.
G/K

Put

L3(G,K) = {f € LA(G/K); f(kz) = f(z) for each k € K,z € M}.
Since K # {e}, weget L*(G//K) +# L*(G;, K). If V = Vj for each C-spherical representation
(p,V), then we have L*((Z/K) = L*((7, K) from Peter-Weyl theorem (see [30, p.20]). This
is a contradiction. ;

The manifold M is said to have irreducible linear isotropy group, if K acts irreducibly on

To(M).
Lemma 1.2.2 We assume that M has irreducible linear isotropy group.

(1) The degree of any nontriwial R-spherical representation of (i, K) is greater than or
equal to dim M + 1.

(2) If dim M > 2, then the degree of any nontrivial C-spherical representation is greater
than or equal to 2.

Proof: (1) is obtained from Theorem of T.Takahashi [29]. But, for the sake of completeness,
we give a proof. For each nontrivial R-spherical representation (p, V') of ((z, K'), put

F:M=G/K— V;gK — p(g)v,

where v € Vi and ||v]| = 1 with respect to a G-invariant inner product on V. Then we
can prove that /' is an immersion in the same way as the proof of Theorem A. Clearly the
image ['(M) is contained in the unit hypersphere in V. So we get the conclusion. (2) is
obtained from (1) and Lemma 1.1. 3. (Furthermore, /' is minimal (see (31, Proposition 8.1,
p- 21])) ;

Proposition 1.2.3 (1) A compact Riemannian homogeneous space of dimension > 2
with irreducible linear isotropy group admits an equivariant minimal tmmersion into
an IV-Grassmann manifold.

(2) There exists a nonconstant equivariant harmonic mapping from a compact Riemannian
homogeneous space with non trivial isotropy group into an 1J-Grassmann manifold.

13




Proof: (1) Take (p,V) as in Lemma 1.2. 1. Put V; = Vi and Vo, = Vi with respect to a

:
(-invariant inner product on V. Then the assertion follows from Theorem A.
(2) It is obtained from Theorem A and Lemmal.2. 1 in the same way as the proof of (1). 3

If M is a compact Riemannian symmetric space, then ((+, K') is a compact symmetric pair
(see §1.4 for definition).

Lemma 1.2.4 Let (i, K) be a compact symmetric pair.

(1) The multiplicity of any C-spherical representation of (G4, K) equals to 1.

(2) The multiplicity of any R-spherical representation of ((7, K) equals to 1 or 2.

(3) Any H-spherical representation of ((i, K) is obtained from the extension of coefficient
field of a (G-C-wrreducible representation to H and the multiplicity is equal to 1.

Proof: (1) We refer to [30, p. 104, Theorem 5.5]. (2) is obtained from (1) and Lemma 1.1.
2. (3) is obtained from (1) and Lemma 1.1. 5. 1

Lemma 1.2. 5 Let M be a compact wrreducible Riemannian symmelric space of dimension™>
2. Then the degree of any nontrivial H-spherical representation of (i, K) 1is greater than
or equal to 2.

Proof: It is obtained from Lemma 1.2. 2 /(2) and Lemma 1.2. 4 ,(3). "

Proposition 1.2.6 (1) Let M be a compact irreducible Riemannian symmetric space of
dimenston> 2.

(i) M admits an equivariant minimal immersion into a real projective space or (iy,,(R).
(ii) M admits an equivariant minimal immersion into a complex projective space.

(iii) M admits an equivariant minimal tmmersion into a quaternion projective space.

(2) Let M be a compact Riemannian symmetric space with non trivial isotropy group.

(i) There exists a nonconstant equivariant harmonic mapping from M into a real projective

space or (i, (R).

(i) There exists a monconstant equivariant harmonic mapping from M into a complex
projective space.

(iii) There exists a nonconstant equivariant harmonic mapping from M into a quaternion
projective space.

Proof: (1) It is obtained from Theorem A, Lemma 1.2. 2
o in the same way as the proof of Proposition 1.2. 3.

(2) Tt is obtained from Theorem A and Lemma 1.2.4 in the same way as the proof of
Proposition1.2. 3 . .

, Lemma 1.2. 4 and Lemma 1.2.
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1.3 Another construction of equivariant minimal
immersions of compact Riemannian homogeneous
spaces into Grassmann manifolds

Let ( be a compact connected Lie group with Lie algebra g and K be a closed subgroup
of (i with Lie algebra . Take a bi-invariant Riemannian metric (,) on (¢ and denote also
by (,) the induced Ad((+)-invariant inner product on m = ¢ Thus M = (M) =GIK
is a compact Riemannian homogeneous space. The subspace m of g is naturally identified
with the tangent space 1,(M) of M at o = w(e), where 7 : G — M is a natural projection.

Take a nontrivial R-spherical representation (p, V') of ((+, K'). Then there exists a nonzero
vector vy € V such that

p(k)vgy =vy foreach ke K.

Take a G-invariant inner product (,) on V. Put

Ww = R,
Vi = p(m)y,
V, = the orthogonal projection of span{p(X)p(Y)vy; X, Y € m}

to (Vo + V1)t
Vi, = the orthogonal projection of span{p(X;)--- p(Xx)vo; X1, -+, X € m}
to (Vo+---+ Via)™,

b

where we denote the differential representation of p of (¢ by the same symbol p. Since p is
irreducible, there exists an integer m such that

m

= Z V; (the orthogonal direct sum of K-invariant subspaces),
i-0
Vi # {0} for0<i<m.

Since p is nontrivial, we get m > 1. Put .5, = {0, - -, m}. For subsets P(# (), Q(# #) with
Sm = P U Q (disjoint union), put Vp = Yoper Vo, Vo = 2heq Vgp @ = dim Vp, b = dim V.
Then V' = Vp + Vjy(orthogonal direct sum of K-invariant subspaces). Put

F:M=G/K — Ggu(R)=50(a+b)/S(O(a) x OO));

9K = p(9)Vp = p(9)S(O(a) x O(1)). (1.3.8)

We prove the following theorem.

Theorem B ' is a nonconstant R-full equivariant harmonic mapping. 1If the linear
wsotropy action of K 1is wrreducible, then I' is a minimal tmmersion. In particular, if we
put P ={0},Q = {1, --,m}, then I’ is a minimal tmmersion of M into a projective space.
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In order to prove this, we prove lemmas. First, we note that p(m)Vj, € Vj + -+ + Vi, for
k=0,---,m, where we put V,,,1 = {0}.

Lemma 1.3.1
pm)Vi C Vot + Ve + iy for k =0,1,---,m, where we put V_; = {0}.

Proof: We prove this by induction on k. It is clear when & = 0. We assume that this lemma
holds until k. For 0 <1 < k — 1, by the hypothesis of induction, we get (p(m)Vy,1,V;) =
(Vi 1, p(m)V) = {0}, ,

We denote an orthonormal basis of m and € by {/;}1<;<, and {/,, ;}1<,</, respectively.
We remark that the Casimir operator

of p is a scalar operator because (' is a (i-invariant symmetric transformation and p is
irreducible. For v € V, we denote the Vj-component of v by vy, -

Lemma 1.3. 2 Z/)(]']t-)(/)(1',’.,1)'uk)vk', € Vi + Vi1 for each v, € V;,

i=1
Proof: We have
ntl 7 ntl
Vi © Cuyy, = Z/)( 5 (p(Lsi) k) v, + Z/’([’/'i)(/'(l‘]i)"’k)v,\.. + Z/)( 5) (p(L%) ok vy, -
i1 il i1
Hence we have by Lemma 1.3. 1
nil
Z/)(I’;L')(/)(I‘,’,‘)’U}c)vﬂl & Vk o Vk‘l i
i=1
Since Vj, is K-invariant, we get the conclusion. 1

The Lie algebra u of SO(a + b) acts on V, naturally. Put | = Lie(S(O(a) x O(b))) and
p={T € wTVp C Vg, TVy C Vp}. Then u = | 4 p is the canonical decomposition of u.

For 7' € u, we denote the p(resp. |)-component of 7’ by ’/'p(resp. l’[)

Lemma 1.3.3 12‘1({)( '/‘i)[/)(/’fi)p = /)(/’Ji)p/)(/’fi)[) = 0.
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Proof: For each vy € Vj,, we have

Z/}(I','i)g't,' = C'uy, — L/) WY ‘u € Vi

=1

Since
;; o(F;)* : IQ) (), +p(HJpp(Eﬁl>+v§;<p(l)U(l D1+ p(E)p(ED,)
we get the conclusion. !

Proof of Theorem B: Let H € p denote the tension of /7 at 0. By (1.1.3), we have
H=3 " lplE )l p(F; )p] From Lemma 1.3. 3, we have

— 2 p(E;) [/; p — f?Z/)([u’i)p/)(/’,’,-)I.
i1

i 1

If0,1 € Por0,1 € Q, then we have Huy = 0 by p(F;). vy = 0. If0 € P 1 € () or
0€@,1¢€ P, then we have Hyy = 0 by /)(]’]i)l'u[) = 0. Hence we have Hy, = 0. We assume
that Hy, ..., v;) = 0. We will prove Hyy,,, = 0. Clearly, we have [V}, C LL"(? V;. By the
hypothesis, we have

j j
=(HY Vi,Vin) = =O_ Vi, HVjya).

