PHYSICAL REVIEW D, VOLUME 58, 114503

Perturbative calculation of improvement coefficients toO(g?2a) for bilinear quark operators
in lattice QCD

Yusuke Taniguchi
Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki-305, Japan

Akira Ukawa
Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki-305, Japan
and Center for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki-305, Japan
(Received 16 June 1998; published 28 October 1998

We calculate théd(ga) mixing coefficients of bilinear quark operators in lattice QCD using a standard
perturbative evaluation of on-shell Green’s functions. Our results for the plaquette gluon action are in agree-
ment with those previously obtained with the Satinger functional method. The coefficients are also calcu-
lated for a class of improved gluon actions having six-link terf8§556-282(98)09621-0

PACS numbss): 11.15.Ha, 12.38.Aw, 12.38.Gc

I. INTRODUCTION and bare operators. Analysis of one-loop amplitudes are car-
ried out in Sec. lll. Numerical results for the coefficients and
Symanzik’s improvement prografi] applied to on-shell a comparison with previous work are made in Sec. IV. We
quantities[2] attempts to eliminate cut-off dependence orderclose with some concluding remarks in Sec. V.
by order by an expansion in powers of the lattice spaeing
To O(a) in lattice QCD, this requires adding ti(a) “clo- Il. CLOVER QUARK ACTION AND BILINEAR
ver” term to the Wilson quark actioh3]. Quark operators QUARK OPERATORS
also have to be modified b®(a) counterterms, which gen-
erally involve new operators of higher dimensiph-6]. In
perturbation theory, the tree-level value of the clover coeffi- 1
C|en_t and thos_e of the counterterm_s_of qguark operators can be Squar™ a32 - Z Ul — T+ y,)Un utns i
easily determined. They are sufficient to remove terms of
O(g?a log a) in on-shell Green’s functions evaluated at one- _
loop order, as has been explicitly demonstrated in REf. + (= VM)Un pu¥n-p)
To removeO(g?a) terms which still remain, the counterterm
coefficients for quark operators have to be corrected by +(am°+4r)¢”¢“
O(g?a) terms. For bilinear quark operators, these coeffi- r—
cients have been calculated in Rgfg-9] using the Schro —csma? > 197 Y0P (M) . (2.9
dinger functional technique. oy
. In this article we analyze th®(g*a) coefficients O_f bi- We wish to construct a renormalized bilinear quark operator
linear quark operators through a standard perturbative treali i e form
ment of on-shell Green’s functions of the operators. One-
loop amplitudes with external quarks on the mass shell are r —
expanded in powers afja and mga, with q the external Or=(4cl'dbors I'=L¥5, %4, VY500 (2.2
momenta andng the renormalized quark mass, which leads
to an alternative determination of the coefficients. ApplyingWhich is improved tdO(a) to one-loop order of perturbation
the procedure for the standard plaquette gluon action, wéheory, i.e., on-shell matrix elements of the operator have no
obtain results which are in agreement with those of Refserrors ofO(a), O(g®a loga) or O(g*a) whena—0 with
[7-9. external momenta and the renormalized quark nas&ept
Another application of our procedure is a calculation offixed.
the coefficients for gluon actions improved by an addition of Our starting point is the tree-level improved operator of
six-link loop terms to the plaquette action. We treat threethe form
cases: the actiofl0] which is tree-level improved in Syman-
zik’s sense to0(a*), and two types of actiongl1,12 im- o=y Ty, (2.3
proved by a renormalization-group treatment. The results
should be useful in simulations employing improved actions

Consider the clover quark action defined by

where the rotated quark fieldg. and 1//C are given by

for gluons.
This paper is organized as follows. In Sec. Il we define
oy . . . . . ar o
bilinear quark operators examined in this article, and write Yo=| 1= (7,8 ,,—mo) [ (2.4)

down renormalization relations between the renormalized
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r,re

