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We calculate theO(g2a) mixing coefficients of bilinear quark operators in lattice QCD using a standard
perturbative evaluation of on-shell Green’s functions. Our results for the plaquette gluon action are in agree-
ment with those previously obtained with the Schro¨dinger functional method. The coefficients are also calcu-
lated for a class of improved gluon actions having six-link terms.@S0556-2821~98!09621-0#
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I. INTRODUCTION

Symanzik’s improvement program@1# applied to on-shell
quantities@2# attempts to eliminate cut-off dependence order
by order by an expansion in powers of the lattice spacinga.
To O(a) in lattice QCD, this requires adding theO(a) ‘‘clo-
ver’’ term to the Wilson quark action@3#. Quark operators
also have to be modified byO(a) counterterms, which gen-
erally involve new operators of higher dimension@4–6#. In
perturbation theory, the tree-level value of the clover coeffi-
cient and those of the counterterms of quark operators can be
easily determined. They are sufficient to remove terms of
O(g2a log a) in on-shell Green’s functions evaluated at one-
loop order, as has been explicitly demonstrated in Ref.@4#.
To removeO(g2a) terms which still remain, the counterterm
coefficients for quark operators have to be corrected by
O(g2a) terms. For bilinear quark operators, these coeffi-
cients have been calculated in Refs.@7–9# using the Schro¨-
dinger functional technique.

In this article we analyze theO(g2a) coefficients of bi-
linear quark operators through a standard perturbative treat-
ment of on-shell Green’s functions of the operators. One-
loop amplitudes with external quarks on the mass shell are
expanded in powers ofqa and mRa, with q the external
momenta andmR the renormalized quark mass, which leads
to an alternative determination of the coefficients. Applying
the procedure for the standard plaquette gluon action, we
obtain results which are in agreement with those of Refs.
@7–9#.

Another application of our procedure is a calculation of
the coefficients for gluon actions improved by an addition of
six-link loop terms to the plaquette action. We treat three
cases: the action@10# which is tree-level improved in Syman-
zik’s sense toO(a4), and two types of actions@11,12# im-
proved by a renormalization-group treatment. The results
should be useful in simulations employing improved actions
for gluons.

This paper is organized as follows. In Sec. II we define
bilinear quark operators examined in this article, and write
down renormalization relations between the renormalized

and bare operators. Analysis of one-loop amplitudes are car-
ried out in Sec. III. Numerical results for the coefficients and
a comparison with previous work are made in Sec. IV. We
close with some concluding remarks in Sec. V.

II. CLOVER QUARK ACTION AND BILINEAR
QUARK OPERATORS

Consider the clover quark action defined by

Squark5a3(
n

1

2 (
m

„c̄n~2r 1gm!Un,mcn1m̂

1c̄n~2r 2gm!Un2m,m
† cn2m̂…

1~am014r !c̄ncn

2cSWa3(
n

(
m,n

ig
r

4
c̄nsmnPmn~n!cn . ~2.1!

We wish to construct a renormalized bilinear quark operator
of the form

O R
G5~ c̄cGcc!R , G51,g5 ,gm ,gmg5 ,smn ~2.2!

which is improved toO(a) to one-loop order of perturbation
theory, i.e., on-shell matrix elements of the operator have no
errors ofO(a), O(g2a log a) or O(g2a) when a→0 with
external momenta and the renormalized quark massmR kept
fixed.

Our starting point is the tree-level improved operator of
the form

O5c̄cGcc , ~2.3!

where the rotated quark fieldscc and c̄c are given by

cc5F12
ar

4
~gmDW m2m0!Gc, ~2.4!
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c̄c5c̄F12
ar

4
~2gmDQ m2m0!G ~2.5!

with the covariant derivative defined as

aDW mc~x!5
1

2
@Um~x!c~x1m̂ !2Um

† ~x2m̂ !c~x2m̂ !#,

~2.6!

ac̄~x!DQ m5
1

2
@c̄~x1m̂ !Um

† ~x!2c̄~x2m̂ !Um~x2m̂ !#.

~2.7!