0 =0

Hence we have HV;y, C Vj, + Viye + Vjya. Let xp and x denote the characteristic
functions of /> and (), respectively:

v {1 qkeR ~ 11 (ke@)
xp(k) = { 0 (keq) Xelk)= { 0 (keP).

17




For each vy € Vj; 1, we have by Lemma 1.3. 2 and the hypothesis of induction

(Z /)(I’Jz)[/’(l'lli)p)"’.i| 1
i1

e n k4l
= xr(G+ 1D xok) > > xoW(p(L:) p(E:)vji)vi v
K= t=1l=K
J+2 n k+1
+x0(F+ 1) Y xp(k) > xp D) (p(E)vi)v)v
F=g =1 j=k—1

'IL

= xp(j+1) Y() Jt2 1 (p(£) (p( Lo ”,H)vj. )v},;.
=il
n

+xp(d + Dxeli +2)xq(7 + 3) D _(p(E) (p(Ei)vi1)v, 2)v, s
=i

+xo(F+ Dxp(j 2)2(/’( %) (p(L)vy I)VJ. ,)mg
i1

+xQ(i + Dxp(d + 2)xp(7 + 3) D _(p(£) (p(E:)vj 1), ,2)v; a)

=i
L/) p/) %) UJH

Jjt2 n k+1
= xp(j+1) ZYP Z Xl %) (p(L5)vi ) v,
K= i=11—-k—1
JIZ n k1
txQU+1) ) xek) Y > xeM () (p(F)vji)w)v
k=9 ,i 1l=k—1
= \//;(J+1 \(() Z /) /L /) IJL UJH)VJH)VJW

13
n

+xp(d + Dxe(i + 2)xq(i + 3) D_(p(E) (p(E)vi11)v;12)v; s

vl
n

+txqli + Dxr(i+2) \(/)(1' ) (0050511 v,00 )V,

~

T

+xq(7 + Dxo( +2)xp(i +3) L(/)(l"’i)(/)(l'f‘i)"’jt B 720

=

Hence, if j4+1,j+2¢€ Por j+1,j+2 € Q, then we have (3" 1/’(l”‘i)(/)(l'f‘i)p)'“;/'| =

J+1e P j+ 2 €EQorj+1e Q,J + 2 € P, then we have by Lemma 1.3. 3

Tn

(Z/)(I")i)p/)(l'/,i)[)vj4l = Y (p(E)(p(E)vi)v, vy € Vie,
=1 =1

QP oin = D (P (P01 )v;00)v, = 0.

=1

18

0.

If




Hence we have H)y, , = 0. Therefore I' is a nonconstant harmonic mapping.
If the isotropy action of K is irreducible, /' is an isometric immersion. N
Let (p, V) be a complex (resp. quaternion) spherical representation of (i, K'). Put

Vik = {v € V; p(k)v = v for each k € K}(# {0}).
If there exists a nonzero vector vy € Vi such that
(p(g)vo, vo) € R for each g € (i, (1.3.9)

then we can construct a harmonic mapping from M into a complex (resp. quaternion)
Grassmann manifold in the same way as the proof of Theorem A. Condition (1.3.9) means:

Proposition 1.3.4 A complex (resp. quaternion)-spherical representation (p,V') satisfies
(1.8.9) if and only if there exists a real spherical representation (1,W) of (i, K) such that

(p, V) = (1, W)Y (resp.(r, W), (1.3.10)

where (1, W)C(resp.(r, W)!") denote the complex (resp. quaternion) representation of G
obtained by extension of the coefficient field of (r,W) to C (resp. H).

Proof: Clearly (1.3.10) implies (1.3.9). Conversely we assume (1.3.9). If we put

W = R-linear span of {p(g)vy; g € '},
then (1.3.10) is concluded. '
If ((7, K) is a compact symmetric pair of rank one, then every C (or H)-spherical repre-

sentation (p, V) of ((7, K) satisfies (1.3.9) (see [31, p. 25, Cor. 8.2]).
We prove lemmas needed later (§1.4).

Lemma 1.3.5 p(X1) - p(Xi)vo = p(Xr1) -+ p(Xey)vo  (mod Vo + -+ + V1) for
Xi, o, X € m, 7 € &, where we denote by Sy the symmetric group of degree k.

Proof: We have

p(X1) - p(X)p(Xiy1) - p(Xi)vo
= p(X1) - p(Xa)p(Xi 1) p(Xi) p(Xiy2) - - p(Xi)vo
+p(X1) - p(Xio1) p([ X, Xag1])p(Xiya) - - - p(Xi)vo.

Hence we get the conclusion. 1

Lemma 1.3. 6

Vi = the orthogonal projection of span{p(X)*vy; X € m} to (Vo + -+ Vi )",
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Proof: We prove this by induction on k. It is clear when & = 0. We assume that this
lemma holds for k. From this, we get

Viy1 = the orthogonal projection of span{p(X)p(Y )fvg; X, Y € m}
to (Vo + -+ Vi)t

From Lemma 1.3. 5, we have

a2 o
p(X + /Y)}” = Z ( : )l"/)(X)k' 17‘”/)()")‘“1\) (mod Vo +---+ Vi)

s=0 J

forl =1,2,---,k+ 2. By the formula of Van der Monde, we have

1 1 1
2 2! pige MOPH
det . : . : = ]H (j—i)#0
‘ - ' ~ 1<i- j<ki2
(B2 (BABPR 1o ) I

Hence the vector p(X)p(Y)*vy is a linear combination of p(X + Y)*' 1y, -+, p(X + (k +
2)Y ) yg(mod Vo + -+ - + Vi). ;

1.4 A construction of totally geodesic immersions of
compact irreducible Riemannian symmetric spaces
into Grassmann manifolds

Let (- be a compact connected Lie group with Lie algebra g, K a closed subgroup of
with Lie algebra €. The pair ((7, K) is called a compact symmetric pair if there exists an
involutive automorphism 0 of (¥ such that K lies between Ky = {g € (+;0(g9) = g} and the
identity component (Ky)y of Ky. A compact symmetric pair ((+, K) is said to be irreducible
if the adjoint action of K on m is irreducible.

Let ((7, K) be a compact irreducible symmetric pair. An Ad((/) and 0-invariant inner
product (,) on g naturally induces a (;-invariant Riemannian metricon M = (/K. M is a
compact Riemannian symmetric space with respect to the (;-invariant Riemannian metric.
Since @ is an involutive automorphism, we have a canonical orthogonal decomposition of g:

g==F5m.
Put /7 as in (1.3.8), §1.3 with P> = {even}, ) = {odd}, then we have the following theorem.

Theoremm C [/ is a totally geodesic immersion.

20




In order to prove this, we prove the following lemma.
Lemma 1.4.1
p(m)Vi C Vi1 + Vg1 for k=0,1,---,m, where we put V_, = V,,,, = {0}.

Proof: We prove this by induction on k. It is clear when £ = 0. We assume that this lemma
holds until k. From Lemma 1.3. 1, it is sufficient to prove (p(m)Vi,1,Vii1) = {0}. When
k is even, put k& = 2l. For X € m, by the hypothesis of induction, we get

p(X)vy €W,
p(X) vy € Vo + Vi,

/)(X)Ql’l)“ & \/() + Vz TR e e ‘/:217
/)(X)2“ vy eVi+Va+ -+ Vi
For Y € m, we get
2l : \- :
p(Y)(p(X)* o)y, = p(Y)p(X)* g — 37 p(Y) (p(X)*  g)vi s -
5==0)

By the hypothesis of induction, we get

-1
Z/)(Y)(/)(X)ZH ,‘”O)stn = v() < Vz T Vz[.

50

For each 7 € m, we have
(/)(Y)/’(X)Qll tug, /)(Z)ZH 'ug)
-1 !
=3 </)(Y)(/)(X)2l l 1""())\‘zu o Z /)(Y)(/)(X)zl l 1"’“)\/331 1) Z(/)(Z)zl ' ]'”U)Vu | 1>
50

. 1=0
l
= {p(Y)(p(X)* " 00)vary 10 D_(A(Z2)*  00)vi )

=0
T (/)(Y)(/)(X)z“ l"’())vy.n (/’(Z)ZH l’“u)v,,,,)-

From Lemma 1.3. 6, it is sufficient to prove
(p(Y)p(X)2 ug, p(£)2 4 1yg) = 0 for each X, Y, Z € m.

For Xy, Xy, Y1, -+, Y1 €m0 € Gy, by the hypothesis of induction and [m, m| C
£, we have

(p(X1) - p(Xag 2)vo, p(Y1) -+ p(Yor, 1)wn)
= (p(Xo)) - P(Xoay9))v0, pP(Y1) = p(Yar 1) v0).