— ar <
wc%l—z(—nm—mo) (29

with the covariant derivative defined as

R 1 A A n
aD, (%)= 5[U, () g(x+p) = U (x= ) p(x— )],
(2.6

- 1 — ~ — ~ ~
ap(x)D, = S[d(x+ ) UL (0 = (X = w)U ,(x— ).
(2.7

It has been demonstrated in Re4] that this operator is
on-shell improved td(a) and O(g?a log a) with the tree-
level value of the clover coefficientsy=1. It has been
noted furthermore that the field rotation can be generalized

by using the equation of motiorf{+ my) =0 to AN I+
b
ar - \\
Ye=|1- = (27,0,~ (1-2)mo) |4, (2.8 iy ! ~p
— ar < FIG. 1. Structure of one-loop diagrams for bilinear quark opera-
Y=y 1- 7(_27’MD#—(1_Z)m0) : tor (2.10.
(2.9
Ill. ANALYSIS OF ONE-LOOP AMPLITUDES
wherez is a parameter. We then consider a generalized op- The structure of one-loop diagrams relevant for our analy-
erator given by sis is depicted in Fig. 1 where we indicate our momentum
. . . assignment. We calculate the corresponding amplitudes in
Og=[1+ ar(1—z)molyl g+ zyT® y— 22y o, Feynman gauge imposing the on-shell condition to external

(2.10 momenta, i.e., setting-ip’ +mg=0 andip+mg=0 when
such a factor appears to the left-most or right-most in the
wherel'® andI"" areO(a) andO(a?) vertices defined as  amplitudes. The renormalized masg, as explicitly defined
below, coincides with the on-shell mass@§a?). We note
, . ar - - that the bare quark mass, enters in the field rotatiof2.9)
"= 7(7’MDMF_F7’MDu)v (211 of the bare operator, where we make use of the tree-level
equation of motion.
22r2 The vertex function in momentum space calculated to
= T%D”F y,D,. (2.1  one-loop order has the form
G'=[1+amy(1-2)]T
The one-loop relation expected between the bare operator 1
nglmO) and the renormalized improved operaf@r?) has the +za§(i|zS’F—I‘i¢)+gZCF[1+amo(1—z)]Tr
~ +0%CgzTro— g?Cez?Ty, 3.1
Ol=2z;:'0L—g?CramgB O k—g2CraC Ok, 9 Rz lrem ez 3
(213 whereT represents the tree level contributiafy;, Tre and

o Tr. are one-loop contributions from the verticEsT"® and
where Cr denotes the second-order Casimir eigenvalue for

the quark field, and the last two terms are needed to remove p problem in extractingd(a) terms of the one-loop con-

O(g?a) errors from on-shell matrix elements, wiB; a tributions is that they are infrared divergent for on-shell ex-
dimension 4 operator with derivative. In a previous paperternal momenta. We treat this problem by supplying a mass
[13] we have evaluated; for a class of improved gluon X\ to the gluon propagator. The one-loop amplitudes, being
actions. Our task now is to generalize the analysidito functions ofpa, p’a, mga, and\a, are then finite, which
check that there are r@(g?a log a) errors with the operator we expand aroungha=p’a=0 and mga=0, keeping\a
(2.10, and (ii) determine theO(g?a) coefficientsB; and finite. For this procedure to be justified, infrared divergences
Cr . In the following we set the Wilson parameter 1. which remain in the vertex functio®r after wave function

114503-2
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TABLE I. Dimension 4 vertex mixing Withi?l“zp at one loop
order.

r q.T; 9,7,

Yu?Ys qz[)’s 0, 0.,7s5

Yu o U0, da,.

Ys O, YuYs A, Vs

1 a4, 7. a4, Yy

Our A= 0 Ve Pp(0pu¥e— 0 ¥Y0) —Pp(Yulup— V00 p)

renormalization should coincide with those in the continuum.

