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Solving the nonlinear Ginzburg-Landau equations self-consistently we investigated the influence of surface
defects on the vortex penetration and expulsion in thin mesoscopic superconducting samples. The effect of the
number, size, and position of surface defects on the vortex entry and exit fields and on the entrance and exit
positions of the vortex are studied for very thin circular, square, and rectangular samples. For specific vortex
configurations we found that due to the interplay between the vortex-vortex repulsion and the vortex-defect
interaction, the vortex does not enter or leave the sample through the surface defect.
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I. INTRODUCTION

In the last decade, the study of vortex matter in finite
mesoscopic superconductors has attracted a lot of attention,
both theoretically and experimentallyssee, e.g., Refs. 1–7d. It
became generally known that metastable vortex states can
nucleate, which show up as an hysteresis effect at the tran-
sitions between different vortex states, i.e., during the pen-
etration and expulsion of vortices. This hysteresis effect is
due to the presence of a surface barrier.8 Theoretically, one
often considered perfect smooth samples, i.e., with no sur-
face defects, which leads to a maximum surface barrier and
maximum hysteresis effect.9 On the other hand, it is very
difficult to experimentally create a superconductor with a
perfectly smooth boundary and one should deal theoretically
with defects at the surface. These surface defects can act as
nucleation centers for vortex entry and exit, which decrease
the surface barrier. Therefore, we expect that the presence of
surface defects leads to higher expulsion fields and lower
penetration fields, and thus to a reduction of the hysteresis
effect and a reduction of the magnetic field region over
which the metastable states are stable. For this reason, a the-
oretical study of the effect of surface defects on vortex pen-
etration and expulsion is very important for a comparison of
the theoretical and experimental results.

During the last few years several theoretical studies were
performed where the influence of surface defects on the vor-
tex entry in bulk superconductors was investigated.10–13 In
bulk superconductors it is indeed found that the presence of
a surface defect leads to lower penetration fields and that the
stability region of the metastable states decreases.

Surface defects will play an even more pronounced role in
mesoscopic superconductors, due to the small size of their
boundary. In the present paper, we will investigate the effect
of surface defects in mesoscopic superconductors. We will
determine the effect of the number of surface defects, the
position of the surface defect, and the size of the surface

defect on the vortex expulsion and penetration. The path of
the enteringsor exitingd vortex with respect to the position of
the defect will be investigated for different shapes of the
superconducting sample.

We consider thin superconductors immersed in an insulat-
ing medium in the presence of a perpendicular uniform mag-
netic fieldH0. To solve this problem we follow the numerical
approach of Schweigert and Peeters.3,4 As for thin diskssd
!j ,ld averaging the GL equations over the disk thickness is
allowed. Using dimensionless variables and the London

gauge divAW =0 for the vector potentialAW , we write the system
of GL equations in the following form:

s− i¹W 2D − AW d2C = Cs1 − uCu2d s1d

− D3DAW =
d

k2dszd jW2D, s2d

where

jW2D =
1

2i
sC*¹W 2DC − C¹W 2DC*d − uCu2AW s3d

is the density of superconducting current. The superconduct-

ing wave function satisfies the boundary conditionss−i¹W 2D

−AW dCun=0 normal to the sample surface andAW

= 1/2H0reWf far away from the superconductor. Here the dis-
tance is measured in units of the coherence lengthj, the
vector potential inc" /2ej, and the magnetic field inHc2
=c" /2ej2=kÎ2Hc. The superconductor is placed in thesx,yd
plane, the external magnetic field is directed along thez axis,
and the indices 2D, 3D refer to two- and three-dimensional
operators, respectively.

For a more detailed discussion of the self-consistent solu-
tion of Eqs. s1d and s2d, we refer to Refs. 4 and 14. The
dimensionless Gibbs free energiessmeasured in units ofF0
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=Hc
2V/8pd of the different vortex configurations is given by

F = V−1E
V

f2sAW − AW 0d · jW2D − uCu4gdrW, s4d

where integration is performed over the sample volumeV

andAW 0 is the vector potential of the uniform magnetic field.

II. RESULTS

First we will concentrate on extremely thin superconduct-
ors, such that only the first GL equationfEq. s1dg has to be
solved and the magnetic field can be assumed to be homo-
geneous and equal to the external fieldH0. Later, we will
consider superconductors with finite thickness and investi-
gate the influence of such nonzero thickness on the vortex
penetration and expulsion in the presence of a surface defect
including effects due toHÞH0.