‘)1
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Hence we have
(W)™ 200, p( 2V V) = (p(W )21 p(Z ), p( Z)2 p(W o)
= </)(M”)2[/)(Z)2u“,/)(Z’)Z’*'/)(L1f")2(;[,>

p(W)H p(Z) g, p(2) p(W)H L)
/)(Z)l' ’/)(VV)Z o, /)(Z)l/)( H/)“ Lug)

[
O pemas S

for each W, Z € m.
Hence we have

0 = </)(Y + ‘III,X)u } 2,““’ /)(Z)Q“ l“(]>

Lo B . ST . .
= L( ‘ >”"<r}<v)w'/)</\')‘AUU,/»<:Z)“"m>
i0 4

for X,Y,Z € mym=1,---,2l + 3. By the formula of Van der Monde, we have

Y. 1
90 91 ¥, 92042

det : : : = H (7 —1) #0.
3 : - g 1< 5<204+3
(20+3)° (2A+3)! ... (214 3)%*t2

Hence we have (p(Y)p(X)* vy, p(Z)211yy) = 0. When k is odd, we can prove this in the
same way. 1

Proof of Theorem C: We have p(m) C p by Lemma 1.4. 1. Hence I' is a totally geodesic
immersion. 1

Remark 1.4.2 Let (p,V) be a complex (resp. quaternion) spherical representation which
satisfy (1.3.9). Then we can construct a totally geodesic immersion of M into a complex
(resp. quaternion) Grassmann manifold in the same way as the proof of Theorem C.

The next example is not contained in Theorem A.

Example (G, K) = (SU(n), SO(n))(n > 3).

Since (7 acts on C" naturally, (7 acts on a complex vector space W = (o, W) = S?(C") =
span{u - v = é(u @v+v@u);u,v e C"}. Let {¢;}1<i<y, denote the canonical basis of C".
Put vy = 3 | ¢? € W. Then we have a(k)v, = v, for each k € K. Put (p,V) = (o, W)
Then (p, V) is a nontrivial real spherical representation of (i, K')(see Lemma 3.5). The
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i 2 9 ; b 5 B ¢
canonical inner product on C" = R*" naturally induces a (;-invariant inner product on V.
We define K-invariant subspaces Vj as in (1.3.7). Then we have

\/i] — R‘”Ua
W = 2: Rv—le;-e;+ {Zu:,-\/l('f;u',- eR(1<1< 'II),ZJ'.,' = 0} .
i1 -

1<i<j<n =1
n n
N ‘ SRR N ey

= E Re;-ej+ ) :1‘L-(;f;:1,'t- eR(1 <i<n), > 2; =00,
1<i< j<n i1 i1

\/3 = R\/—*]‘l'(),
3
iF &= NUW

i0
Put /' asin (1.3.8), then F'is a minimal immersion. Since Vj = V4, V| = V,(K-isomorphic),
this example is not contained in Theorem A.
In order to prove the irreducibility of (p, V'), we prove a few lemmas.

Lemma 1.4.3 Let (o, W) be a complex irreducible representation of a compact connected
Lie group (. If there exists a weight A of (o, W) such that —\ is not a weight of (o, W),
then (o, W)r is a real irreducible representation of (i.

Proof: If (o, W)r were not irreducible, then there exists a real representation (p, V') of (&
such that (o, W) = (p,V)® by Lemmal.1.3. Let J denote the conjugation of W with
respect to V. Then J is a conjugate (;“linear mapping with J? — 1. Let 7" be a maximal
torus of (¢ with Lie algebra t. Let vy, be a nonzero weight vector of A, that is,

p(H)vy = ﬁ/\(”)'”,\ for each H € t.
Since J is conjugate (i-linear, we have

p(H)Juy = —/—1X(I1)Juy for each I € t.
Since —\ is not a weight, we have Ju, = 0. Since J? = 0, this is a contradiction. 1
Lemma 1.4.4 (0, W) is a complex irreducible representation of (i.

Proof: We first let [7;; denote the matrix whose 7-th row and s-th column are given by
éllb_/.‘)

It is sufficient to prove that the complexification sl(n,C) of su(n) acts irreducibly on
W. Suppose W;(# {0}) is an sl(n, C)-invariant subspace of W. In order to prove W, =
W, first we show vy € Wy. Let v = Y cpcienauer - ¢ € Wo. Put @ = min{k;ay #
0},7 = min{l;a; # 0}. We may assume (i,j) # (n,n). If i = j(< n), then we have
Wo 3 o ()0 = 2a,¢2. If i < j, then we have Wy o o (F,;)v = > j<i<n Git€1 * €y. Hence, if
t < j = n, then we have Wy 3 q;e2. If i < j < n, then we have Wy 5 o(F,;)o(F.)v =
aije. Hence we get €2 € Wy. For 1 <i <mn—1, we have W > a(I5,)%¢? = 2¢2. Hence we
have vy € Wj,. Since W = span{p(()uy}, we have W, = W. 1
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Lemma 1.4.5 (p,V) is a real irreducible representation of (7.

Proof: Put
T = S(U(1) x --» x U(1))

n-times

and

t = {v—1ldiag{zy,---,z.};2; € R(1 <7 < n), Z;ri — T
i=1
Then 7" is a maximal torus of (¢ with Lie algebra t. For I = \/—1diag{z,,---,z,} € t, we
have o(H)(e; - ¢;) = V/—1(2 + x;)e; - ¢;. Since n > 3, this shows that (p, V) is irreducible

=

by Lemma 1.2. 4 and Lemma 1.2. 5. 1

1.5 The Jacobi differential operators of equivariant
minimal immersions

In this section, we succeed the notation in §1.1 and we assume that [ is minimal. We
define symmetric linear transformatoins R, and A, on the normal space N, (M) at x as
follows:

m m

R.(v) = (R(e;,v)e;)t, Ay (v) = > B(e;, A%;)
i1 i1

for v € Ny(M), where {¢;}1<;<m, is an orthonormal basis of T,(M). Clearly, we get A=0,

if I is totally geodesic. Let N(M) denote the normal bundle of M and I'(N(M)) denote

the vector space of all (*-sections of N(M). Let A denote the negative of the rough

Laplacian of the normal connection V+ of N(M), that is,

AV =Y 'V VEV - Y ¢9Vg,. 5V for Vel(NM)),

1<, 5<m 1<4,5<m

where {F;}1<i<s, is a local frame field of M, g;; = (1%, I2;) and (¢")1<i j<m = (,(/Z-A,-)',’\/’lw\/j”.
Since the Jacobi differential operator

J=A+R-A
s a strongly elliptic linear differential operator, it has discrete eigenvalues:
Spec(J) ={A < A <--- > 0}

The minimal immersion /' is said to be stable if the second variation of the volume of I is
nonnegative for every variation. The minimal immersion /' is stable if and only if A} > 0
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(see [28],pp.73—7:1). Since the orthogonal (”OIp;)le?xrlellt m” in p is identified with N,(M) in
a natural manner, we may consider /2 and A as symmetric linear transformations on m'.

Let (U, L) be a compact symmetric pair. An Ad({/) and ¢-invariant inner product (,)onu
naturally induces a U-invariant Riemannian metric on V. Since p = {X € u;0(X) = — X },
we have [p,p] C L.

Lemma 1.5.1 (1)

m m

R(v) =Y [F.X, [/,;Xi,u][}mL e 12:[1«;)\3, [, X, ]

$=1 =1

A

P]m

forv € m.

If (U, L) is a compact symmetric pair, then
= / B m > : A A . o i

R(v) = ;[I*/\i, [F. X, u]]mL for vem .

(2) A(w) = — T2, [(p. X+ %(/)*Xi)p, [(peXi) + %(/’*/\'i)p7’l’},p‘m]

If (U, L) is a compact symmetric pair, then

il
1 or DIE S
m f

™m

A@w) =~ Yl Xo lp. Xyl ) o Jor vem'.
i=1 g

Proof: (1) This follows from (1.1.5).
(2) By using (1.1.3), we have

<Aina )(j> = <‘“v (v(/), ,\',)‘(/)* Xj)*)_0>
iy <IU? [(/)* ‘Y‘i)pu (/)* ‘x]l)]] 5 %[(/)*)(i)pv (/)*‘Xj)p] >
Hence we have by Lemma 1.5.1 (1)

(A(v),w) = — Z<[(/’*Xi)[ + ;(/’*Xi)pv [(p Xz‘){ F :

5 (P Xi)
i 2

p,‘u]["‘m],uo
for v,w € m™. [

The group K acts on m" by Ad(p(k))(k € K). We denote by (Ad o p)* this action of K
onm". We identify I'(N(M)) with

iy (r';mL k = {p € C%(G; m* o(gk) = (Ad o p)t (k" De(g) for g € Gk € K
@ 0 o

25




by the following correspondence:
Shad (€ m' )k 2= e e (NM)); o(gK) = p(9).p(g) for g € G.
We define an action L, (resp. p(x).) of G on C*((;m l )i (resp. T'(N(M)) as follows:

(Lo)(9) = wla7'g) for € C®(G;m )y, 2,9€G,
(p(2)V)gx = p@) V19 for V eT(N(M)),z,9 € G.

The action Ly(z € () on C*°((G;m™ )k corresponds to p(z), on I'(N(M)). We also denote
by J, A and A the operators on L mi)l\» corresponding to the oparators J, A and A on
['(N(M)), respectively. Let ("' = — ¥ | X? denote the negative of the Casimir differential
operator of (+.

