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A general formula of the time-resolved optical spectrum for transient resonant light scattering is de-
rived systematically by means of the operator algebra within the formalism of nonequilibrium thermo
field dynamics (NETFD). The formula is applied to an analytically solvable model of the localized elec-
tron and phonon system, i.e., second-order light scattering due to the optically active three electronic
states whose intermediate state is dynamically modulated by the phonon interaction mode. The deriva-
tion of the analytical expression for a four-point function, needed to obtain the spectrum, is performed
with the help of the algebraic manipulations in NETFD, which showed the advantage of its methodolo-
gy with respect to nonequilibrium transient phenomena. The three-dimensional profiles of the Raman
and luminescence components in the time-resolved spectrum in the model are presented to show how the
stochastic character comes out in the fast modulation limit, and how the dynamical behavior of the pho-
non system causing the modulation of the intermediate electronic state comes out in the slow modulation

limit.

PACS number(s): 05.30.—d, 42.50.Ct

I. INTRODUCTION

The time-resolved optical spectrum of transient reso-
nant light scattering was extensively examined first by
Takagawara, Hanamura, and Kubo [1] in studies of the
second-order optical processes with stochastic models of
the intermediate state. Since then, there have been
several theoretical developments in the formulation of the
time-resolved optical spectrum [2—4]. Most of the inves-
tigations [2,4] were performed with the help of models of
stochastic processes [5], whereas the analysis in Ref. [3]
was done for an analytically solvable and nonstochastic
model for the intermediate state [6,7]. The calculations
in these papers were done with the help of the density
operator method.

In this paper, we will derive the formula of the time-
resolved optical spectrum of transient resonant light
scattering by means of the formalism of nonequilibrium
thermo field dynamics (NETFD) [8-13], which is an
operator formalism of quantum systems with dissipative
processes, and will apply it to the nonstochastic model of
a localized-electron and phonon system [3], i.e., the
second-order light scattering due to the optically active
three electronic states whose intermediate state is dynam-
ically modulated by the phonon interaction mode [14].
Among the merits of NETFD are a straightforward and
comprehensible treatment of transient phenomena and a
transparent algebraic structure (see, for example,
[15-19]). The formula of the time-resolved optical spec-
trum is derived along the lines of Ref. [4] by means of
algebraic treatments within NETFD which are very simi-
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lar to the ones in quantum mechanics. When a laser
pulse impinges on matter the incident photons are ab-
sorbed, causing an excitation of the state of the matter
system, say the states of localized electrons. The inter-
mediate state of the localized electron is modulated
dynamically by a phonon system. The scattered photons,
i.e., the photons emitted during the deexcitation, yield a
spectrum consisting of instantaneous Raman scattering
and of relatively long-time luminescence. The spectrum
can be calculated by considering a second-order optical
process.

In Sec. II, the method of NETFD is briefly explained.
In Sec. III, the formula of the photon counting rate for
the second-order optical processes is derived with the
help of NETFD. In Sec. IV, we apply the formula ob-
tained to the case of the three-state dynamical model for
a localized electron-phonon system. In Sec. V, the limits
of slow and fast modulations for the model are investigat-
ed. In Sec. VI, we present the profiles of the time-
resolved optical spectrum for several typical parameters,
which lead to a deeper insight into the nature of the
scattering process for the model of a dynamical inter-
mediate state. Section VII is devoted to discussion.

II. TECHNICAL BASICS OF NETFD

NETFD is a unified formalism of dissipative quantum
systems including all the aspects of nonequilibrium sta-
tistical mechanics, i.e., the Boltzmann, the Fokker-
Planck, the Langevin, and the stochastic Liouville equa-
tions (see [13] for detail and references). It allows us to
deal with dissipative systems by algebraic manipulations
similar to the usual quantum mechanics.

Let us begin by listing the basics of NETFD.