A. The effect of the number of surface defects and their
relative position for a superconducting disk

Figures 1sad and 1sbd show the free energy as a function
of increasing and decreasing applied magnetic field for a
superconducting disk with no surface defectsfsamplesidg by
thick solid curves and the same disk with different configu-
rations of surface defectsfsamplessii d–sivdg by thin curves.
The disk has radiusR=6.0j, the circular surface defects have
radiusRdefect=0.5j and are centered at the surface boundary.
The samples are shown in the insets. With increasing field
the change in vorticity at the first transition depends on the

number and positions of the surface defectsfsee Fig. 1sadg. In
a “perfect disk,” two vortices enter when the Meissner state
becomes unstable with increasing field. This can be seen
from the thick curve in Fig. 1sad, which shows that the vortex
state changes from the Meissner state with vorticityL=0 to a
vortex state with vorticityL=2 at H0/Hc2=0.307 with in-
creasing field. The two vortices will just enter opposite to
each other, because then the distance between the two vorti-
ces is maximum, and, thus, the repulsion is minimum. When
we add a surface defectfsample sii dg, the surface barrier
decreases at the defect position, which leads to an earlier
penetration of one vortex and a decrease of the penetration
field to H0/Hc2=0.227fsee the thin solid curve in Fig. 1sadg.
Adding a second defectfsamplessiii d and sivdg reduces the
penetration field toH0/Hc2=0.278 for samplesiii d and
H0/Hc2=0.280 for samplesivd. However, depending on the
position of the second defect, the number of vortices pen-
etrating the sample at the first transition can vary. When the
two defects are opposite from each otherfsamplesiii dg, two
vortices enter at the first penetration fieldfsee the dashed
curve in Fig. 1sadg, while for samplesivd only one vortex
enters. Notice that the penetration field is practically the
same for samplessii d–sivd, even for samplesiii d where two
vortices enter at once. With decreasing field the vortices
leave the sample one by onefsee Fig. 1sbdg for all sample
configurations. Notice that the presence of one or more sur-
face defects enhances the expulsion field, i.e., decreases the
hysteresis effect, with decreasing field. For example, theL
=1→0 transition occurs atH0/Hc2=0.029 for the perfect
samplesid, atH0/Hc2=0.057 for samplesii d with one surface
defect and atH0/Hc2=0.039 andH0/Hc2=0.057 for samples
siii d andsivd. Notice that for the ideal sample and for sample
siii d no two vortices are expelled at the same time.

Next, we will focus on the position where the vortices
enter or leave the sample during the transitions. When no
surface defects are present, there is no favorite position for
the vortex to enter or leave the superconductorssee, e.g.,
Ref. 15d. In the case of increasing field the two vortices enter
opposite from each other during the first transitionsL=0
→2d. How is the penetration/expulsion position influenced
by the presence of one or more defects?

Figures 2sad–2sdd show the free energy evolution during
the L=0→1, the L=1→2, the L=1→0, and theL=2→1
transition, respectively, for samplesii d of Fig. 1, i.e., a disk
with radius R=6.0j with one surface defect with radius
Rdefect=0.5j. The insets show the Cooper-pair density of the
vortex state. Insetsid is the metastable vortex state just before
the transition, insetsivd the metastable vortex state just after
the transition. Insetssii d andsiii d are the vortex states during
the transition at the iteration steps indicated by the symbols
in the main figure. These insets indicate where the vortex
enters or leaves the sample. Notice that the surface defect is
given by the black half dot in the figures.

With increasing field, the first vortex enters through the
defectfsee Fig. 2sadg. Just before the transition, the Cooper-
pair density has clearly the lowest value around the defect
finset sidg. Inset sii d shows the penetration of the vortex
through the defect. After the penetration this vortex moves
towards the center of the diskfinset siii dg. Due to the pres-
ence of the defect, the stability position of the vortex is not

FIG. 1. The free energy as a function ofsad increasing andsbd
decreasing applied magnetic field for a disk with radiusR=6.0j
with sid no surface defects,sii d one surface defect with radius
Rdefect=0.5j, andsiii d, sivd two surface defects. The insets show the
samples in more detail.
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exactly at the center but a little bit shifted in the direction
opposite to the defect, as can be seen from insetsivd. The
second vortex also enters through the defectfsee Fig. 2sbdg.
Due to the repulsion with the penetrating vortex, the vortex
in the center of the disk moves first a little bit towards the
disk boundary in the opposite direction of the penetrating
vortex finsetssii d, siii dg. Finally, the state stabilizes when the
two vortices are rotated overp /2, such that they are along
the diameter perpendicular to the defectfinset sivdg. Notice
that theL=2 state is a multivortex state at magnetic fields,
just above the expulsion field. As for the case of a disk with
no surface defect, the two vortices will move towards the
center with increasing field and finally they combine into a
giant vortex.15 The main difference due to the defect is that
the degeneracy decreases. In the case of a perfect disk, the
multivortex state withL=2 is infinitely degeneratedsi.e.,
with respect to the rotation of the multivortexd, while for the
disk with one surface defect the vortex configuration is
locked by the defect and the degeneracy is lifted.