Lemma 1.5. 2

p m

Ap = Cot+ ZH[/)*\“[/)* i 9] >L[ peXi)pp Xag] o
~}'i [(pa Xa)p, [ Xy, 0]] 2 = Alp) — i[(/uXi)p,Xmei
“li [(pe X i) [(pe X s ¢ ]p]m = %i[(/)*xi)pa[(/’*Xi)[v‘r’”mi
*1 i [(pe Xi),, [(pu X )p,p}p]mL for e C®(G;mt)k.

If (U, L) is a compact symmetric pair, then

p m
Ap = Co+ ). [/AX,:,[/AX,;,@H—QZI(/&Xi)[,X,@JmL
i=m il p=il
m
—Z P X (e Xl s = Alp) for € Co(Gm*)k

Proof: For V = ¢ € I'(N(M)), we have

v(/’* X‘)'V(p. ‘XA)‘ l/) : (()) + A(‘/u)

T

NE

~(AV)(0) = (

2
Put W; = V(,. x,)» V(1 < i < m). Then we have by (1.1.1) and (1.1.4)
Wi,uxpl,p. Xplr = Tl( _5/)* )) V(xp(l b $)ps XiL|s=0
+(exp Lp Xi)[(ps Xi) [, (exp(—1ps Xi)u Vixptp, x,1]
1
2

it (ekp//) /\ ) [(/)*)\t)pv(exp( //) )\ )) th;)lﬂ X Ilp

26




[n particular

d . 1 ) )
‘/Vi,t, — ([5 (GXP( .\’/)*/\1))» \/(:xp\sp. X;:L]s=0 F [(/),)\ ) ;‘/()] |- )[(/)‘Ai)p’ \/“}p'
Thus we have by (1.1.1) and (1.1.4)
( v(/).,\',)' ?(p, ,\"i)‘ V)(())
T (v VVi)u
A d()(e\(p( l/)*)(i))*Wi""xl”‘/"‘)‘,'l'“ o+ {(/)*‘Xi)[v Wi,o] # i{(/)* )p7 i r)]p

= MO s (QXP( (/ 5 5)/)*)\,1'))# \/uxp(t.l.s)/l. Xllt=3=0
+ 2[(/)* [7 1, (exp( //)*Xi))x chpl,p. X; Lt ()] e [(/'*)\,i)[) [(/)*Xi)la Vu”

o [(/)* p di (GXP( ,/)*‘)('i.))* \/\)xl')(p,<\',/,[l l)}p + %[(/)*)(i)[u [(/)* ‘x/i)pv ‘/U]p]
1 AT () X, e
+2[(/)*A/)p3 [(/)*‘xl)[’ l“”p s ‘1[(/)*‘Xt)p7 [(/)*‘Xt)p7 \/U}p]p
So we get
BAE = (P X)) + 2T (0. XDy, (Xep) @]
- X'“ [(p+ X)M(/) Xipwle)l] « + Alp (()) 2l Xi)y, (Xip)(e)] »
+ 3 (X)), (e X, )p (()1 Jr s Zf”ll(/)* Do [P X3y, (()H
1 Z (o Xy, (0 X)) Ip]
Since AL, = LA for 2 € (; by the equivariance of I, we get the conclusion. 1

We define operators J; : C°(Gim™ ) — C*(G;m [ )k(i=1,2) by

T)
Jip = L[/’*XH)‘:‘P g +L/’ Xi, /)*Xu‘t?]m Jm )
=]
14 P
Ky = Z[(p X; )p,/\,ap ¢+Z Pe X p,[/)*)\“@] Jn'
=1 =1

for p € C®(G;m ™) k.
Remark 1.5.3 It follows that 3>V |[p. X; X,t-c,o] v oo plpe X3 [/)*X“(’J}m }m'

il X-)p,XL'Lp] cand 3P [(pe X )p (s X,,gaJ } s C®(G;m™ ) for p € C°(Gym™b) .
Moreover each of the above four operators is commutdtlve with L, for . € (G. If (U, L) is
a compact symmetric pair, then Jy = 0.

7

Theorem 1.5.4 (1)

Jo= Cp—2hp+ [Fri(adp Xifol s+ oo — Yialpa X, [(pe Xy 0l o) 0
3 X ) [ X

for p € C®(Gym™) .

1
m




(2) J1=0 if and only if {/)*X,-u}mi =0 for X e m,v € m.

(3) Jo =0 if and only if [(pX) L=0for X emuvem .

P”U‘m
4) If (U, L) is a compact symmetric pair, then

P

Jp=Cp—2J1p+ {X(adp*/\',-)z(p} : for p € C(G; ml),\».
m

1=

Proof: (1) follows from Lemma 1.5.1, Lemma 1.5.2 and minimal condition (Proposi-
tion 1.1. 1, 4.1(2)).
(2) and (3) are obtained in the same way as [26, I, p. 138, Proposition 4.2.2]. (4) follows

from (1). [

) )

Remark 1.5.5 It follows that Co, [3F ,(ad/)*Xi)zap]mL,Z" 1[/)*,\’,1,[(/)*Xi)p,P],,-‘m]ml

and 25’,1[(/)*Xi)p, [(/)*Xi)pa 99},) mlml € C*(G; ml),\- for p € (?‘oo((l;mi),\». Moreover each

of the above four operators is commutative with I, for 2 € (4. 1

Let D((7) be the set of equivalence classes of finite dimensional C- irreducible represen-
tations of (. Let ¢,(> 0) be the eigenvalue of the nagative of the Casimir operator of
(o0, W) € D((7). (By the formula of Freudenthal, we can determine ¢, (see[30],p.205).) For
(o, W) € D((7), put

(W*® (m)°) = {a e W* @ (mH)C; (* @ (Ad o p))(k)a = o for k € K}.
Put
D(G; K, (Ad o p)') = {(0, W) € D(G); (W* @ (m") ) # {0}}.

For (o, W) € D((; K, (Ad o p)t), we define a symmetric linear mapping J, € End((W* @
(m™)%),) as follows:

VS = sl — 2 {ZZ) | (T*(/\',')‘Q?) [/)*X.,;, *“ni + 1y ® Zi) ][/)*,X,j, [/)*Xi’ *}I’ﬂ L’]‘ni }
ot 1‘,‘/‘ @[ .TL') 1(ad/)*Xi)2*}InL
n TS VR " ; p @ ;
+ {000 (X) @ (0 Xi)py ¥l + e @ TE (0 Xo)y [ Xy #] 0] 1}

+ 1”/4 @ {% f l[(/)*’xi)p? [(/)*Xi)p’ *]I"'nllnll %= Ii) l[/)*‘Xi‘l [(/)*Xi)p’ *]ln.n]]l“l} 5

Clearly, if (U, L) is a compact symmetric pair, then

e o L {z’; (0" (X3) @ [peXiy¥] o+ Liye @ 0 [pa X [0 X, 4] L]ml}

A m
+ 1w @ [F ,(adp,Xt-)l*]ml :




By virtue of the Peter-Weyl theorem for homogeneous vector bundles, the problem of
computing the spectra of J is reduced to the eigenvalue problem of the linear mapping .J,

with (0, W) € D(G; K, (Ad o p)*)(see [26, 1§5)).

Theorem 1.5.6 For (o, W) € D(G; K, (Adop)t), let {M\si1,+, Aoum, } be the eigenvalues

of Js, where my = dim(W* @ (m)%)o. Then

SP(‘(‘(J) = U(aJV)e1)((,';1\',(Ado,,)L){/\(7;1: & )‘H;la o h /\n;maa gL /\n;mJ }a
—_——————

(S do

where d, = dim W.

Remark 1.5.7 If (U, L) is a compact symmetric pair and /' is a totally geodesic immer-
sion, then
P
Jo = ol + 1y @) (adp. X;)* * .
i1
K. Mashimo, Y. Ohnita and H. Tasaki studied the stability of various totally geodesic
submanifolds in compact symmetric spaces using this formula. ([21], [22], [23] and [27])

Remark 1.5.8 We state K. Mashimo’s study [24] related to Theorem1.5.6. Let (i be
a compact connected simple Lie group and ¢ an automorphism on (i of order 3. Take an
Ad((7) and do-invariant inner product (,) on g. Put K = {g € (;0(g) = ¢g}. We consider
the Cartan embedding

U, : G/K — G 9K v go(g7).

The induced Riemannian metric on M by the Cartan embedding U, is a normal homoge-
neous metric: For X, Y € m,

(W (KT ¥y —=3(X. 1)

By Propositionl.1. 1 ,(1), the second fundamental form B of the Cartan embedding V¥, is
given by

I

1 |
B(X,Y) = ;[o(X),Y] - 5[X,0(Y)| €t for X,Y em.

N\

Put
U = %G,
L = {(g,9);9€ G},
I = {(X,X); X € g},
p = {(X,-X);X €g}
p 1 G=GxGgm (g,0(9)).

29

4




When we identify (¢ with U/L by G~ U/L;ab™" v (a,b)L, we get
U,: G- U/L;gK — p(g)L,

m = {(Y,-Y);Y et} 2¢.