It has been demonstrated in Ref.@4# that this operator is
on-shell improved toO(a) andO(g2a log a) with the tree-
level value of the clover coefficientcSW51. It has been
noted furthermore that the field rotation can be generalized
by using the equation of motion (D” 1m0)c50 to

cc5F12
ar

2
„zgmDW m2~12z!m0…Gc, ~2.8!

c̄c5c̄F12
ar

2
„2zgmDQ m2~12z!m0…G ,

~2.9!

wherez is a parameter. We then consider a generalized op-
erator given by

O 0
G5@11ar~12z!m0#c̄Gc1zc̄G ^c2z2c̄G8c,

~2.10!

whereG ^ andG8 areO(a) andO(a2) vertices defined as

G ^ 5
ar

2
~gmDQ mG2GgmDW m!, ~2.11!

G85
a2r 2

4
gnDQ nGgmDW m . ~2.12!

The one-loop relation expected between the bare operator
~2.10! and the renormalized improved operator~2.2! has the
form

O 0
G5ZG

21O R
G2g2CFamRBGO R

G2g2CFaCGÕR
G ,

~2.13!

whereCF denotes the second-order Casimir eigenvalue for
the quark field, and the last two terms are needed to remove
O(g2a) errors from on-shell matrix elements, withÕR

G a
dimension 4 operator with derivative. In a previous paper
@13# we have evaluatedZG for a class of improved gluon
actions. Our task now is to generalize the analysis to~i!
check that there are noO(g2a log a) errors with the operator
~2.10!, and ~ii ! determine theO(g2a) coefficientsBG and
CG . In the following we set the Wilson parameterr 51.

III. ANALYSIS OF ONE-LOOP AMPLITUDES

The structure of one-loop diagrams relevant for our analy-
sis is depicted in Fig. 1 where we indicate our momentum
assignment. We calculate the corresponding amplitudes in
Feynman gauge imposing the on-shell condition to external
momenta, i.e., setting2 ip” 81mR50 and ip”1mR50 when
such a factor appears to the left-most or right-most in the
amplitudes. The renormalized massmR , as explicitly defined
below, coincides with the on-shell mass toO(a2). We note
that the bare quark massm0 enters in the field rotation~2.9!
of the bare operator, where we make use of the tree-level
equation of motion.

The vertex function in momentum space calculated to
one-loop order has the form

GG5@11am0~12z!#G

1za
1

2
~ ip” 8G2G ip” !1g2CF@11am0~12z!#TG

1g2CFzTG ^2g2CFz2TG8 , ~3.1!

whereG represents the tree level contribution,TG , TG ^ and
TG8 are one-loop contributions from the verticesG, G ^ and
G8.

A problem in extractingO(a) terms of the one-loop con-
tributions is that they are infrared divergent for on-shell ex-
ternal momenta. We treat this problem by supplying a mass
l to the gluon propagator. The one-loop amplitudes, being
functions ofpa, p8a, mRa, andla, are then finite, which
we expand aroundpa5p8a50 and mRa50, keepingla
finite. For this procedure to be justified, infrared divergences
which remain in the vertex functionGG after wave function

FIG. 1. Structure of one-loop diagrams for bilinear quark opera-
tor ~2.10!.
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renormalization should coincide with those in the continuum.
We check this point explicitly below.

As a first step to extractO(a) terms, we expand one-loop
contributions in terms of external momenta. Under the on-
shell condition theO(a) term can be written in two alterna-
tive forms, i.e.,

T~G,G ^ ,G8!5V
~G,G ^ ,G8!

1
G1v ~G,G ^ ,G8!

1
iaqm

1G̃m
1 , ~3.2!

5V
~G,G ^ ,G8!

2
G1v ~G,G ^ ,G8!

2
iaqm

2G̃m
2 ,

~3.3!

where qm
65pm8 6pm , and qm

6G̃m
6 is a dimension-4 operator

vertex with the same quantum number asG as listed in Table
I for each G. The on-shell identities which relate the two
forms are given by

2 iqm
1g51 iqn

2smng512mRgmg550, ~3.4!