(1) Any operator A is associated with its partner (tilde)
operator A. The tilde conjugation is defined by
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(A,4,) =4, 4, , @.1)
(c;Ay+c,Ay) " =ctA,+c34,, 2.2)
(A" =4, 2.3)
(ah==4", 2.4)

where the A4’s are operators, and ¢, and c, are ¢ num-
bers.

(2) The tilde and nontilde operators at an equal time
are mutually commutative, and are related with each oth-
er through the relation

(1147=(114 . (2.5)

(3) The expectation value of an operator A4 is given by
(1/ A|0). Observable operators consist only of nontilde
operators.

(4) The thermal vacuums (1| and |0) are tilde invari-
ant,

(7=(1],

and are normalized as (1]|0)=1.
(5) The dynamical evolution of systems is described by
the Schrodinger equation (i=1)

0)~ =10}, (2.6)

%lo(t))=—iﬁ'°‘lom> ) 2.7

We usually call the Schrodinger equation the Fokker-
Planck equation for coarse grained systems.

(6) The hat Hamiltonian, an infinitesimal time-
evolution generator A, satisfies

A~ =if" . (2.8)

This characteristic is named tildian. The tildian hat
Hamiltonian is not necessarily a Hermitian operator.

(7) The hat Hamiltonian has zero eigenvalue for the
thermal bra vacuum,

(1|8*=0 . 2.9)

This is a manifestation of the conservation of probability,
ie.,

(1jo())=1. (2.10)
Now, we introduce a set of the states [20]

Im, ) =Im)|m), 2.11)
where |m ) and |7 ) satisfy

a'alm)=m|m), a'aln)=nln), (2.12)

(mla'a =(m|m, (ala'a=(a|n, (2.13)
the orthonormality

(m|m')=5,, ., (#lA')=8,, , (2.14)
and the completeness

3 Im)ml=1, 3 la)nl=1. (2.15)

m n

We see that the orthonormality and the completeness for

|m,7 ) are given, respectively, by
(2.16)
(2.17)

(m,f|lm’,n’')=8,, .8

nn'

S Ima ) (mal=1.
mn

The matrix elements (k,/| A|m,) and {k,I|A|m,7)
with the operator A consisting only of nontilde operators
reduce, respectively, to

(k| Alm,7) = (k| Alm ){T|7)

=(k|l4lm )3, , (2.18)
(k,I| Alm,i)=(klm )T\ 4|n)
=68, (1l Aln)*
=8, m{nlall), (2.19)
where we used the property
A)=In)". (2.20)
Note that the state |m, 7 ) satisfies
lm,a)~=|n,m) . @.21)
We can represent the thermal vacuums as
l0())=3 P, n()ln,m ), (2.22)
n,m
(1/=3 (n,nl . (2.23)
The normalization of (1|0(¢)) reduces to
1=C110(£)) =3 3, P, (1) kK |n, 1)
k nym
=3 P ,(1), (2.24)
k

where we used the orthonormality (2.16). With the help
of (2.21), we see the tilde invariance of the thermal vacu-
um |0(2)) in the following way:

0(6))~=3 P}, (t)n,m )~

n,m

=3 P2 (0lm,7)
=3 P (t)n,m)

=10(2)) , (2.25)

where we used P,, , =P, ,, in the last equality.
When the hat Hamiltonian A in (2.7) can be divided
into two parts as
AC=A+H",
we can introduce the thermal vacuum ket vector in the
interaction representation as

lo(2)),=eB0(r)) .