We assume that ¥, is minimal. For X € m,Y € ¢,

P(X), (Y, =Y)] o = GIX +a(X),Y],—4X +o(X),Y])
— 0,

which implies that J; = 0 by Theorem 1.5.4 , (2). Hence we get

P

g o= Tl i 10 I;(ad/)* e Jm[ '

K. Mashimo studied the stability of Cartan embeddings of compact Riemannian 3-symmetric

spaces by using this formula. '




1.6 An example

In this section, we denote by ( (resp. K) the special unitary group SU(2) of degree 2
(resp. the closed subgroup S(/(1) x U(1)) of SU(2)). Basic notations are same in §4. We
define an Ad((;)-invariant inner product (,) on g by

(X,Y)=—2Tr(XY) forX,Y egqg.

We also denote by (,) the induced (i-invariant Riemannian metric on 5% = (/K. Then the
Riemannian manifold (52, (,)) is of constant curvature 1. We choose an orthonomal basis
{ei}1<ics of g as follows:

o lf 0 VAN _1f0 -1\
=] 2 \/jl O 3 €2 2 1 0 =3 v

First we write down all (+-[J-irreducible representations:

B[ =
gD

V-1 0
0 —v-1)°

Lemma 1.6. 1 G/-[J-irreducible representation (p, V') is one of the following:

(1) The case of IV =C
There exists an orthonormal basis { fx }o<k<n of V such that

~D

ple)fe = 5 (=n+2k) [,
ple) i = @{\/owx +_1)/m|+ k(n—k+ 1) fir |,
pleafi = ${—/=k)(k+1)fiy1 + \Jh(n - k+1)fi}

for B ka0

(2) The case of I' =R
(2-a)There exists an orthonormal basis {ho} U { [k, 9k }1<k<n of V such that

/) €3 ]L() — O,
ples)f = kg,
Meslgr’ = —kifg,

ple)hy = \/“(,LH){]h

fi = Z\/(I—L)(/1+A+l)(]k{1+ \//1+L ) — K+ Lge 1,
—5\/0 = kY 4 k4 1) i — 50+ k) (0 — k + 1) fiy,

'n(nH)/-,

fi e ;\/(n — k) kA ) S+ 5/ 7)

g = ﬁ\/(”*k)(" ko L)1 + Q\/(

,,g,,,, )/k Iy
k) (n Kk | l)qk |
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for 1 < k < mn, where we put [y = \/2/1.{),.(/1) = 0.
(2-b) There exists an orthonormal basis { [k, gk fo<k<on—1 of V such that

Jo = 3(=2n+1+ 2k)gy,
gy = — i( 2n+ 14 2k) [y, 1T
\/()/1 —1 A)(/. + Dgry1 4 ;\/}?(")11 — k)gr_1,

—3/(@n =1 — k) (k+ 1) fi fA,/A(zlfff)'/k i

S~

an )
Il

-

-~
>
o Q ®
> =
I
DS =
K\zl-—-

2
ples W%i*W“1MmbLj k) fi1,
ple2)gy = i\/(‘ n—1—k)(k+ Dggy1 + 2 \/A 2n —A)qk .

for0 < k < 2n—1.

(8) The case of I =H
(5-a) There exists an orthonormal basis { [ }o<k<n—1 of V such that

ples)fe = H(-2n+ 142k, e
plen)f = 3(1 *("Ar,nfl){\/(Q“*l"I‘)(l‘ + 1) feas *\/A (21 — k) fr 1}
1
1

: bkv;:! {n(r (e 'y 1\/( -D(n+ 1) fu z}

plea) f = A(l—(‘);\.‘n,l){ \/(211—1~— A)(A+1)]k|1+\/k M—L)]k 1}

ot L1, 4 fln— D+ D fae)

for0<k<n-1.
(3-b)There exists an orthonormal basis { [i }o<k<on of V such that

plea)fe = i(=n+k)f,
plenfi = §{y@n B+ D+ fb@n k1) fia},
plea)fs = 3

s {=V@n =Bk + D) fiir + k(@0 — k + 1) fir }

for 0 < k < 2n, where we denote the differential representation of the representation
p of (i by the same symbol p.

Proof: (1) is obtained from [8, Theorem 1.3, p. 599].
(2) is obtained from (1), Lemma 1.1. 2 and Lemma 1.1. 3 :
(2-a) When n = 2m in (1), put

./k Fm f~k e (/‘ = 0(1(1)7

7 /k tm S ./;k e (]\ — (3'1)(’7),),
- S 1 s O S | (k = odd), — |
= \/jl(/k T o (b= even), o \/Ej”‘ - el
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alld m
W =Rho + > (Rpr + Ray).
k=1
Then W is a (;-R-irreducible representtion. We rewrite m = n,py = fi,qx = ¢gx and

W = V. We get (2-a).

(2-b) When n = 2m — 1 in (1), ((pam—1)r, (Vam—1)r) is a G-R- irreducible representation.

Put g = v—1fx. We rewrite m = n. We get (2-b).
(3) is obtained from (1), Lemma 1.1. 4 and Lemma 1.1.5:
(3-a) When n = 2m — 1 in (1), we define a conjugate (i-linear mapping J by

:‘f}c =3 (*’l)kflzrnflfk-

Ay e L . .
Since J° = —1, (pam—1, Vom—1) is considered as a (;-H- representation (0, W,,). {fx bo<r<m1

is an orthonormal basis of (o,,, W,,) and f3,,_1_r = (—1)*jfi. We rewrite 1n = n and

(Una W/l) — (/)n.; ‘/IL) We get (3—&)

(3b) When n = 2m in (1), ((pam)™, (Vam)') is a G-H-irreducible representation.

rewrite m = n. We get (3-b).

For (- Iv-irreducible representation (p, V), put

{0,1,--+-,n} (if (p, V) is type(1
{1,---,n} (if (p,V) is type(fz
X=1¢{0,1,---,2n—1} (if (p, V) is type(2-b
(if (p, V) (3-a
f ) i (3-b

LR

{0,1,---;n—1} (if (p, V) is type
{0,1,---,2n} (if (p, V) is type

For subsets P(# 0), QQ(# 0) of X with X = P’ U ()(disjoint union), put

>, (if (p, V) is type(1)),
Rho+ SRS+ Ra) G (5, V) Is type(2-2),
T SRR V) s b))
[i HJ, (5 {esVe bamtime (B0 o Babl),
~ ’i cJ, (if (p, V) is type(1)),
SRS+ Ray) G (1) s type(2-a).
TR - g | .
> (Rfy+Ray) (if (p, V) is type(2-b)),
Suy, (if (p, V) is type(3-a) or (3-b)),
L €@
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a = dimg Vp, b= dimg Vj.
Then Vp(# {0}) and V(# {0}) are K-I[-invariant subspaces of V and
V = Vp + Vg(direct sum), Homy (Vp, Vy) = {0}.
Thus
F: 82 =G/K — Gup(E) = Ula+ b)/U(a) x U(b): gK v p(g)U(a) x U(b)forg € G

is a full minimal immersion by Theorem A. Note that 52, Gh2(R), Gy (C) are Hermitian
symmetric spaces.

Proposition 1.6.2 (1) The case where (p,V) is type(1):

[" is totally geodesic if and only if P = {even},Q = {odd} (or P = {odd}, ) =
{even}),

' 1s a Kahler immersion if and only if P = {0,1,--- k},Q = {k +1,---,n} (or
Q@=1{0,1,--- k},P={k+1,--- ,n}).

(2) (2-a) The case where (p,V') is type(2-a):
I 1s totally geodesic if and only if P = {even}, ) = {odd},

I 15 a Kahler immersion if and only if Q = {n}
(2-b) The case where (p,V) is type(2-b):

I is totally geodesic if and only if P = {even},Q = {odd}(or P = {odd}, ) =
{even}),

F'is a Kahler immersion if and only if P = {0}, {2n — 1}(or Q = {0}, {2n — 1}).

3) (3-a) The case where (p, V') is type(3-a): I is not totally geodesic,
f
(5-b) The case where (p,V) is type(3-b):

I’ 1s tolally geodesic if and only if P = {even},Q = {odd} (or P = {odd},() =
{even}).

Proof: It follows from Proposition 4.1(1). 1

For example, when (p, V) is type (2-a) and P> = {1},Q = {2}, we caluculate Spec(J) by us-

ing Theorem 1.5. 6 . In this case, since /' is a Kihler immersion, /' is stable (see[28],p.76, Theorem

3.5.1).

Theorem 1.6.3 The spectra of J is given as follows:

Spec(J) = {DE=(n+3)(n—2)+ \/6('11, 4+ 8Mn—2) () =22+ 1)) n=2,8++:}

where we denote the multiplicity of A\t by m(\}).
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Proof: In this case,

Ve = Rhy + RJi + Ry,

The expression matrix of p(e;)(1 < @ < 3) with respect to an orthonormal basis {hq, f1, 91, f2, g2}

of V is as follows:

u)

=

Vo = Rfs + Rys.

V3 0 0
0 0 1
0 0 0

-1 B 6
SRR I

‘x,Y,z,w €R

0 0 —v30 0
0 0 0 0 -1
aleyl == V3 0 0 1 0 [,ples=
0O 0 -1 0 0
0 1 0 0 O
g4 0 s
00 —-10 O
ples) = g 1. 00 0
00 0 0 -2
ela ™) B2 50
Hence we have
0 0 0
0 0 0
m- = Ut e i | = 0 O 0
—x —z —w
-y —w oz
and
[p(es), v(z,y, z,w)] = v(—2y, 2z, —3w, 3z).
Put

mi = {v(z,9,0,0); 2,y € R},

Then we have

mj = {v(0,0,2z,w); z,w € R}.