2 ismnqn
11 iqm

222mRgm50, ~3.5!

qm
2gmg55qm

1gm50, ~3.6!

qm
1gmg512imRg550, ~3.7!

qm
2gm12imR50, ~3.8!

pr8~srmgn2srngm!2pr~gmsnr2gnsmr!

1~qm
1gn2qn

1gm!14imRsmn50. ~3.9!

We choose to work withqm
1G̃m

1 and drop the1 suffix. The
momentumqm

15qm represents the momentum transfer at the
operator vertex. We observe from the identities above and

Table I thatqm
1G̃m

1 actually vanishes by the on-shell condi-
tion for the scalar and pseudo scalar operators. Substituting
the expansion~3.3! into ~3.1!, we obtain

GG5@11am0~12z!1zamR#G1g2CF@11am0~12z!#

3~VGG1vGiaqmG̃m!1g2CFz~VG ^G1vG ^ iaqmG̃m!

2g2CFz2~VG8G1vG8iaqmG̃m!. ~3.10!

As a second step, we expand the one-loop amplitudes
V(G,G ^ ,G8) in terms of the lattice spacinga multiplied by the
renormalized quark massmR . This leads to

VG5
h2~G!

4
L1VG

~0!1amRVG
~1!1O~a2!, ~3.11!

VG ^5h28~G!amRL1VG ^

~0!
1amRVG ^

~1!
1O~a2!,

~3.12!

VG85VG8
~0!

1amRVG8
~1!

1O~a2!, ~3.13!

whereV(G,G ^ ,G8)
(0,1) are constants independent ofa andg. In a

similar expansion ofv (G,G ^ ,G8) , we only need to keep the
leading term ina, and hence they can be regarded as a con-
stant as well. The logarithmic divergenceL is defined as

L52
1

16p2 log l2a2, ~3.14!

with l being gluon mass to regularize the infrared diver-
gence which appears in on-shell vertex functions, typically in
terms of form

E
2p

p d4l

~2p!4

1

l 2

1

l 21l2a2 . ~3.15!

The coefficientsh2(G) andh28(G) are given in Table II.
In order to relate bare operators to renormalized operators

we further need the renormalization factor for quark wave
function Zc and massZm , which are defined as

c05Zc
21/2cR , ~3.16!

m05Zm
21mR1g2CF

S0

a
.

~3.17!

The explicit form of these factors are obtained from the in-
verse full quark propagator expanded toO(g2a),

SF
215 ip”1m01

1

2
ap22S~p,m0!, ~3.18!

where the one-loop correction to self energy, expanded
aroundp50 andm050, is given by

TABLE I. Dimension 4 vertex mixing withc̄Gc at one loop
order.

G qm
1G̃m

1 qm
2G̃m

2

gmg5 qm
1g5 qn

2smng5

gm qn
1smn qm

2

g5 qm
1gmg5 qm

2gmg5

1 qm
1gm qm

2gm

smn qm
1gn2qn

1gm pr8(srmgn2srngm)2pr(gmsnr2gnsmr)

TABLE II. Coefficients of logarithmically divergent term.

G h2(G) h28(G)

gmg5 4 22
gm 4 22
g5 16 1
1 16 1
smn 0 23
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S~p,m0!5g2CFFS0

a
1 ip” ~2L1S1!

1m0~24L1S2!1ap2~2L1s1!

1am0ip” ~4L1s2!

1am0
2~2L1s3!G1O~a2! ~3.19!

with S0,1,2 ands1,2,3 being constants. We fix the renormal-
ization constants by the condition that the full quark propa-
gator takes the form

SF5
Zc„2 ip”1mR1O~a!…

p21mR
21O~a2!

, ~3.20!

which yields

Zc
21511g2CF~2L1S1!1am„211g2CF~L12s1

1s223S11S2!…, ~3.21!

Zm
21511g2CF~23L2S11S2!

1amS 1

2
1

g2CF

2
~23L22 s1

22s212s31S1! D . ~3.22!

Here we have defined

m5m02g2CF

S0

a
, ~3.23!

and have made use of the relationg2m05g2m1O(g4).
With the renormalization constants above, the inverse full

quark propagator has the form

SF
215„Zc

211O~a!…~ ip”1mR!1O~a!~p21mR
2 !1O~a2!.