With decreasing field, the last vortex leaves the sample at
H0/Hc2=0.057 through the defect as shown in Fig. 2scd. Just
before the transition the vortex is almost at the disk center
finsetsidg, then it moves towards the defectfinsetsii dg before
it leaves the sample through this defectfinset siii dg. Finally,
the state stabilizes again and the Meissner state is foundfin-
setsivdg. TheL=2→1 transition is more interestingfsee Fig.
2sddg. Just before the transitions, the two vortices are very
close to the disk boundaryfinsetsidg. Instead of rotating over
p /2, such that one vortex can leave through the defect, the
vortex molecule stays along the same direction and the vor-
tex leaves the sample not through the defectfinsetsii dg. This
explains why theL=2→1 expulsion field is the same as for
the sample without defects. After the expulsion, the remain-
ing vortex moves towards the centerfinset siii dg and finally
the stableL=1 state is foundfinset sivdg.

Next, we study the vortex penetration and expulsion when
two surface defects are present. To reduce the amount of

figures, we will restrict our discussion to the contour plots,
which clearly show where the vortices enter or leave the
sample during the iteration process. Figures 3sad–3scd show
those contour plots of the Cooper-pair density for theL=0
→2, theL=2→1, and theL=1→0 transition in a supercon-
ducting disk with radiusR=6.0j with two surface defects
with radiusRdefect=0.5j, which are located opposite to each
other fsamplesiii d of Fig. 1g. With increasing field two vor-
tices enter at the first transition fieldssee also Fig. 1d. Figure
3sad shows that the penetration of the two vortices occurs
simultaneously through both defects. After the penetration
the two-vortex molecule rotates overp /2 as was observed in
Fig. 2sbd. On the other hand, the expulsion of the vortices is
one by one, but the vortices do not always leave the sample
through one of the defects. TheL=2→1 transition is very
similar to the one for the one defect situation, which explains
why their expulsion fields are the same. The vortices do not
rotate first so that the expulsion is not through a defectfsee
Fig. 3sbdg. The last vortex leaves the sample through one of
the defects with decreasing fieldfsee Fig. 3scdg. Figures
3sdd–3sgd show the contour plots of the Cooper-pair density
for the L=0→1, the L=1→2, the L=2→1, and theL=1
→0 transition in samplesivd of Fig. 1. At the first transition,
the first vortex enters the disk through one of the defects with
increasing fieldfsee Fig. 3sddg. Also the second vortex enters
the disk through one of the defectsfFig. 3sedg. After the
vortex entry, the two vortices rotate over −p /4 and the two-
vortex state stabilizes. With decreasing field, the vortex mol-
ecule rotates overp /4 during theL=2→1 transition and the
last but one vortex leaves the sample through one of the
defectsfFig. 3sfdg. Also the last vortex leaves the supercon-
ductor through one of the two defectsfsee Fig. 3sgdg.

So far, we have studied the influence of one or more de-
fects on the transition fields and the position of the vortex
entry and exit in a superconducting disk with radiusR
=6.0j with defects with radiusRdefect=0.5j. We found that
the hysteresis effect decreases, i.e., the penetration field de-

FIG. 2. The free energy evolu-
tion during sad the L=0→1, sbd
the L=1→2, scd the L=1→0,
andsdd theL=2→1 transition, re-
spectively, for samplesii d of Fig.
1. Insetsid is the Cooper-pair den-
sity of the metastable vortex state
just before the transition, insetsivd
the one of the metastable vortex
state just after the transition. In-
sets sii d and siii d are the vortex
states during the transition at the
iteration steps indicated by the
symbols in the main figure. High
slowd Cooper-pair density is given
by dark swhited regions.
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creases and expulsion field increases, when surface defects
are introduced. The number of vortices entering during the
same transition can be influenced by the presence of surface
defects. Also, the entry or exit positions of the vortices de-
pend on the presence of surface defects. However, all these
conclusions partially depend on the size of the sample and
the size of the defect. To illustrate this, we calculated in Fig.
4 the free energy with increasing field for the same sample
configurations as above, but now we took the disk radiusR
=3.0j, while we kept the defect radius the same, i.e.,
Rdefect=0.5j. In a perfect sample with no surface defectsssee
the thick solid curved, the vortex state changes at the first
transition from the Meissner state to the two-vortex state,
just as in the case of the larger sample. For one surface
defect, the state transits again from the Meissner state to the
L=1 statessee the thin solid curved. When we add a second
defect opposite to the first onefsamplesiii dg, the situation is

different from the larger sample case. Now, only one vortex
enters during the first transitionssee the dashed curved. The
reason is probably that the repulsion between the two vorti-
ces is too strong to penetrate together, because they are too
close to each other. For samplesivd we find a similar behav-
ior as for larger samples. Only one vortex enters during the
first transitionssee the dashed-dotted curve in Fig. 4d. Notice
further that the free energy decreases when the number of
defects increases, which is due to the decrease in the effec-
tive superconducting area.