We check this point explicitly below.
As a first step to extradd(a) terms, we expand one-loop

contributions in terms of external momenta. Under the on-

shell condition theD(a) term can be written in two alterna-
tive forms, i.e.,

+ + . =

T(er®,r’):V(F,F®,F’)F+U(F,F®‘F')Iaq;F; s (32)
:V(F,Fglﬂ)r+U(F‘F®’F,)iaq; ;,

(3.3

whereq, =p,*p,, and qif‘j is a dimension-4 operator
vertex with the same quantum numberaas listed in Table
| for eachI'. The on-shell identities which relate the two

forms are given by
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TABLE Il. Coefficients of logarithmically divergent term.

r h,(I) h;(T")
YuYs 4 -2
Yu 4 -2
Vs 16 1
1 16 1
o 0 -3

ho(T
V= £|_+V<F°)+amRV(F1)+O(a2), (3.11

1)

Vrs=hj(T)amgL + V{2 +amgVil+0(a?),

(3.12

0)

Vi=Vi9+amvit +0(a?), (313

whereVE?”lr)gr,) are constants independentafindg. In a

similar expansion ob r re r/y, we only need to keep the
leading term ina, and hence they can be regarded as a con-
stant as well. The logarithmic divergenteis defined as

1
L=——— log \%a?,

167 (3.19

_ . + . - —
19, ystid, 0,, Y5t 2MrY,¥s=0, 34 with \ being gluon mass to regularize the infrared diver-
. — _ gence which appears in on-shell vertex functions, typically in
10,0, T19, =2Mgy, =0, 39 terms of form
— _ + _
A, YuYs=0,7.=0, (3.6 gt 1 1
+ i — 2120\ 242" (3.19
0, Ve Vst 2iMgys=0, 3.7 —x (2m)4 121242\ %
¥, +2img=0, 3.8 - , . .
G VT 2IMR 8 The coefficientd,(I") andhy(I") are given in Table II.
/ _ _ _ In order to relate bare operators to renormalized operators
Pol oo™ oY) =Po( VO™ ¥4y we further need the renormalization factor for quark wave
+(d,;y,~d, v,) +4imgo,,=0. (3.9 functionZ, and mas<,, which are defined as
We choose to work withq;lz;j and drop the+ suffix. The vo=2,"%r, (3.16
momentumq; =(, represents the momentum transfer at the
operator vertex. We observe from the identities above and s
~ _ 0
Table | thatq,, T, actually vanishes by the on-shell condi- Mo=Z, Mg+ QZCFE-
tion for the scalar and pseudo scalar operators. Substituting (3.17)

the expansior{3.3) into (3.1), we obtain

G'=[1+amy(1—2)+zanmg]l +g?°Ce[1+amy(1—2)] The explicit form of these factors are obtained from the in-
_ _ verse full quark propagator expandedQ@gg?a),
X(VFF+UriaqHFM)+gZCFZ(VI‘@F‘FUI‘@iaqMFM)

~ 1

—9%CeZ2(Vp T +upiaq,l,). (3.10 Scl=ip+my+ Eapz—E(p,mO), (3.18
As a second step, we expand the one-loop amplitudes

V(r,re ) in terms of the lattice spacing multiplied by the ~ where the one-loop correction to self energy, expanded

renormalized quark masag. This leads to aroundp=0 andmy=0, is given by
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Here we have defined

2
3 (p.mo)=°Ce| > FiB(~L+3y)

)
+mo(—4L+3,)+ap’(—L+oy) m=my— g?Cp —, (3.23

a
+amyip(4L+ o)
Mol A( 2 and have made use of the relatigfm,=gm+0(g*).
With the renormalization constants above, the inverse full

2
+amp(2L+073) quark propagator has the form

+0(a?) (3.19

with 24, , and o , 3 being constants. We fix the renormal-

—1__ -1 H 2 2 2
ization constants by the condition that the full quark propa- Sr =2, +0(a)(ip+mg) +0O(a)(p”+ mg) + O(a’).

gator takes the form (3.24
Hence the renormalized masg coincides with the on-shell
Z,(—ip+mg+0(a)) mass toO(a_z). The wave function renormalization factor
Se= 5 5 5 , (3.20 can be rewritten in terms of the renormalized mass:
p“+mg+O(a“)

which yields Z,'=1+g?Cp(—L+3))