~3.24!

Hence the renormalized massmR coincides with the on-shell
mass toO(a2). The wave function renormalization factor
can be rewritten in terms of the renormalized mass:

Zc
21511g2CF~2L1S1!

1amR„211g2CF~4L2zm1S1
~1!!…, ~3.25!

where

zm52S11S2 , ~3.26!

S1
~1!52s11s223S11S2 .

~3.27!

Replacing the quark massm0 with the renormalized mass
mR , we obtain, for the vertex,

GG5F11amR1g2CFLS h2~G!

4
1amRS h2~G!

4
~12z!1h28~G!z23~12z! D D GG1g2CF@S0~12z!1VG

~0!1zVG ^

~0!

2z2VG8
~0!

#G1g2CFamR@zm~12z!1~12z!VG
~0!1VG

~1!1zVG ^

~1!
2z2VG8

~1!
#G1g2CF~vG1zvG ^2z2vG8!iaqmG̃m

5F11amR1g2CFLS h2~G!

4
1amRS h2~G!

4
23D D GG1g2CF@S0~12z!1VG

~0!1zVG ^

~0!
2z2VG8

~0!
#G

1g2CFamR@zm~12z!1~12z!VG
~0!1VG

~1!1zVG ^

~1!
2z2VG8

~1!
#G1g2CF~vG1zvG ^2z2vG8!iaqmG̃m , ~3.28!

where the relationh2(G)/42h28(G)53, valid for eachG, is used for the second equality.
We now multiply the vertex functionGG by the quark wave function renormalization factorZc

21 of Eq. ~3.25!. TheO(a)
andO(g2a log a) terms all cancel out in the combinationZc

21GG for arbitrary values of the parameterz, and the result can be
written as an operator identity~2.13! with the constants given by

ZG
21511g2CFS S h2~G!

4
21DL1S11VG

~0!1S0~12z!1zVG ^

~0!
2z2VG8

~0!D , ~3.29!

BG52~S11S1
~1!1VG

~1!2S0~12z!1z~2zm2VG
~0!2VG ^

~0!
1VG ^

~1!
!1z2~VG8

~0!
2VG8

~1!
!! ,

~3.30!

CG52~vG1zvG ^2z2vG8!. ~3.31!

YUSUKE TANIGUCHI AND AKIRA UKAWA PHYSICAL REVIEW D 58 114503

114503-4



Let us add a remark on infrared divergence. Forv (G,G ^ ,G8)
that enter in the coefficientCG , these divergences cancel out
in the total contribution at each order ofz. On the other
hand, infrared divergences remain inV(G,G ^ ,G8) . The diver-
gence in theO(g2a) term in GG are, however, canceled by
that of the quark wave function renormalization factor. The
remaining divergence, which is of formg2L and appears in
ZG , coincides with that which is present in on-shell vertex
functions for the renormalized operator in the continuum.

In the calculation above we employed the bare operator
~2.10! which contains the bare quark massm0 . It is possible
to replacem0 by the subtracted massm of Eq. ~3.23!. Defin-
ing

O 0
G5@11ar~12z!m#c̄Gc1zc̄G ^c2z2c̄G8c,

~3.32!

it is straightforward to check thatO(a) and O(g2a log a)
terms also cancel for this operator;S0 plays no role in im-
proving the operator. The renormalization coefficients for
this operator, which is more convenient for practical use, are
obtained from Eqs.~3.29!–~3.31! by eliminatingS0 .

IV. RESULTS FOR THE ONE-LOOP COEFFICIENTS

Manipulations in the previous section have reduced the
determination of one-loop coefficients to an evaluation of a
number of integral constants. Working out the integrands for
the integrals is a straightforward but tedious task, which we
carry out byMathematica. The output is converted to aFOR-

TRAN code, and the integrals are evaluated by the Monte
Carlo routineVEGAS in double precision. We employ 20 sets
of 105 points for integration except forCA for z50 for
which we use 20 sets of 106 points. Errors are estimated
from variation of integrated values over the sets.