So far, we have investigated the penetration and expulsion
of vortices at low fields, when only a few vortices are present
in the disk. Next, we will study the effect of a surface defect
on the vortex penetration and expulsion at higher fields and
vorticities. Figure 5 shows the free energy as a function of
the magnetic field for a disk with radiusR=6.0j with no
surface defectssdashed curvesd and one surface defect with

FIG. 3. The Cooper-pair density of the vortex configuration dur-
ing sad the L=0→2, sbd the L=2→1, andscd the L=1→0 transi-
tion in samplesiii d of Fig. 1, andsdd the L=0→1, sed the L=1
→2, sfd theL=2→1, andsgd theL=1→0 transition in samplesivd
of Fig. 1. High slowd Cooper-pair density is given by darkswhited
regions.

FIG. 4. The free energy as a function of increasing magnetic
field for a disk with radiusR=3.0j with sid no surface defects,sii d
one surface defect with radiusRdefect=0.5j, and siii d, sivd two sur-
face defects.

FIG. 5. The free energy as a function of the magnetic field for a
disk with radiusR=6.0j with no surface defectssdashed curvesd
and one surface defect with radiusRdefect=0.5j ssolid curved when
increasingsupper curvesd and decreasingslower curves, shifted
over −0.2F0d the magnetic field.
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radius Rdefect=0.5j ssolid curved. By introducing a surface
defect, the penetration fields decrease and the vorticity
changes always by 1 at the transitions. When decreasing the
magnetic field, the expulsion fields increase due to the sur-
face defect and the vortices leave the sample one by one.
Notice that in the perfect disk two vortices may enter or
leave simultaneously.

Next we investigate the vortex entry and exit positions at
higher fields. Do the vortices penetrate or exit the sample
through the defect? Figure 6 shows the vortex entry and exit
positions in the disk with a circular defect of Fig. 5. Figures
6sad–6sfd show the entry positions for theL→L+1 transi-
tions withL=2, 3, 4, 5, 6, and 12. ForL=2, 3, 4 the vortices
enter through the defect, just as we found in Figs. 2sad and
2sbd for the L=0→1 and theL=1→2 transition. On the
other hand, the vortex does not enter through the defect dur-
ing theL→L+1 transition whenLù5. TheL=5→6 transi-
tion is shown in Fig. 6sdd. The vortex does not enter through
the defect, but also not at the position opposite to the defect.
For Lù6 the vortex always enters the disk at the position
opposite to the defect, regardless of the fact of whether the
initial state is a multivortex or a giant vortex state. Figure
6sed shows theL=6→7 transition where the initial state is a
multivortex state and Fig. 6sfd the L=12→13 transition
where theL=12 state is a giant vortex state.

With decreasing field, the vortex leaves the sample
through the defect during theL=1→0 transition and not
through the defect during theL=2→1 transitionfsee Figs.

2scd and 2sddg. At higher fields, we find that the vortex exit
never happens through the defect. The reason is that in the
initial state the vortices are locked by the defect in such a
way that the defect is always exactly situated in between two
vortices due to the repulsion with the external magnetic field.
With decreasing field, the vortex lattice does not rotatesbe-
cause it is fixed by the defectd and one vortex just moves in
radial direction towards the sample boundary where it leaves
the sample. This can be seen from Figs. 6sgd–6sld where the
exit positions are shown for theL→L−1 transitions withL
=3, 4, 5, 6, 7, and 18.

B. Surface defects in superconducting thin squares and
rectangles

Next, we consider square superconductors and we inves-
tigate the effect of the surface defect position with respect to
the corners. Figures 7sad and 7sbd show the free energy as a
function of increasing and decreasing magnetic field for a
square superconductor with sides equal toW=6j without a
defectssolid curvesd, with a surface defect in the middle of
one of the sidessdashed-dotted curvesd and with a surface
defect in a corner of the square samplesdashed curvesd. All
the defects are circular and have a radius equal toRdefect
=0.5j. For the case without surface defects the vorticity in
such a square with sideW=6j changes by one at the first
transition fieldH0/Hc2=0.612, i.e., the state transits fromL
=0 to L=1 fsee the solid curve in Fig. 7sadg. By introducing
a defect in the middle of one of the sides the first penetration
field, where one vortex enters, decreases toH0/Hc2=0.588.
A defect on the corner hassalmostd no effect on the penetra-
tion field. The vortex enters through the middle of a sidessee
also belowd and this is too far away from the corner to feel
the effect of a defect there. The expulsion of the vortices
occurs one by onefsee Fig. 7sbdg. A defect in one of the
corners increases slightly the expulsion field, while a surface
defect in the middle of a side increases the expulsion field
more significantly. Figures 7scd and 7sdd show the same as
Figs. 7sad and 7sbd, but now for a square with sides equal to
W=12j. In such larger squares several vortices can penetrate
simultaneouslyfsee Fig. 7scdg. For the square without sur-
face defects, two vortices enter at the first transition field,
like in the circular disk case. Here, of course, a defect in the
corner does again not influence the transition, because it is
even further away from the penetration position of the vorti-
ces as it was for smaller squares. On the other hand, a defect
in the middle of one of the sides decreases the first penetra-
tion field substantially and also changes the number of vor-
tices entering the superconductor. The vortices enter one by
one, i.e., the simultaneous penetration of more vortices is no
longer found, because the defect introduces a preferential
nucleation site for vortex entry. With decreasing field, the
vortices leave one by one in all casesfFig. 7sddg.