+amg(—1+g%Cr(4L—2z,+3Y)), (3.2
Z,'=1402Ce(~L+3 ) +am(- 1+ g2Ce(L+20; R(Z1Hg7CrAL =zt 217)). (3.29

where

+0'2_321+22)), (321)

1 Zm:_21+22, (326)
Z 1=1+0°Ce(—3L—3,+3))
2 (1 — _
g CF 21 —20’1+0'2 321+22.
+am §+ 5 (=3L—20, (3.27)
Replacing the quark mass, with the renormalized mass
—20,+203+21) . (3.22 mg, we obtain, for the vertex,

hy(T') N R(hz(l“)

GF=_1+amR+g2CFL 7 7

(1—z)+h§(l“)z—3(1—z))

I+g%Ce[3o(1—-2)+ V¥ + 22

— 22V + g°Cramg zp(1—2) + (1= V{9 + VP + 2Vi) — 22V T + g2Cr (v + 2o e — 2201 )iaq, T,

ha(T) +amR(h2<r> ) 3)

7 2 I +g%Ce[3(1—-2) + V¥ + 20— 22V

=1+ amR+ gchL

+0°Cramy[ 2(1-2) + (1- 2V + VP + 2D — 22V + g2C (v + zope — 220 p)iaq, T, (3.29

where the relatio,(I")/4—h,(T") =3, valid for eachl’, is used for the second equality.

We now multiply the vertex functio®' by the quark wave function renormalization facﬂgl of Eq. (3.25. TheO(a)
andO(g?a log a) terms all cancel out in the combinatidr, 1GT for arbitrary values of the parametgrand the result can be
written as an operator identi2.13 with the constants given by

ha(T")
4

ZF1=1+92CF(( -1

L+21+v§°>+20(1—z)+z\/ro@?—zzv}o)), (3.29

Br=—( 21+ S+ = So(1-2) +2(— 2= VI? = V2 + Vi) + (VT = V) ),

(3.30

Cr=—(vr+zvre—2Z%v11). (3.3
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TABLE lll. Finite part zr of renormalization factor for bilinear quark operators=(0) without additive
mass renormalizatiorE,. Coefficients of the termcl,(n=0,1,2) in an expansiorz; =z +cgyz{"
+C§WZ(F2) are given in the column labeleah). Errors are at most in the last digit given.

gauge action \% A

C1 C23 ) 1) ) V) (1) 2

0 0 —20.618 4.745 0.543 —15.797 —0.248 2.251
—-1/12 0 —16.603 4.228 0.464 —12.540 —0.198 2.021
—0.331 0 —11.099 3.326 0.336 —8.192 —-0.125 1.610
—0.27 —0.04 —11.540 3.418 0.353 —8.523 —0.131 1.657
—0.252 -0.17 —10.525 3.248 0.338 -7.707 -0.117 1.58
gauge action S P T

C1 C23 ) 1) 2 (0 (1) v 0 (1) 3

0 0 —12953 —7.738 1.380 —22.596 2.249 —2.036 —17.018 3.913 1.972
—-1/12 0 —9.607 —-6.836 1.367 —17.734 2.015 —1.745 —-13.539 3.490 1.719
—0.331 0 —4.858 —-5.301 1.266 —10.673 1.601 —1.281 —8.939 2.751 1.300

—-0.27 —-0.04 —-5260 —5454 1292 —-11.292 1.644 —1316 —9.283 2.827 1.344
—0.252 —-0.17 -4366 -—-5.166 1.287 —10.001 1565 —1.212 —8.427 2.687 1.271

Let us add a remark on infrared divergence. &@ires 1) 1
that enter in the coefficier@, these divergences cancel out Sgluon= =2
in the total contribution at each order af On the other
hand, infrared divergences remain\fgr r« ). The diver-
gence in theD(g?a) term inG' are, however, canceled by +C1 X TrUpg+tC> TrUc,
that of the quark wave function renormalization factor. The rectangle chair
remaining divergence, which is of forgfL and appears in
Zr, coincides with that which is present in on-shell vertex +C3 %‘4 Tr Uplg]v (4.2)
functions for the renormalized operator in the continuum. paralelogram