For the gluon action we consider the form given by

Sgluon5
1

g2 H c0 (
plaquette

Tr Upl

1c1 (
rectangle

Tr Urtg1c2(
chair

Tr Uchr

1c3 (
parallelogram

Tr UplgJ , ~4.1!

where the first term represents the standard plaquette term,
and the remaining terms are six-link loops formed by a 1
32 rectangle, a bent 132 rectangle ~chair! and a 3-
dimensional parallelogram. The coefficientsc0 ,...,c3 satisfy
the normalization condition

c018c1116c218c351. ~4.2!

At the one-loop level, the choice of the gluon action is
specified by the pair of numbersc1 and c235c21c3 . We
calculate the constants for five cases:~i! the standard
plaquette actionc150, c2350, ~ii ! the tree-level improved
action in the Symanzik approachc1521/12, c2350 @10#,
and ~iii ! three choices suggested by an approximate
renormalization-group analysis,c1520.331, c2350 andc1
520.27, c23520.04 by Iwasaki@12#, and c1520.252,
c23520.17 by Wilson@11#.

Let us writeO MS
G for the renormalized bilinear operator in

the continuum in the modified minimal subtraction (MS)
scheme, and define

O MS
G

5ZMS
G O 0

G , ~4.3!

whereO 0
G denotes the lattice bare operator and

TABLE III. Finite part zG of renormalization factor for bilinear quark operators (z50) without additive
mass renormalization(0. Coefficients of the termcSW

n (n50,1,2) in an expansionzG5zG
(0)1cSWzG

(1)

1cSW
2 zG

(2) are given in the column labeled (n). Errors are at most in the last digit given.

gauge action V A
c1 c23 ~0! ~1! ~2! ~0! ~1! ~2!

0 0 220.618 4.745 0.543 215.797 20.248 2.251
21/12 0 216.603 4.228 0.464 212.540 20.198 2.021
20.331 0 211.099 3.326 0.336 28.192 20.125 1.610
20.27 20.04 211.540 3.418 0.353 28.523 20.131 1.657
20.252 20.17 210.525 3.248 0.338 27.707 20.117 1.58

gauge action S P T
c1 c23 ~0! ~1! ~2! ~0! ~1! ~2! ~0! ~1! ~2!

0 0 212.953 27.738 1.380 222.596 2.249 22.036 217.018 3.913 1.972
21/12 0 29.607 26.836 1.367 217.734 2.015 21.745 213.539 3.490 1.719
20.331 0 24.858 25.301 1.266 210.673 1.601 21.281 28.939 2.751 1.300
20.27 20.04 25.260 25.454 1.292 211.292 1.644 21.316 29.283 2.827 1.344
20.252 20.17 24.366 25.166 1.287 210.001 1.565 21.212 28.427 2.687 1.271
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ZMS
G

511
g2CF

16p2 S S h2~G!

4
21D

3 log~ma!21zGD . ~4.4!

Results for the finite constantzG for the lattice operator
~2.10! rotated with the bare massm0 have already been given
in a previous paper@13#. We list in Table III the values ofzG

for the operator~3.32! defined with the subtracted massm at
z50 for completeness.

Our new results for the one-loop coefficientsCG are given
in Table IV, and those forBG in Tables V and VI for the
definition excludingS0 . Numerical values are given for the
coefficients of expansion inz defined as

BG5BG
~0!1zBG

~1!2z2BG
~2! , ~4.5!

CG5CG
~0!1zCG

~1!2z2CG
~2! . ~4.6!

In the tensor channel onlyCT
(0) and BT

(0) are evaluated as
necessity for the operator in this channel does not seem to
warrant a CPU time-consuming calculation of integrands
which are more complex than the other cases. In Tables V
and VI a general trend is apparent that the coefficients are

reduced by roughly a factor two for renormalization-group
improved gluon actions as compared to those for the
plaquette action, as already observed forzG @13#.

Comparison of our results with those of Refs.@7–9# ob-
tained with the Schro¨dinger functional is made in the follow-
ing way. The authors of these references start from a local
bilinear operator

O 0
G5c̄Gc, ~4.7!

and relate it to the renormalized operator through

O 0
G5ZG

21~g2,a!O R
G2cGiqmÕm

G . ~4.8!