Next we focus on the position of the vortex entry and exit
in the systems of Figs. 7scd and 7sdd, i.e., a superconducting
square with sides equal toW=12j with no defect, a circular
defect with radiusRdefect=0.5j in one of the corners, and
such a defect in the middle of one of the sides. Figure 8 gives
the contour plots of the Cooper-pair density for the vortex

FIG. 6. The Cooper-pair density of the vortex configuration in a
disk with radius R=6.0j with one surface defect with radius
Rdefect=0.5j during theL→L+1 transition forsad L=2, sbd L=3,
scd L=4, sdd L=5, sed L=6, andsfd L=12, and during theL→L
−1 transition forsgd L=3, shd L=4, sid L=5, sjd L=6, skd L=7, and
sld L=18. High slowd Cooper-pair density is given by darkswhited
regions.
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states during the vortex penetration or expulsion in such a
squares. In a perfect square two vortices enter opposite to
each other during the first transitionfsee Fig. 8sadg. When a
surface defect is introduced in the middle of one of the sides,
only one vortex enters at the first penetration fieldfsee Fig.
7scdg. From Fig. 8sbd it is clear that this vortex enters through
the defect. Also the second vortex enters through the defect
at the next penetration fieldfFig. 8scdg. Notice that the stable
vortex configuration forL=2 is a multivortex state where the

two vortices are situated along one of the two diagonals. So,
after the penetration of the second vortex, the vortex mol-
ecule will rotate until the state stabilizes with two vortices
along one of the two diagonals. The two possible states with
vortices along the diagonals have exactly the same free en-
ergy, because the distances from the vortices to the defect are
the same in both cases. For a defect in the corner, two vor-
tices enter at the same penetration field, i.e.,H0/Hc2=0.223
through the middle of two opposite sidesfsee Figs. 8sdd and
8sedg. Notice that the two figuresfsee Figs. 8sdd and 8sedg
may suggest that the two vortices do not penetrate simulta-
neously, i.e., at the same magnetic field. This is not the case.
The two vortices do penetrate at the same magnetic field
H0/Hc2=0.223 as is clear from Fig. 7scd, but not at the same
iteration step in our numerical process.

Figures 8sfd and 8sgd give the expulsion of the vortices
from the perfect square. The last but one vortex leaves
through the center of one of the sidesfFig. 8sfdg. In the stable
two-vortex state, the two vortices are situated along the di-
agonal. During the transition, the two vortices first rotate
over p /4 and then one of the vortices leaves through the
middle of one of the sides. Also, during theL=1→0 transi-
tion the vortex leaves the superconductor through the center
of one of the sidesfFig. 8sgdg. When a defect is introduced in

FIG. 7. The free energy as a function of increasing and decreas-
ing magnetic field forsad,sbd a square with sizeW=6j and scd, sdd
a square with sizeW=12j with no surface defectssolid curved, a
surface defect in the corner of the squaresdashed curved, and one in
the middle of one side of the squaresdashed-dotted curved. The
surface defect has radiusRdefect=0.5j.

FIG. 8. Contour plots of the Cooper-pair density of the vortex
state during the vortex penetration or expulsion in a square with
width W=12j and for defects with radiusRdefect=0.5j. sad The L
=0→2 transition in a perfect square sample,sbd the L=0→1, and
scd theL=1→2 transition in a square with a defect in the middle of
one of the sides,sdd, sed the L=0→2 transition in a square with a
defect in one of the corners,sfd the L=2→1 andsgd the L=1→0
transition in a perfect square,shd the L=2→1 and sid the L=1
→0 transition in a square with a defect in the middle of one of the
sides,sjd the L=2→1, andskd the L=1→0 transition in a square
with a defect in one of the corners. Highslowd Cooper-pair density
is given by darkswhited regions.