In the calculation above we employed the bare operator ]
(2.10 which contains the bare quark masg. It is possible where the flrsj[ term represents_tht_e standard plaquette term,
to replacem, by the subtracted mass of Eq. (3.23. Defin- and the remaining terms are six-link loops formed by a 1

co > Truy
g plaquette

ing X2 rectangle, a bent 42 rectangle(chaip and a 3-
dimensional parallelogram. The coefficients...,c5 satisfy
Ol=[1+ar(1—2)m]yl y+zyl® y— 22T ¢, the normalization condition
(3.32
Co+8C1+ 1&32+8C3:1. (42)

it is straightforward to check thab(a) and O(g?a log a)
terms also cancel for this operatdj plays no role in im- . L
proving the operator. The renormalization coefficients for At_f';hg gnet-rl]oop I_evefl, the g:hmce ?jf the_gltfn ac\;c\llon IS
this operator, which is more convenient for practical use, ar%ﬁﬁ:ﬂlze tze gopr)lilt;r?tsn?(;? ﬁ\% ir;sg(é)g_tﬁze :tsain da? q
obtained from Eqs(3.29~(3.31) by eliminatingo. plaquette actiorc;=0, c,3=0, (ii) the tree-level improved
action in the Symanzik approaah= —1/12, c,3=0 [10],
and (iii) three choices suggested by an approximate
Manipulations in the previous section have reduced théenormalization-group analysis; = —0.331, ¢;3=0 andc,
determination of one-loop coefficients to an evaluation of a= —0-27, C,3=—0.04 by Iwasaki[12], and ¢,=—0.252,
number of integral constants. Working out the integrands fof2s= —~0.17 by V\F/|Ison[11]. . - _
the integrals is a straightforward but tedious task, which we ~Let us writeO i for the renormalized bilinear operator in
carry out byMathematica The output is converted torDR-  the continuum in the modified minimal subtractiom$)
TRAN code, and the integrals are evaluated by the Montacheme, and define
Carlo routinevEGAS in double precision. We employ 20 sets

IV. RESULTS FOR THE ONE-LOOP COEFFICIENTS

of 10° points for integration except fo€, for z=0 for oL 7L orf 4.3
which we use 20 sets of §Qpoints. Errors are estimated MS  TMS= O '
from variation of integrated values over the sets.

For the gluon action we consider the form given by Whereog denotes the lattice bare operator and

114503-5
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TABLE IV. Mixing coefficientsC,, Cy,, Cy for axial vector, vector and tensor currents. Coefficients of the #¢m=0,1,2) are given

in the column marked a:j. C{" andC{? are not calculated.

gauge action Ca Cy
C1 Ca3 0 (1) 2 0 () 2
0 0 —-0.005680(2) —0.002316(3) —0.003808(1) —0.01226(3) —0.01560(4) —0.000217(9)
—1/12 0 —-0.00451(1)  —0.00179(2)  —0.002781(7) —0.01030(4) —0.01262(4) 0.000038)
-0.331 0 —-0.00285(1)  —0.00099(2)  —0.001579(6) —0.00729(4) —0.00825(4) 0.000173)
-0.27 —-0.04 —0.00302(1)  —0.00108(2)  —0.001660(6) —0.00757(4) —0.00858(4) 0.000159)
—-0.252 -0.17  —0.00281(1)  —0.00098(2)  —0.001431(6) —0.00705(4) —0.00772(4) 0.000153)
gauge action Cr
C1 Ca3 (V)]
0 0 —0.00898(1)
-1/12 0 —0.00741(1)
-0.331 0 —0.00508(1)
—-0.27 —0.04 —0.00530(1)
—0.252 —-0.17 —0.00495(1)
r 9°Ce [ [ hy(T) reduced by roughly a factor two for renormalization-group
Zys=1+ 62\~ ~ 1 improved gluon actions as compared to those for the

X log(pua)?+zr|. (4.9

Results for the finite constarg; for the lattice operator
(2.10 rotated with the bare mass, have already been given
in a previous papdr3]. We list in Table Ill the values dfy-
for the operatok3.32) defined with the subtracted massat
z=0 for completeness.