The renormalization factorZG is expanded in the lattice
spacinga as follows:

ZG~g2,a!5Z0G~g2!„11ambG~g2!…. ~4.9!

where Z0G(g2) does not contain terms ofO(a),
O(g2a log a), or O(g2a). The renormalization factor for the
quark fieldc and the quark massm are expanded in a similar
manner.

With these definitions, the vertex function of the bare op-
erator has the form

TABLE IV. Mixing coefficientsCA , CV , CT for axial vector, vector and tensor currents. Coefficients of the termzn(n50,1,2) are given
in the column marked as (n). CT

(1) andCT
(2) are not calculated.

gauge action CA CV

c1 c23 ~0! ~1! ~2! ~0! ~1! ~2!

0 0 20.005680(2) 20.002316(3) 20.003808(1) 20.01226(3) 20.01560(4) 20.000217(9)
21/12 0 20.00451(1) 20.00179(2) 20.002781(7) 20.01030(4) 20.01262(4) 0.000034~8!

20.331 0 20.00285(1) 20.00099(2) 20.001579(6) 20.00729(4) 20.00825(4) 0.000175~7!

20.27 20.04 20.00302(1) 20.00108(2) 20.001660(6) 20.00757(4) 20.00858(4) 0.000159~7!

20.252 20.17 20.00281(1) 20.00098(2) 20.001431(6) 20.00705(4) 20.00772(4) 0.000153~7!

gauge action CT

c1 c23 ~0!

0 0 20.00898(1)
21/12 0 20.00741(1)
20.331 0 20.00508(1)
20.27 20.04 20.00530(1)
20.252 20.17 20.00495(1)

TABLE V. Mixing coefficients BA , BV , BT for axial vector, vector and tensor currents without additive mass renormalization(0.
Coefficients of the termzn(n50,1,2) are given in the column marked as (n). BT

(1) andBT
(2) are not calculated.

gauge action BA BV BT

c1 c23 ~0! ~1! ~2! ~0! ~1! ~2! ~0!

0 0 0.1141~1! 20.0846(1) 0.01637~3! 0.1150~2! 20.0442(2) 0.03255~5! 0.1044~1!

21/12 0 0.0881~1! 20.0666(1) 0.01328~3! 0.0886~2! 20.0353(2) 0.02551~4! 0.0795~1!

20.331 0 0.0547~1! 20.0419(1) 0.00867~3! 0.0550~2! 20.0228(1) 0.01583~4! 0.0482~1!

20.27 20.04 0.0572~1! 20.0438(1) 0.00909~3! 0.0575~2! 20.0238(1) 0.01656~4! 0.0505~1!

20.252 20.17 0.0512~1! 20.0393(1) 0.00827~3! 0.0514~2! 20.0213(1) 0.01479~4! 0.0448~1!
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GG5G1g2CFS h2~G!

4
L1VG

~0!1amVG
~1!DG

1g2CFavGiqmG̃m . ~4.10!

The expressions for the wave function, quark mass, and
quark bilinear operator renormalization factors are given by

Zc
21/25S 11

g2CF

2
~2L1S1! D F11amX2 1

2

1g2CFS s11
s2

2
2S11

S2

2 D CG , ~4.11!

Zm5@11g2CF„3L1~S12S2!…#F11am

3X2 1

2
1g2CFS s11s22s3

2S11
S2

2 D CG , ~4.12!

ZG5F12g2CFXS h2~G!

4
21DL

1S11VG
~0!CG@11am„12g2CF

3~S11S1
~1!1VG

~1!!…#. ~4.13!

Making an expansion

bx5bx
~0!1g2CFbx

~1!1¯ , x5G,c,m, ~4.14!

cG5g2CFcG
~1!1¯ , ~4.15!

we find that theO(g2a) coefficients are given as

bc
~1!5s11

s2

2
2S11

S2

2
, ~4.16!

bm
~1!5s11s22s32S11

S2

2
,

~4.17!

bG
~1!52~S11S1

~1!1VG
~1!!, ~4.18!

cG
~1!52vG . ~4.19!