BAELUS, KADOWAKI, AND PEETERS PHYSICAL REVIEW B71, 024514s2005d

024514-6



the middle of one of the sides the last but one vortex leaves
through the center of a sidefFig. 8shdg, and the last vortex
leaves through the defectfFig. 8sidg. For a defect in the cor-
ner, the two vortices leave through the center of a sidefFigs.
8sjd and 8skdg and not through the defect.

Now, we will examine in more detail the effect of the
surface defect position for a square superconductor with
sides equal toW=6j. In Fig. 9 phase diagrams are given
wherea is the distance between the middle of the side and
the center of the defect.a is varied froma=0, i.e., the middle
of the side, toa=3j, i.e., the corner of the square. The thick
curves in the figures indicate the ground state transitions. The
thinner curve on its left side indicate the expulsion field, the
one on its right side is the penetration field. The very thick
solid curve at the right side of the figure is the
superconducting/normal transition field. In an effort to make
the figure more clear we used solid curves forL↔L+1 tran-
sitions whenL is odd and dashed curves whenL is even. We
also add arrows that indicate which penetration and expul-
sion field belongs to which transition. In Fig. 9sad we con-

sidered a defect with radiusRdefect=0.25j, while in Fig. 9sbd
the defect radius equalsRdefect=1.0j. From Fig. 9sad we can
conclude that the position of a small defect along the surface
has only a small effect on the ground state transition fields.
The effect on the expulsion field and the penetration field is
a little bit larger but also not very striking. Also the
superconducting/normal transition seems to besalmostd in-
sensitive to the position of the defect. For larger defectsfsee
Fig. 9sbdg, the influence of the defect position on the transi-
tion fields is more pronounced. A clear increase of the size of
the hysteresis is found with increasinga and this increase is
largest fora=j.

Notice that the difference between the thermodynamic
transition field and the field for vortex penetration, i.e.,
Hpenetration−Hthermodynamic, is smaller than the similar one for
vortex expulsion, i.e.,Hthermodynamic−Hexpulsion, indicating that
the barrier for vortex entry is smaller than the barrier for
vortex expulsion. This is the case both forRdefect=0.25j fFig.
9sadg and forRdefect=1.0j fFig. 9sbdg.

Next, we will investigate the vortex penetration and ex-
pulsion in rectangular samples. Is the vortex entry and exit
the same for a surface defect in the middle of the long or the
short side? Figures 10sad and 10sbd show the free energy for
increasing and decreasing magnetic field for a superconduct-
ing rectangle with no surface defectsssolid curved, with a

FIG. 9. a−H0-phase diagram for a square withW=6j, wherea
is the displacement of the defect from the center of the side andH0

the applied magnetic field. The thick curves are the ground state
transitions. The thinner curve on the rightsleftd side from this curve
is the penetrationsexpulsiond field. The L↔L+1 transitions are
given by solid curvessdashed curvesd when L is odd sevend. The
radius of the circular defect isRdefect=0.25j in sad and Rdefect

=1.0j in sbd.

FIG. 10. The free energy as a function ofsad the increasing
magnetic field andsbd the decreasing magnetic field for a supercon-
ducting rectangle with sides equal to 12j and 24j with no defect
ssolid curved, with a defect at the middle of the short sidesdashed
curved and one in the middle of the long sidesdotted curved.
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defect in the middle of the long sidesdotted curvesd and with
one in the middle of the short sidesdashed curvesd. The
rectangle consists of long sides equal to 24j and short sides
equal to 12j. The circular surface defect has radiusRdefect
=0.5j. In Figs. 11sad–11sfd contour plots of the Cooper-pair
density are given for the vortex states during the first two
transitions with increasing field for the three sample configu-
rations and in Figs. 11sgd–11sld the ones during the last two
transitions with decreasing field.

In a perfect rectangle, i.e., one without surface defects, the
vortices enter at the middle of the long sides two by two. The
reason is that the Cooper-pair density along the surface is
lowest at this position which makes it the most favorable
position for vortices to enter.16 Therefore, for the case of a
rectangle without surface defects, the vorticity changes by
two, i.e., L=0→2→4 fsee the solid curve in Fig. 10sadg.
From Figs. 11sad and 11sbd it is clear that the first two vor-
tices enter from the middle of the long side at the first tran-
sition field, and the next two vortices do the same at the
second transition field.

A defect in the middle of the short side does not influence
the first transition. The penetration field is the same as the
one for the “perfect” rectangle and also the change in vortic-
ity is the samefsee Fig. 10sadg. The defect is too far away
from the most favorable entry positions of the vortices, i.e.,
the middle of the long sides. Figure 11scd shows the Cooper-
pair density during the first penetration. It is clear that the
first two vortices enter from the middle of the side. The
second penetration field decreases by adding a surface defect
in the middle of the short side and the vorticity changes now
from L=2 to L=3 fsee Fig. 10sadg. The difference with the
first transitionsfrom L=0 to L=2d is that now two vortices

are present near the center of the squarefsee Fig. 11sddg. The
repulsion between the vortices makes that the penetration is a
little bit more difficult from the middle of the long side.
Now, the surface defect acts as an easier place for penetra-
tion and the third vortex enters through the middle of the
short side where the defect is locatedfsee Fig. 11sddg.