L 1 ; . e
m =m; +m, (K-irreducible decomposition)

vy = V20(1,+v/—1,0,0) € (m)%, wy = V20(0,0,1,4+v/—-1) € (my)C.

and :

DIl e e = {
Put
Then

—Tid
—124d

i
on my,

1
on m,.

[ples),v+] = T2V -1y, [pes),ws] = T3V —lwy.
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Hence we have
I)(("> l\/v (Ad 2 /))l) = {(/)Zna V2u)§ Tl 27 37 ) '}a

where we denote by (pa,,, V4,,) the complex irreducible representation of (& of degree 21+ 1.

The expression matrix of 377 ;| p3,.(e;) @ [p(e;), *]mL with respect to an orthogonal basis

{f;i‘z Q v, f/,:m Quw-, f_» @, y Jr—3 @w_} of (Vs

21

@ (ml)”)(, is as follows:

4 o O 0
3
= ; a 9 0 0
) LA 25 =
z‘ZT/)Z“(“) B [plelH g 0 0 4 —a |’
0 0 a 9
where we put a = 5\/07(717+ 37)(;17 :72) Since the eigenvalue of the Casimir operator of
(pan, Van) is n(n + 1), we have
-3 a 0 0

Jpou = {n(n+1) — 12}id — 2 % e O, G

Hence we get the conclusion by Theorem 1.5.6 .




Chapter 2

Invariant connections on compact
simple Lie groups

2.1 Preliminaries

Let L be a compact connected simple Lie group with Lie algebra I. Take an Ad(/)-invariant
inner product (,) on [. Let (i be an another compact connected Lie group with Lie algebra
g. Take an Ad((7)-invariant inner product (,) on g. Let p : L. — ( be a Lie homomorphism.
We denote the differential Lie homomorphism of p by the same symbol p. Put

K=LxLoH={(l);lel}=L ((1l)—l) and M=K/I.
We define an inner product (,) on £ by
(X, Y),(Z, W) =2({X,Z) + (Y, W}) for XY, Z, W €l
We define an Ad(//)-invariant subspace m of £ by
m={(X,-X); X €l}.

Then we have:
E=bh+m (direct sum).

The induced Ad(/{)-invariant inner product on m naturally induces a K-invariant Rieman-
nian metric on M. The mapping

1 1
2 2

is a linear isomerty from m onto [. In this correspondence, we have

(Ad(I1),m) =2 (Ad(L),1).
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The mapping
(a,b)H — ab™!

is an isometry from M onto L.
We define a Lie homomorphism p from /7 into (i by

H — G5 (L) — p(l).

Every Lie homomorphism from /7 into (7 is obtained in this way. The space of invariant
connections on the principal (-bundle PP = K X, (7 over M is identified with

Hom,(I,g) = {A € Hom(1, g); Ad(p(a))A(Y) = A(Ad(a)Y),a € L,Y €1}

= {A € Hom(l, g); [p(X),A(Y)] = A([X,Y]) for X,Y €}
by Wang’s theorem ([14, pp.106-107, theorem 11.5]), where Hom(l, g) is the space of linear
mappings from the vector space | to the vector space g. Remark that Rp is contained

in Hom,(l,g). The curvature form Q of an invariant connection A € Hom/(l,g) is an
alternative linear mapping from [ x | to g which is given by

20(X,Y) = ~ (X, Y) + [A(X), A(Y)]

In particular, the curvature form Q, of ip € Rp is

20,(X, V) = <12 g %) o([X, Y]).

Hence A = f%/) are flat connections, which are called (+)-connection, respectively. A
critical point of the Yang-Mills functional A — ||Q]|? is called a Yang-Mills connection. An
invariant connection A € Hom,(l, g) is Yang-Mills if and only if for each X € |

n

> [A(F;), 2 E;, X)) =0 (Yang-Mills equation),
i=1
where { I/}, -, [%, } is an orthonormal basis of I. This equation is independent of the choice
of an orthonormal basis {/4;}! ,. In particular, A = 0 is Yang-Mills connection, which is
called (0)-connection.
Take a maximal torus 7" of (+ and denote by t the Lie algebrd of T'. The complexification
t“ of t is a Cartan subalgebra of the complexification g " of g. For each «v € t, put

—{X €g%[H,X]=V—Ta, H)X forall H €t}

An element « € t is called a root of g(" with respect to ¥ if go 7 {0}. Let > denote the

set of all nonzero roots of g(:. Fix a lexicographic ordering on t. Let ' and Il = {«}] ,
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denote the set of all positive roots and the set of all simple roots, respectively. Then we
obtain the root space decompositions of g(' and g :

g = t+ > (R, +RG,) (orthoganal direct sum),

aeyt

a° = ¢ Y CE, (direct sum);
agdl
(Al) ||[’;1’| = H(”OH =1,
(A2) E_, = —1k,, where we denote 1) the conjugation of g(" with respect to g,

(A3) E, € gy ie., [H,Ey) = /—T(or, HYEy for H e t,a € %,

(Ad) Fo=E,—E_o,G, = =1(E, + E_,) for o € T+,

2.2 The structure of the space of invariant connec-

tions in the case where p(i) is a regular subalgebra
of g

In this section we use the same notation in §2.1.
We say that p(1) is a regular subalgebra of g if there exist a subspace b of t and a subset
A' of ' such that
p() =b+ > (RF, + RG,).
acAt

Put A = AYU(—A"'). Then
(B1) If o, farein A, and a+ 3 € £, then a + 8 € A,
(B2) b is a linear closure of A.

We decompose g = )=, g; + 3 where g; is a simple ideal of g and 3 is the center of g (see
7, p.132, Cor. 6.3; Prop. 6.6]). Denote p; the gi-component of p. Then p = Y p; and

Hom, (1, g) = >, Hom,, (I, g;). Hence we may assume that (7 is simple in order to determine
the structure of Hom, (1, g).

Let ¢ be an inner automorphism of (¢ and denote p’ the Lie homomorphism of I, into
(i defined by ¢ o p. Then the mapping ¢ : Hom, (I, g) — Hom,(I,g); A — @o A is a linear
isomorphism and for A € Hom, (I, g), ||Qa]| = [|%0a||. Hence we may identify p with p.

Theorem D ([12]) Assume p(1) is a reqular subalgebra of g and that (i is simple.

(1) Ifrank(L) > 2, then Hom,(l,g) = Rp.
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(2) Ifrank(L) =1, then there exist I'y,---,T'ss € Hom,(l, g) such that
Hom,(l,g) = Rp + LRI

and the set of flat invariant connections is given by

o ffonga=1)

=

and the set of Yang-Mills invariant connections except flat connections is given by

1 i} 25 28 g 1
{0} U iI/)Jr 52(11-?,:;2(1,7 et
202 =

Corollary 2.2.1 Assume p(l) is a reqular subalgebra of g. Then any non-flat Yang-Mills
invariant connection is instable.

Definition We say that p is indecomposable if whenever p = p; + py and p; : | — gis a Lie
homomorphism such that [p;(1), po(I)] = 0 then p; =0, ps = p or py =0, p; = p.

Corollary 2.2.2 Consider the following three conditions (C1),(C2) and (C3):
(C1) p is indecomposable,

(C2) Flat invariant connections are only (+)-connections,

(C3) (0)-connection is a unique non-flat Yang-Mills invariant connection.

Then (C1) and (C2) are equivalent. The condition (C3) implies (C1). Moreover if p(l) is
a reqular subalgebra of g, then (C1) implies (C3).

Remark 2.2.3 In general, (Cl) does not imply (C3). In fact we will give an example
satisfying the following three conditions (see §2.4):

(D1) p is indecomposable,
(D2) There exists a non-flat Yang-Mills invariant connection A such that
Hom,(l,g) = Rp+ RA (orthogonal direct sum),

(D3) A attains a local minimum on the space of invariant connections Hom,(l, g). 1
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Proposition 2.2.4 ([12]) Assume p(l) is a regular subalgebra of g and that G is simple.
If dim Hom, (1, g) > 2, then there exists o € At such that

p(1) = Ra + RF, + RG, =2 s5u(2).

If we set
B(a) = {8 € Z; (o, B) = ||al|?},

then there exsist 3; > 0,v; < 0(1 <1i < s) such that

B(a) = {a} U {8 v} i<ics

and that
ta+fi—frratfi—y €D #G), fitv=2a

Such pairs (g, ) can be classified and essentially (i.e., as in the sense we mentioned in this
section) they must be enlisted in the table below.

[ g | } diril__Hom,,(I,g”
so(2n + 1) | ay 2n — 1
sp(n) o 3
J4 Qa3 N

Here we adopt the same notations and numberings of the simple roots given in the Bour-
baki’s table [1].

Table 1
Canonical numbering of the simple roots
50(2n + 1)
(Xf L g st L - u?ﬂ I%SL

sp(n)

Q) (xe (¥4 (Y
R o v, PR

The black circles denote the shorter roots.