(2.26)

(2.27)
The Fokker-Planck equation (2.7) then reads
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%|0(t)>,=—iﬁ’(t)|0(t))1 , (2.28)
where we used
()=t At (2.29)

This can be formally solved in terms of the state of the
system at an initial time ¢, as

0(2)); =8(1,25)10(20))  , (2.30)
with

S(t,t9)=8(8 " !(1,) , (2.31)
where (1) is specified by

%§(t)= —if"(n8(1) (2.32)

with the initial condition §(0)=1. The thermal vacuum
|0(¢)) in the Schrédinger representation can be expressed
by means of S$(z,,) as

0(6)) =e ~B§(1,15)e 0] 0(2,) ) . (2.33)
Since A should satisfy
(1|1A8=0, (2.34)

the interaction Hamiltonian A'(¢) in the interaction rep-
resentation has the property

(11A'(1)=0. (2.35)
Then, (2.32) gives us

(118()=(1|8(z,) , (2.36)
leading to

(118(t,t9)=(1] . (2.37)

This is a manifestation of the conservation of probability,
(1]/0(¢))=1. Note that the thermal bra vacuum in the
interaction representation ;{ 1| becomes the same as the
one in the Schrodinger representation:

HL1=(1]e~Br=(1] . (2.38)

The overlap (1,7]0(¢)) is given by

(LTI = (LTle " 8(1,10)e ™ n,7 )P, , (1o) ,

(2.39)
where we put for the initial state
l0(¢9)) =3 P, ,(to)|n, /), (2.40)
with
(2.41)

3P, .(t)=1,

which is consistent with the normalization {1|0(zo))=1.
We see that

S (LT00Y =33 (LTle =81, 10)e ™ n, 7 )P, , (1)
1 I n

=2 < llg\(t,to)eiﬁto‘n,ﬂ>P”,n(to)

=3 P, ,(tg)=1, (2.42)

where we used (2.34), (2.37), and
(1lm,m)=3 (LTlm,a)=7, 8, m81n =0y, . (2.43)
I 1

Although the interaction hat Hamiltonian A’ has the
structure

A'=H-1, (2.44)
the hat Hamiltonian A does not, in general. Therefore,
one needs to calculate the matrix elements

(LTle RS (1,t5)e T 0ln, 7y (2.45)

in order to obtain the overlap (2.39). Expanding the S
matrix with respect to the order of A’ as
Sit,t)=3 §"™t,t9) , (2.46)

n=0
we can deal with any order of processes induced by a.
See Appendix A for the first-order process (the linear
response) as the simplest example.
Note that when the hat Hamiltonian A has the struc-

ture
A=H-H, (2.47)

in addition to A ', the overlap (2.39) becomes the well-
known form

(LTI0()) =3 C1IS (1,20)[n ){T|S(1,20) 7 ) P, , (2,)
=3 KIS (1,1)In ) |?P, ,(2,) , (2.48)

where we assumed that |n,7 ) is an eigenfunction of H
with a real eigenvalue E,,

H|n,@)=E,|n,a), Hna)=E,|na) . (2.49)
Note that, in the case of (2.47),
S(t,15)=8(1,1,)S(1,t,) , (2.50)

where S(t,¢5) contains only nontilde operators and is a
unitary operator.

III. SECOND-ORDER OPTICAL PROCESSES

We now consider a system that is composed of a radia-
tion field (R) and a matter system (M):

A*=A0+Ag, ,
A=A.+18,, ,

with

(3.1
(3.2)
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(3.3)
(3.4)

ﬁR =Hpy —Hyg ,
ﬁRMzHRM _gRM .

The Hamiltonians Hy and Hpg,, describe the radiation
field and its interaction with the material system, respec-
tively,

HRZZwkaIak N (35)

k

Hppy=3 geaM{ +H.c. , (3.6)
k
where al (ay) denotes the creation (annihilation) opera-
tor for a photon with energy w,, and M l (M, ) describes
the excitation (deexcitation) operator for the matter sys-
tem. The strength of the coupling between the photon
and the matter systems is specified by the complex
coefficient g,. The hat Hamiltonian A M is given when

J

. t h ) I3 ~
§‘“(t,to)=(—t)4ftodt,fto dt, fr(, dt3fto dt By (t) B rpg (1) B gpg (1) B pas(24)

4
Y —
=3 8§44 (1)
=0

Matter 0

FIG. 1. Setup of the system under consideration.

the matter system is specified (see next section).