A defect in the middle of the long side of the rectangle
leads to a reduction of the first penetration fieldfsee Fig.
10sadg. Moreover, only one vortex enters when the Meissner
state becomes unstable. The surface defect is introduced at
the entering position of the vortices. Therefore, just one vor-
tex enters during the first penetration. This is also shown in
Fig. 11sed. Also during the second penetration, only one vor-
tex enters and the vorticity changes fromL=1 to L=2 fsee
Fig. 10sadg. Remarkably, the second vortex does not enter
through the defect. Due to the presence of the first vortex in
the center of the rectangle, four new preferable entry posi-
tions for vortices are created along the two long sides as can
be seen from Fig. 11sfd. The second vortex enters through
one of these preferable positions instead of through the de-
fect which is quite close to the vortex and the entering vortex
is therefore repelled by this vortex.

With decreasing field the vortices leave the sample one by
one for the three considered samples as can be seen from Fig.
10sbd. The exit positions of the vortices are clear from Figs.
11sgd–11sld. In a perfect rectangle, the last but one vortex
leaves the sample through the center of the short side and the
last vortex through the middle of the long sidefsee Figs.
11sgd and 11shdg. Introducing a small defect in the middle of
the short side does not influence the exit positions of the
vorticesfsee Figs. 11sid and 11sjdg. However, since the defect
is introduced at the preferable exit position of the last but one

FIG. 11. Contour plots of the Cooper-pair density of the vortex state during the vortex penetration or expulsion in the rectangular samples
of Fig. 10. sad,sbd the L=0→2 and theL=2→4 transition in a perfect rectangle,scd, sdd the L=0→2 and theL=2→3 transition in a
rectangle with a defect in the short side,sed, sfd theL=0→1 and theL=1→2 transition in a rectangle with a defect in the long side,sgd, shd
the L=2→1 and theL=1→0 transition in a perfect rectangle,sid, sjd the L=2→1 and theL=1→0 transition in a rectangle with a defect
in the short side, andskd, sld the L=2→1 and theL=1→0 transition in a rectangle with a defect in the long side. Highslowd Cooper-pair
density is given by darkswhited regions.
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vortex in a perfect rectangle, i.e., the middle of the short
side, theL=2→1 expulsion moves to higher fields as can be
seen from Fig. 10sbd. The L=1→0 expulsion field is not
influenced since the defect is too far away from the prefer-
able exit position in the middle of the long side. On the other
hand, introducing a small defect in the middle of the long
side does influence the exit positions of the vorticesfsee
Figs. 11skd and 11sldg. Now, the last but one vortex leaves the
sample not through the middle of the short side, but prefers
to leave it through the long side. The last vortex leaves the
sample through the defect which is located at the preferable
exit position of the last vortex in a perfect triangle. The in-
fluence of adding the defect at this position is that theL=1
→0 expulsion field moves to higher fieldsfsee Fig. 10sbdg.

C. The effect of the defect size

We also investigated the influence of the size of the sur-
face defect on the transition fields. Figure 12 shows a phase
diagram whereRdefect is the radius of the circular surface
defect in the middle of one of the sides of the square with
sides equal to 6j. We used the same conventions as in Figs.
9sad and 9sbd. The influence of the defect size is much more
pronounced than the one of the defect position and the effect
is larger for largeL states. All the ground-state transition
fields and the superconducting/normal transition field in-
crease with increasing defect size. In general, the expulsion
field increases much more than the penetration field with
increasing defect size, such that the hysteresis effect de-
creases. The increase of theS-N field is a consequence of the
smaller overall size of the superconductor. It is well known
that the superconducting state is stabilized near edges and in
small superconductors.17

D. The effect of the finite thickness of the superconductor

We investigate the effect of the nonzero sample thickness
on the penetration and expulsion of vortices. In this case we

can not neglect the second Ginzburg-Landau equations2d
that describes the bending of the magnetic field lines around
the superconductor. This means that we have to solve the
complete set of nonlinear Ginzburg-Landau equations as de-
scribed above.