Proof of Proposition 2.2. 4 :
Let p: t — b denote the orthogonal projection. If dim Hom, ([, g) > 2, then we have

p(E—A) D A. (2.2.1)

In fact there exists A € Hom,(l, g) such that A ¢ Rp. Since A(I) N p(l) is an ideal of p(l),
we get A(I) M p(1) = {0}.

We use the classmcatlon of compact simple Lie algebras ([7, Ch. X, §6]).

Case 1. g = bu(n) so(n), e, €7,¢g : The condition (2.2.1) does not hold since the length
of roots of g are the same.

Case 2. g = gy : The condition (2.2.1) does not hold.

Case 3. g = so(2n + 1) : Since the Weyl group W (() of (i operates simply transitively
on the set of systems of simple roots of ¥ (see |2, p. 205]), we may assume that A
contains the shortest simple root «,,. Suppose there existed 1 < ¢ <mn — 1 such that
¢; € A. Then «y, + ¢; € A, which is impossible. Hence we get A = {+«,,} and

Y(op)={an}U{Bi=€,+e€,vi=€n— €31 <i<n-—1}

Case 4. g = sp(n) : Since the shortest simple roots «y, - - -, o, are mutually transformed
by the action of W((7), we may assume a; € A. The candidates for € ¥ which
satisfies pr = o are 2 = 2¢; and 2 = —2¢y. In both cases, ¢; + ¢ = +(z — pz) € b i
Since the set of the shortest roots which are orthogonal to ¢, + ¢4 is

{a MU beke 8 S e ),

we get A = {+ay}U({£e;£¢;;3 < i < j}NA). Here {£a;} and {£¢;4¢;;3 < i < j}
are orthogonal to each other, which implies that A = {+«;}.

Case 5 g = [4 : We may assume a3 € A. Suppose there existed 1 < i < 3 such that
¢; € A. Then a3 —¢; € A, which is impossible. Hence ¢; ¢ A(1 < i < 3). Remark
that

1 1
;)—((.1 :t(g:t(g:f:(A])T(,l = 5((1 :i’:(g:t(;;—{:(‘]) € 2.

Suppose that %(cl + €9 + €3 + ¢4) and %((1 — ¢y — €3 + ¢4) were both in A. Then
€1 +¢4 € A. This is a contradiction. Hence these do not take place in the same time.
Using the same argument and considering a reflection with respect to ¢;(2 <1 < 4),
we may assume that the candidates for A are as follows:

| |
A = {+ay}, {+(Y;;,+‘)((l + o+ 5+ ), + )((1 + g + €5 — (,|)}.
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Suppose the latter took place. Then pz = a3 implies 2 = . This is a contradiction.
Hence we get A = {+a3} and

Alog) ={aglU{Bi=es+e,vi=€4 — € }1<i<3-

|
In order to prove Theorem D, we prove lemmas.
Lemma 2.2.5 Taket € R such that cos(t||a||) = —1. Then
(1) Ad(exptly)Ep, = Ad(exp(—tF,))Egs,
(2) Ad(exptly)li_p, = Ad(exp(—tFy))E_g,,
(8) Ad(exptly)li,, = Ad(exp(—tF,))E,,,
(4) Ad(exptly)l_,, = Ad(exp(—tI,))E ...
Proof of Lemma 2.2. 5 :
(1) First we remark
Ad(exp2t——)Go = Go, Ad(exp2t——)Es, = Ej,.
||“H H“H
Take s € R such that sin(s||«||) = —1. Then we have
Ad(exp sGia) 7y = 2
[lexl]
which implies that
Ad(exp sGo)Ad(exp 2t 10,) I,
= Ad(exp 2tAd(exp sGy) I7,) Ad(exp sGloy) 13,
= Ad(exp 2t ”‘| JAd(exp sGy) 145,
= Ad(exp sA d(exp 2/H”H)(,,,)Ad(exp i) s,
= Ad(exp (i) g,
(2) This is the conjugation of the equation (1).
(3) This is obtained in the same way as the proof (1).
(4) This is the conjugation of the equation (3). 1
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Lemma 2.2.6 An invariant connection A in Hom, (1, g) is flat if and only if

[A(EL), A(E_y)] = — ‘/;1,)(”).

Proof of Lemma 2.2.6: Assume A € Hom,(l,g) satisfies the above equation, which is

equivalent to

AR, AGa)] = Tp(e).

Take ¢ € R such that sin(f||a||) = 1, then we have

Ad(exp L) = — || |Gy Ad(exp 1 Fy) Gl = H”H’
!
which implies that
, 1 et
[A(lirr)vA(“)] = 71””““/)((’(!)'

Take u € R such that sin(u||«||?) = 1, then we have
Ad(expua)l, = GGy, Ad(expua)Gy = —F,,

which implies that

A(Ga), A)] = llal%p(F).
Hence A is a flat connection. The converse is trivial. 1
Lemma 2.2.7 (1) [Eg, E_gl+ By, BE_,] =0 (@ #3),
(Z) [Eandt o e s =00 (< 7,
(Y B Beg ok B, B gl =0" (§<j)
Proof of Lemma 2.2. 7 :
(1) Take t € R such that cos(t||a||) = —1. From Lemma 2.2. 5, we have

[Eopis E_p;] + [Ey;, E_.] = [Ep,, E_p;] — Ad(exp 1) Eg,, E_g].
Since *a + 3; — 3; ¢ £, we get the assertion.

(2) This is obtained in the same way as the proof of (1).

(3) This is the conjugation of the equation (2). 1
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Proof of Theorem E: (1) This is clear from Proposition 2.2. 4. We show (2). Take { € R
such that cos((||a||) = —1 and put

Ep = Ad(exptFy)E_y, E' ;= -nEj; = Ad(expthy)E,,,

F = Ep —F 4, (,, =V =1(E; + E. ).
Since these vectors IV} 5, I} and (7, fill the same role of g, I, and (g, (i.e., these
vectors satisfy the conditions (Al)~(A4)), we rewrite oy = I, Fj, = I, Gs, = G
By Lemma 2.2. 5, these vectors satisfy the following condition: If co;(ll[uH) = —1, then

Blp = Ad(exp/liu)LP, For 1 <1 < s, we can define A, A;,, € Hom, (I, g) by
Nl Bo) = Ep, Ny Fa) = B,

We get
Ai( ‘/Ln) = ‘['/17‘,’ Ail.v(l’;ﬂx) s *I‘/’,/-;',

and that {p} U {A;, A;;s}i<ics forms a basis of Hom,,(l,g)(:. From Lemma 2.2.6 and
Lemma 2.2. 7, we get that A € Hom,(l, g) is flat if and only if

1
N=4- /) 0 ol A= Lh/\ + ¢iNita), Zb(if,,
=il 2=

The set

= A — A, i = V1A + Ay s ) Foy

forms a basis of Hom, (1, g). Thus we get the set of flat invariant connections. For every I' €
Hom,(I, g), there exist 2,y € R and flat invariant connection I'y = $2% a,I"; ( et
;) such that I' = 2p + yI'y. From Yang-Mills equation, I' is Yang-Mills if and only if
il W pudl
=) iﬁ/) (flat), +I'y (flat) or (a,y)= (J_E, ia).
1
Proof of Corollary 2.2. 1 : For example, we show the instability of a Yang-Mills invariant

connection of the form: i ;
11 — I/) + l 0

which appears in the proof of Theorem D. Let Q,, be the curvature form of

1 l 1
F1<1~>/)+< ‘[>F().

QQ,,(X,Y)-——< ; | ;#) p([X,Y]) (11 lz)l‘(,([X,Y]),

Then we get
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which implies that there exists a positive constant ¢ such that

d?

: 16 L
WHQ/HG 05 _("HFU AF é/)“z =0

P
Proof of Corollary 2.2. 2 : If p = p;+ ps is a non-trivial decomposition of p, then ;12(/’1 — )
is a flat invariant connection except the (4)-connection and %/}1 is a non-flat Yang-Mills
connection except the (0)-connection. Hence (C2) implies (C1), and (C3) implies (C1).
We show (C1) implies (C2). Let A be any flat invariant connection. Put

1 1
n = —p+ A, s = —p — A.
1 2/’ P2 2/’

Then p = p; + py is a decomposition of p. Since p is indecomposable, p; = 0 or p; = p.
Hence A = i%/).

We remark that in the case where we deal in Proposition 2.2. 4 | p is not indecomposable.
Hence we have the last half part. 1

2.3 The case where the subalgebra p(i) contains a
regular element of g

We may assume that p is injective.
Theorem 2.3.1 ([11]) If p(l) contains a regular element of g, then (C1) implies (C3).

Theorem E ([11]) Assume p(l) contains a regular element of g. Then any non-flat
Yang-M:ills invariant connection s instable.

Proof of Theorem 2.3.1 and Theorem F:
[t is sufficient to prove that for each non-flat Yang-Mills connection A ¢ Hom, (I, g), there
exists a(= ap) € Hom,(l, g) such that

(E1) a =0 implies A = 0,
(E2) p=a+ (p— «) is a decomposition of p, and p — a # 0,

(E3) (‘i—ifz 11€2]| -0 < 0, where €, is the curvature form of A + {(p — «).