Let us investigate the second-order optical process of a
system with the setup sketched in Fig. 1. We assume that
the incident laser pulse with a wave vector k;, which is
generated at time f;, and position r(, is scattered by a
matter system, and that the scattered light with a wave
vector k; is detected at time ¢ and position r.

We find the related § matrix S22/ t,ty)in

(3.7

(3.8

where the superscript in §'™"(t,t,) indicates the order m of H ry and 7 of Hg,,. The expression S'*?’ can be arranged

as

t t t _ ~
8 1,t0)= ["dr, [ ‘dr, [ dty [ dty[Hepy(t)) Hpag(t)) Hppg(63) Brag(t4)+ Hpag(t)) Hgpg (1) Hgag (830 Hgpg(24)
to fo fo fo

+HRM(tl )ﬁRM(IZ)FIRM(t3)HRM(t4)+t'c'] s

where t.c. indicates to take a tilde conjugation. The
thermal vacuum state |0(¢)), which is responsible for the
second-order optical process, is given by

|0(t))‘2'2’=e—"”‘S"Z'z’(z,zo)eiﬁ’°|0(to)) : (3.10)
Let us now take the initial condition
[0(20)) = 1p; Y |0pe(25)) (3.11)

where |0,,(¢,)) is the vacuum ket vector for the matter
system, and the incident pulse |p;) is supposed to be
given by

)= fik)fF(k)e T g1y | (3.12)
kK

where r, is the center of the incident pulse and

|k, k') =a}al.|0,0). The scattered pulse |p,) may be

given by

p) = f(k)fX(k)e ik k'), (3.13)
kK

(3.9)

(=1, {psl, (3.14)

and the photon counting rate, detected at (r,t), is propor-
tional to the expectation value P (¢) of the matrix element
(p f|§ 22)(¢,¢,)|p; ) with respect to the thermal vacuums
of the matter,

P(2)=(1]0(z))>?

A i
=1, (p,le H2D(r 1.)e" 0 |p, )0y ),  (3.15)
where [0, ) =[0,,(25)).
With the assumption
M |0,)=0, M,|0,)=0, (3.16)

which is the case, for example, when the electronic state
coupling to the radiation field is initially in its ground
state (see next section), (3.9) reduces to

S@V(1,10)=822(1,15)+ 8% (1,1,)

+8%2(t,19)+t.c. , (3.17)

where r is the center of the scattered pulse. Then the
thermal bra vacuum becomes where
]
(2,2) _rt ty L 3 (o)t —wyt, —wyty Tayt,) § +
822 (t,1)= f,odh f,o dt, f,o dty f,o dt, 3 8i8k,8k8LE Ay, 0k, dk i,
PE2E3IT
XMy (t)M] (6,)M, ()M} (1) , (3.18)
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ilot) —wyt, —w3t3 o,

t~1

(2,2) _ t h ) fy )
§2 (t,t0)= fxodtl fto dt, fto ats fto iy, 3 gzlgkzg"sg:f Tk, Tk, Ok, s,
ky,kp ks ky
XM, ()M, ()M (¢)H] (1) , (3.19)
(2,2) ot I ) f3 . . Hot —oyty oty —w4ty) + 1
892(t,10)= f,odtl f,o dt, f,o dt, f,o dty, 3 8k 8k,8k8k,C ay dy,dy ay,
rkpkyky
XMy (8)My (£)B (83)M] (2,) . (3.20)

The assumption (3.16) is not essential in the following formulation; however we will take this for simplicity. Then, the
photon counting rate (3.15) becomes

t t t
P(o)=['dt, [ 'dr, [ “dt; [ dt,2Re[(D+(ID+(IID)] (3.21)
0 0 0 ]
=P, (1)+P,(t)+P4(2) , (3.22)
where (I), (II), and (III) are given by