As an example, we consider superconducting disks with
radiusR=3.0j for Ginzburg-Landau parameterk=0.28. Fig-
ures 13sad and 13sbd show the free energy for such a disk
with increasing and decreasing field, respectively, for three
values of the thickness, i.e.,d=0.005j slower curvesd, d
=0.1j smiddle curves, displaced over 0.2F0d, and d=0.2j
supper curves, displaced over 0.4F0d. The free energy for the
disk without surface defects is given by solid curves, the one
for the disk with one circular surface with radiusRdefect
=0.25j and 0.5j is given by dashed and dashed-dotted
curves. With increasing thickness, the hysteresis effect and,
hence, the stability region of the metastable states increases
in all cases. The penetration field increases significantly,
while the change in expulsion field is much smaller. Previ-
ously, we found similar behavior in the case of superconduct-
ing rings.18 The expulsion of the magnetic field is much more
efficient in thicker superconductors due to the larger screen-
ing currents. From Fig. 13sbd it is clear that the effect of a
surface defect on the vortex expulsion does not significantly

FIG. 12. Rdefect−H0-phase diagram for a square withW=6j,
whereRdefectis the size of the surface defect in the center of the side
andH0 the applied magnetic field. The thick curves are the ground-
state transitions. The thinner curve on the rightsleftd side from this
curve is the penetrationsexpulsiond field. TheL↔L+1 transitions
are given by solid curvessdashed curvesd whenL is odd sevend.

FIG. 13. The free energy for a superconducting disk with no
surface defectsssolid curvesd and with one surface defect with ra-
dius 0.25j sdashed curvesd and 0.5j sdashed-dotted curvesd as a
function of sad the increasing andsbd the decreasing magnetic field
for three values of the sample thickness, i.e.,d=0.005j slower
curvesd, d=0.1j smiddle curves, displaced over 0.2F0d, and d
=0.2j supper curves, displaced over 0.4F0d.
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changes with a change in the thickness of the sample. The
change in the penetration field is much more pronounced
when the thickness of the sample increases and even may
lead to a delay of the vortex penetration when a defect is
presentfsee Fig. 13sadg. Both the expulsion and the penetra-
tion field may move to higher fields due to the presence of a
defect, but the total hysteresis effect decreases in general due
to the defect. Taking into account a finite sample thickness
does not significantly change the effect of the defect on the
transition fields. Therefore, we expect that the trends shown
in our previous results ford/j!1 stay valid for thin super-
conductors with a finite thickness.

III. SUMMARY AND CONCLUSIONS

In the first part of the present paper we concentrated on
extremely thin superconductors, such that only the first GL
equationfEq. s1dg has to be solved and the magnetic field can
be assumed to be homogeneous and equal to the external
field, also inside the sample. We studied the effect of the
number of surface defects on the vortex penetration and ex-
pulsion in mesoscopic superconducting disks. The presence
of one or more defects decreases the penetration field and
enhances the expulsion field in general. With increasing field,
the number of vortices simultaneously entering the sample
also depends on the presence and the positions of the surface
defects. With decreasing field, the vorticity changes always
by one unit at the expulsion fields. We found that with in-
creasing field the defect acts as a preferable position for vor-
tices to enter, while with decreasing field the vortices leave
the sample in several cases not through the defect. At higher
fields, we found that the vortices do not enter or exit through
the surface defect, due to the interplay between the vortex-
vortex repulsion and the vortex-defect interaction.

Next, we investigated the effect of the position of the
surface defect on the vortex penetration and expulsion in thin
mesoscopic squares. We found that a surface defect in the
corner of the square has less influence on the penetration and
expulsion fields, than a defect in the middle of the side. This
is explained by the fact that the corner is too far away from

the preferable entry or exit positions for the vortices. The
penetration and exit positions for vortices are not influenced
by a defect in the corner, while they are effected by a defect
in the middle of a side. It is also found that in the latter case
the vortices enter and exit one by one. We constructed phase
diagrams which showed the influence of the position of the
surface defect in a square sample. For small defects the ef-
fect is very weak, while the position of a larger defect plays
a more important role. We also studied rectangular samples
where we compared the effect of a defect in the middle of the
short or the long side of the rectangle. Defects on the long
side of the rectangle have a more pronounced effect on the
vortex expulsion and penetration, because they act more ef-
fectively as nucleation centers for vortex entry and expul-
sion. However, in both cases the vortex entry and exit posi-
tions are influenced by the defects.

We constructed a phase diagram which showed the effect
of the defect size on the transition fields. In general, we
found that the influence of the defect size on the transition
fields is much more pronounced than the influence of the
defect position.

In the last part, we investigated the effect of the nonzero
sample thickness on the penetration and expulsion of vorti-
ces. In this case we solved the complete set of Ginzburg-
Landau equationss1d–s3d. We found that a change in the
thickness of the sample does not significantly changes our
conclusions on the effect of surface defects on vortex pen-
etration and expulsion.

With this study, we showed clearly that the spatial posi-
tion and the magnetic field for vortex entry and exit can be
engineered through the introduction of surface defects in a
sample. The size and exact location of these surface defects
are important.
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