Comparing these expressions with Eqs.~3.30! and~3.31!,
we see thatcG

(1) equals ourCG
(0) for z50 tabulated in Table

IV, and bG
(1) equals ourBG

(0) for z50 without theS0 term
given in Tables V and VI. Our results forbc

(1) andbm
(1) are

given in Table VII, where we also list the contribution from
the wave function renormalization factorb052(S11S1

(1))
522bc

(1) .
In Table VIII we collect our results for the mixing coef-

ficients forz50 for the plaquette gluon action, and compare
them with those of Refs.@7–9#. As we already remarked, we
employ 20 sets of 106 points for evaluatingcA

(1) by VEGAS in
this table, with which we find a complete agreement with the
result of Refs.@7–9#. Good agreement is also found for all
the other coefficients obtained with 20 sets of 105 points. We
do not pursue more precise evaluation for the latter coeffi-
cients since it would require significantly more computing
power due to an increased complexity of integrands and the
number of terms.

TABLE VI. Mixing coefficientsBP , BS for pseudoscalar and scalar density without additive mass renormalization(0. Coefficients of
the termzn(n50,1,2) are given in the column marked as (n).

gauge action BP BS

c1 c23 ~0! ~1! ~2! ~0! ~1! ~2!

0 0 0.1148~1! 20.01698(6) 0.03788~5! 0.1444~2! 20.0535(2) 0.00864~6!

21/12 0 0.0890~1! 20.01378(6) 0.02872~4! 0.1144~2! 20.0403(2) 0.00718~5!

20.331 0 0.0561~1! 20.00909(6) 0.01697~4! 0.0747~2! 20.0235(1) 0.00475~4!

20.27 20.04 0.0586~1! 20.00937(6) 0.01782~4! 0.0777~2! 20.0248(2) 0.00501~4!

20.252 20.17 0.0527~5! 20.00816(6) 0.01569~4! 0.0706~2! 20.0221(2) 0.00452~4!

TABLE VII. Mixing coefficients bc
(1) , bm

(1) for quark operator. Values forb0 are also included.

gauge action
c1 c23 bc

(1) bm
(1) b0

0 0 20.05191(3) 20.07218(5) 0.10381~9!

21/12 0 20.03968(3) 20.05722(5) 0.07937~9!

20.331 0 20.02430(3) 20.03737(5) 0.04860~9!

20.27 20.04 20.02543(3) 20.03891(5) 0.05086~9!

20.252 20.17 20.02262(3) 20.03526(5) 0.04525~9!
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Two more points are worthy to note:~i! The identitybS
522bm , noted in Ref.@9# for quenched QCD, also holds
with our results for the improved gluon action.~ii ! It was
observed in Ref.@8# that the values ofbG

(1) are close to each
other. Numerically this arises from the fact that the contribu-
tion from the wave function renormalizationb0 , common to
various Dirac channelsG, dominates over the vertex contri-
butions. Since the wave function renormalization factor is
generally gauge dependent, this property ofbG

(1) may be spe-
cific to Feynman gauge, however.

V. CONCLUDING REMARKS

In this article we have carried out a perturbative evalua-
tion of vertex functions to determine theO(g2a) mixing
coefficients of bilinear quark operators. For the standard
plaquette action for gluons, our results agree with those ob-
tained previously with the Schro¨dinger functional method.
We have also generalized the determination to a class of
improved gluon actions for use in numerical simulations em-
ploying such actions.

Our calculations are carried out by an expansion of vertex
functions regarding external momenta and renormalized
quark massmR as small in units of lattice spacinga. Hence

the present work does not cover the case of heavy quark such
that mRa.O(1). It hasbeen pointed out recently in a one-
loop calculation in nonrelativistic QCD@14# that the mixing
coefficientcA

(1) for heavy-light axial vector current is large
compared to the value for the light-light case treated here. In
our calculation a significant cancellation is observed between
terms from various diagrams contributing tocA

(1) . To under-
stand whether the large value ofcA

(1) for heavy quarks results
from lifting of such a cancellation requires an extension of
our calculation without making an expansion inmRa @15–
17#.
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