Applying Whitehead’s vanishing theorem of cohomology group (see [13, p.95, Theorem 13)
for the representation (ad o p, g) of I, we have following:
If Ay, Ay € Hom,(l, g) satisfy




(F1) [A:(X), Ao (Y)] = —[A1(Y), Ae (X)),

(F2) Gxyz[p(X),[A1(Y),A2(7)]] = 0, where Sxy, 7 is the sum over the cyclic permuta-
tions of X, Y, 7,

then there exists Ay € Hom,([, g) such that
[A1(X), A2 (Y)] = As([X, Y]).

Remark that under the condition (F1), the condition (F2) is equivalent to
Sxyvz[M([X,Y]), As(Z)] = 0.

Since p(l) contains a regular element of g, [A;, Ay] is skew-symmetric automatically. In
fact, take Cartan subalgebras t and h of | and g respectively such that p(t) C h. Then

This implies A;(t) C b by assumption. In particular, [A(t), Aa(t)] = 0 and [A(/), Ae(H)] =
0 for H € t. Since [ = Ad(L)t (see [7, p.248, Theorem 6.4]), we get [A;(X), Ay(X)] = 0.

Let A € Homy(l,g) be any non-flat Yang-Mills invariant connection. First we prove
Gxyz[p(X),[A(Y),A(Z)]] = 0 using the classification of compact simple Lie algebras.
The vector space

V=IAl=span{X AY; XY €[}
is an [-module by the [-action:
(adZ) (X AY)=[Z,X]\NY + X A[Z,Y].

The space

W = span{[A(X),A(Y)]; X,Y € 1}

is an ad(p(l))-invariant subspace of g. We consider the I-homomorphism ® from V onto W
which is defined by

Q:V=IN->W;XAY > [AX),A(Y)].

~Y

Since ® is surjective, V/Vj =2 W as [-modules, where V; = Ker®. On the other hand, we
consider the [Fhomomorphism W from V into | which is defined by

V:V=IAl-LXAY -

X, vl

Since [[,1] = I, ¥ is surjective. We show that the irreducibility of V|, — KerW. We denote
by [C,tC and p“ the complexifications of [,t and p respectively. The complex Lie algebra
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[© is simple. We denote by A the set of nonzero roots of 1 with respect to (. For a € A
there exists a non-zero vector 17, € [ such that

[H,E,) = a(H)E, forall H et

We have a direct-sum decomposition:

[© _ (€ n Z CL..

aEA

Fix a lexicographic ordering on t. We denote by &, the highest root of A and by {a,-- -, .}
the set of simple roots of A. The set

{b() RYOTRE A} # )

is a single-point set {6;} or two-point set {é;, 63}, and the set consists of two points if and
only if | = su(m).

In the case where {é) — «; € A} = {4}, we define an l-invariant subspace V; (8 + é;) of
Vl(,‘ by

Vilbo + &) = ad(U(19)) (£, A Bs,),

where U([(;) 1s the universal enveloping algebra of 1“. The highest weight of V, (8 + &;) is
6o + 61 and the multiplicity of &, + ¢; is equal to 1. Hence V;(éy + ¢;) is irreducible. By
virtue of Weyl’s degree formula (see [13, p.257]), we get

dim [(dim [ — 3)
()

V4

dim Vy (6o + 61) = = dim V.

Hence V\° = V(& + ;). In particular, V© is irreducible so is V.
In the case where {6y — o; € A} = {6,062}, we define [-invariant subspaces V(8 + é,)
and V;(8g + 62) of V© by

Vildo+6,) = ad((/(l(f))(lu‘h“/\I',‘m),
Vilbo+ 62) = ad(U(19)) (s, A Is,).

For i = 1,2, the highest weight of V,(6g + &;) is &g + 6; and the multiplicity of &y + &; is
equal to 1. Hence V(8 + &;)(¢ = 1,2) is irreducible. By virtue of Weyl’s dimensionality
formula, we get

1
dim VI((S() 1 ("1) = dim V] (A() + (Sz) = 5 dim V].

Hence we have
V](: = Vi(bo + 61) + Vi(bo + é2) (direct sum).
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We denote by W (L) the Weyl group of L. Clearly, there exist 0,09 € W(L) such that
o1(60 + 61) = —(bo + b2), 02(d0 + 62) = — (b0 + &1).
Hence V) is real irreducible, whethere {6y — a; € A} is a single point set or two points set.

So we get
Vi=ad(U(I))(tAt) C V.

Hence @ naturally induces [-homomorphism ¢ from V/V; onto W defined by
p:V/IVi - W; X AY — [AX),AY)],

where X A'Y is the equivalence class of X A Y. From Jacobi’s identity, we have

Gxy,z2ad(N)XAY = Gxys([4XIAY + X A[Z,Y))
#£17

5 x
26 xyv 4, X]NY

P
(]

Hence we have
O — @(nyyyzad(Z)'X /\Y) — G‘X,y»"z[/)(Z), {A(X), A(Y)H

By Whitehead’s vanishing theorem of cohomology group, there exists « € Hom ([, g) such
that

a([X,Y]) = 4[A(X), A(Y)].

By Jacobi’s identity, we have
-~ g r 1 ~ * 4 J X
Sxyzla([X,Y]), MZ)] = ; Sxyz[[AX), AY)], A(Z)] = 0.

By Whitehead’s vanishing theorem of cohomology group, there exists [' € Hom,([, g) such
that

[a(X), A(Y)] = T([X, Y)).
Since A is Yang-Mills, we have

73[1()() - ».11.Z[A([u‘i),(l(ll'f’i,X])]

n

5 Z[A(I«,’i),[A(la’i),/\(x)”
. »—»:A(X),
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where c¢ is the eigenvalue of the negative of the Casimir operator of (ad,l). Hence I' = A,
that is,

(X)), A(Y)] = A([X, Y)).

Hence we get (E1). We show « is a Lie homomorphism. From Jacobi’s identity, we have

Ha(x),a([Z W] = [a(X), [A(Z), AW)]
= {la(X), A(Z)], A(W)] + [A(2), [a(X), A(W))]
— (X, Z]), AW)] + [A(Z), [A(LX, WD)
rd(X, 21, W + [2,1X, W)
= ]”([Xv[sz]])-

Hence o« € Hom, (1, g) is a Lie homomorphism. So, if we put 6 = p —«, then p = a+é isa
decomposition of p. The curvature form € of A is given by Q(X,Y) = —36([X, Y]). Since
A is not flat, we have ¢ # 0. Hence we have (E2). Since [6(X),A(Y)] = 0, the curvature
form €, of A + t4 is given by

Q(X,Y) = 4':' Ls(x, v)).

Hence we have (E3).




2.4 An example

When p(l) does not contain any regular element of g or p(l) is not a regular subalgebra of
g, the (0)-connection is not necessarily a unique non-flat Yang-Mills invariant connection,
even if p is indecomposable. We show such an example. Put . = SU(m) for m > 3. We
define an Ad(L)-invariant inner product (,) on [ by

(X,Y)=—tr(XY) for X,Y €l

The inner product (,) naturally induces a Hermitian inner product (,) on [“. Put G =
SU([(') and p = Ad : L — (. In this case, p(I) does not contain any regular element of g.
We define an Ad(()-invariant inner product (,) on g by

m?—1
(A, By = S (AL, BE) for A Beg,

1=]

where {F;}<j<m2_1 is an orthonormal basis of . We define an invariant connection A €

Hom, (1, g) by

~ 2
(AGONY) = ————={(XY + Y X) — Ztr(XY)1n},
2v/m? + 4 m
where 1,, is the identity matrix (cf. [18]).
Remark 2.4.1 If m =2, then A =0. 1

Proposition 2.4.2 In this ezample, the conditions (D1), (D2) and (D3) in Remark 2.2.
3 are satisfied.

Proof: By simple calculation, we have Hom,(l,g) = Rp + RA (orthogonal direct sum).
This result and Corollary 2.2. 2 imply (D1).
The equations

m2—1 o5 ol m2—1 2 m2 — 1
J‘i) aia — = Ak, l”i — 7’7777”17”
> (15 X) = —2mX, Y
and
A, M), AC)W)
m
— - A X ,/
T M 2D W)
m

g (Y W)AX)Z — e (ZW)A(X)Y
—tr(YA(X)W)Z + tr(ZA(X)W)Y }

ol




implies that A is a non-flat Yang-Mills invariant connection. Hence we have (D2).
Put A(z,y) = £p+ yA and f(z,y) = 4||Q(z,y)||*, where Q(z,y) is the curvature form
of A(z,y). The equations
STllp(lE, EDIP = 4mP(m? — 1),
4

[ L s

m?2 + 4 ’
SIAE),AEE = ™
i\

m2(m? — 1)(m? — 4)

1(m? + 1)

implies that

B s Al . m? — 4
TR G TN S L a1y i .
f(z,y) =m*(m* —1) {4(.1 L 7 4),1/

2 )

m*—4 4 4 m* —4 5 ol

+ , Ty + —— — (2 — 1)y“ 3.
A 7 2(m? + ¢ )( 2z

1

Hence [ attains a local minimum at (0, 1). Hence we have (D3).
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