Our new results for the one-loop coefficiefs are given
in Table 1V, and those foBr in Tables V and VI for the
definition excluding®,. Numerical values are given for the
coefficients of expansion im defined as

plaquette action, as already observedZpf{13].

Comparison of our results with those of Refg—9] ob-
tained with the Schdinger functional is made in the follow-
ing way. The authors of these references start from a local
bilinear operator

Oo=yly, 4.7
and relate it to the renormalized operator through
00=2;(g%a)0g—criq,0),. (4.9

The renormalization factoZ is expanded in the lattice
spacinga as follows:

Br=B©+2BY 2282,

Cr=C\9+zCP-z2C(?.

(4.9

(4.9

Zp(g*a)=Zor(g%) (1+amby(g?). (4.9

where Zor(g?) does not contain terms ofO(a),
In the tensor channel onlZ{”) and B{*) are evaluated as O(g2a log a), or O(g%a). The renormalization factor for the
necessity for the operator in this channel does not seem tguark fieldy and the quark mass are expanded in a similar
warrant a CPU time-consuming calculation of integrandsmanner.
which are more complex than the other cases. In Tables V With these definitions, the vertex function of the bare op-
and VI a general trend is apparent that the coefficients arerator has the form

TABLE V. Mixing coefficientsB,, By, By for axial vector, vector and tensor currents without additive mass renormaliZagon
Coefficients of the ternz"(n=0,1,2) are given in the column marked a8 (B{" andB{? are not calculated.

gauge action Ba By B

Cy C23 @) () 2 ) () 2 0

0 0 0.11412) —0.0846(1) 0.0163B) 0.115@2) —0.0442(2) 0.0325%) 0.10441)
-1/12 0 0.08811) —0.0666(1) 0.01328) 0.08862) —0.0353(2) 0.02551) 0.079%1)
—0.331 0 0.054@) —0.0419(1) 0.0086(B) 0.055@2) —0.0228(1) 0.01583) 0.04821)
—-0.27 —0.04 0.05721) —0.0438(1) 0.0090@) 0.0575%2) —0.0238(1) 0.01658) 0.05081)
—0.252 —-0.17 0.05121) —0.0393(1) 0.0082B) 0.05142) —0.0213(1) 0.0147@) 0.04481)
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TABLE VI. Mixing coefficientsBp, Bg for pseudoscalar and scalar density without additive mass renormalizatioBoefficients of
the termz"(n=0,1,2) are given in the column marked ag (

gauge action Bp Bsg

Cy Co3 © () 2 ) 1 2

0 0 0.11481) —0.01698(6) 0.03788) 0.14442) —0.0535(2) 0.0086%)
—1/12 0 0.089(1) —0.01378(6) 0.02812) 0.11442) —0.0403(2) 0.00718)
—0.331 0 0.056(1) —0.00909(6) 0.01694) 0.07472) —0.0235(1) 0.00478)
-0.27 —0.04 0.05861) —0.00937(6) 0.01782) 0.077712) —0.0248(2) 0.0050%)
—0.252 -0.17 0.0527%) —0.00816(6) 0.01569) 0.07062) —0.0221(2) 0.00452)

ho(T')

cr=0%C C(l)+"‘, 4.1
GF=r+g2cF(—4 L+V(F°)+am\/rl>)l“ regeer “-19

we find that theO(g?a) coefficients are given as

+9°Cravriq, [, . (4.10
b=y 4 2y 4 22 4.1
The expressions for the wave function, quark mass, and y 01T T 5 (4.16
quark bilinear operator renormalization factors are given by
2
2 1)_ 2
- 9°Ce 1 bV=g,+0,— 03— 31+ —,
Zl//l/zz 1+T(_L+zl) 1+am(_§ m 1 2 3 1 2
(4.17
2 92 s 22 (1) (1) (D)
+O°Ce| out 5 — 20t o | (4.11 biV=— (3, +3P+VH), (4.18
c=—vr. (4.19
Zn=[14+g?Cc(BL+(2;—3,))][1+am

Comparing these expressions with EG&30 and(3.31),

1, we see that{") equals ourC{”) for z=0 tabulated in Table
X\ =5 +9°Ce| o1t 0203 IV, and b{!) equals ourB{?) for z=0 without the , term
given in Tables V and VI. Our results fdr}) andb{;) are
-S4 é )} 4.12 given in Table VII, where we also list the contribution from
Yr2))) ' the wave function renormalization factbp= — (2 ;+3{")
=—2b{M.
¥
7 —|1-q2c hy(T") _1)L In Table VIl we collect our results for the mixing coef-
r— 9°CrF 4 ficients forz=0 for the plaquette gluon action, and compare
them with those of Ref§.7—9]. As we already remarked, we
4 +V<°)) 1+am(l—a2C er_nploy 20 s_ets of_lGOpomt_s for evaluating,’ by VEGAS in
VeI (1-9°Cr this table, with which we find a complete agreement with the
result of Refs[7-9]. Good agreement is also found for all
X(S1+ 3+ V)], (4.13 L7=9] g

the other coefficients obtained with 20 sets of pdints. We
do not pursue more precise evaluation for the latter coeffi-
cients since it would require significantly more computing

© . " power due to an increased complexity of integrands and the
by=by"+g°Ceby’+---, x=T,y,m, (414  number of terms.

Making an expansion

TABLE VII. Mixing coefficientsb{?), b{}) for quark operator. Values fds, are also included.

gauge action

c; Cos b b by

0 0 ~0.05191(3) ~0.07218(5) 0.10389)
—112 0 —0.03968(3) —0.05722(5) 0.07939)
~0.331 0 —0.02430(3) —0.03737(5) 0.04860)
~0.27 ~0.04 —0.02543(3) —0.03891(5) 0.05086)
—0.252 —-0.17 —0.02262(3) —0.03526(5) 0.04529)
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TABLE VIII. Comparison with previous work7—9] for the plaquette gluon action.

cf c® c®

Ours —0.005680(2) —0.01226(3) —0.00898(1)

Sint-Weisz[8,9] —0.005680(2) —0.01225(1) 0.00898)
p{® b b{p e p® p{®)

Ours —-0.07218(5)  0.1141)  0.11502)  0.11481)  0.14442)  0.10441)

Sint-Weisz[8,9] —0.07217(2)  0.11414) 0.114924) 0.114842) 0.144345)  0.104344)

Two more points are worthy to not@) The identitybg  the present work does not cover the case of heavy quark such
=—2b,,, noted in Ref[9] for quenched QCD, also holds thatmga>0(1). It hasbeen pointed out recently in a one-
with our results for the improved gluon actiofii) It was  loop calculation in nonrelativistic QCPL4] that the mixing
observed in Ref[8] that the values ob{" are close to each coefficientct? for heavy-light axial vector current is large
other. Numerically this arises from the fact that the contribu-compared to the value for the light-light case treated here. In
tion from the wave function renormalizatidry, common to  our calculation a significant cancellation is observed between

various Dirac channelE, dominates over the vertex contri- terms from various diagrams contributingctbl). To under-

butions. Since the wave func'Flon renormalization factor ISgtand whether the large valued{ for heavy quarks results
generally gauge dependent, this propertjn%ﬁ? may be spe-

ific to F h from lifting of such a cancellation requires an extension of
cific to Feynman gauge, however. our calculation without making an expansionrimga [15—
V. CONCLUDING REMARKS 17
In this article we have carried out a perturbative evalua-
tion of vertex functions to determine th®(g?a) mixing
coefficients of bilinear quark operators. For the standard
plaquette action for gluons, our results agree with those ob- We thank Sinya Aoki for informative correspondence.
tained previously with the Schdinger functional method. Numerical calculations for the present work have been car-
We have also generalized the determination to a class afed out at the Center for Computational Physics, University
improved gluon actions for use in numerical simulations em-of Tsukuba, and at Research Institute for Fundamental Phys-
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