(D= 2 g:lgkzgksg;;f:‘(k] )fs(k3 )f,'(kz)fi'(k“)ei(k]_ks).r_i(kz_k").ro

k. kykyk,
Xe-m,u—tl>+m3u-t3>—.-w2u2—zo)+,~w4<r4—ro)<lMlel(tl)Mli(tz)z\?ka(g)M{j(mloM> , (3.23)
(D= 3 gf g8 8L (k) (ky)f(y)f (lep)e 12Tk ™o
K.k, k; kg
xe—iml(z—tl)+im2(t—t2)—img(t3—10)+iw4(t4—to)(1M|Mkl(t1)Mkz(tz)Mr;(Q)ME(QHOM) , (3.24)

(III)Z 2 g:lgkzgltagk4f:(kl)fs(kz)f,'.(k3)fi(k4)ei(kl_kz)'r+i(k3_k4).r°
kp ko k. ky

—io(t =t )iyt —t))tiwyty—tg)—iwyt, —t,

Xe "yl My (108, (08 (1M ()]0, ) (3.25)

Here, we introduced the symbol Tt in order to remind us of the fact that the time evolution is generated generally by a
nonunitary operator. In deriving (3.21), we used the expressions of the matrix elements

—ifl iA
(pile” "afl(t)ay (1,0afl (1), (10e"*|p,)
~ —i i
=33 (kEle Ml ()0 (1)all (1,3, (e R0 lp, 5) £, (D)FA (B e
k,k'p,p’

—e —lot tioytgtio,

ik-r—ik’-r—ip-ry+ip'rg

ik, 1—ikyr—ik, 1y +ik, 1y

T px (k) (ks f (kg ) f (K e , (3.26)
—ifl il
(ple” " all()al](1y)ay (13)3 (1) lp,)

ik 1—ik,) r—ikyry+ik, T

(k) fs(ky)fi(ks)f*(kyde , (327

= et Hiogttia —iw4t0f‘
s

—ifl i
(pile” " all ()@l (1, )y (13)ay (1) 1p;)

ik r—ikyr+ikyry—ik,r)

(kl)fs(kz)fi‘(k:;)fi(k“)e ’ (3.28)

—e —iaogt +iw21—iw3to+im4rof‘
s

and the property the expressions for the integrands (I), (II), and (III) in

(1) 410)+<1] 10) =2 Re( 1] 4]0) . (3.29) P (t) further reduce to
When the incident pulse is composed of only photons (D)= BT T )FS‘(tS —t,)

whose wave vectors are parallel with a wave vector k;,

and when the detector is supposed to detect only photons XF,(t,—t3)F;(t,—t;)F*(t,—t;)

whose wave vectors are parallel with a wave vector kg,

ie., X 1yg | M (1M (1) (15001 (20104, )
fl‘(k)=fi(k)8k||ki’ fs(k)=fs(k)8k"k' , (3.30) (3.31)
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iQ (e, —1,))—iQ;(t;—t,)
(II)=8 s 01 2 i3 4Fst(ts_t1)

XFS(tS_t2)Fi(t3—'t[)Fi*(t4_t,’)
X ( Ly | M (1M (0)M I (e5)M ] (2,)]0,,)
(3.32)

(III)=eiQ‘“‘7'2)+m"(t3-t4)F5*(ts—tl)
XF(t;—t,)F*(t;—1t,)F(t,—t;)

X {1y | M (¢ )M (1)L (1)M]T (2)10,,)

(3.33)
where we defined
e fitke T Mt
K
=Ft—t)e M@0, (334
—io(t . —t)
2eefilke F M(1)
3
=F*t,—ve T M (1), (3.3
with
o=ck, Q;=ck;, Q,=ck,, (3.36)
To r
=to— cos6;, ts=t—;coses. (3.37)

Here, we put k =|k|, k;=1k;|, k,=|k|, ro=Ir,|, and
r=|r|. The angles 60, (7/2<6;,<w) and 6,
(00, <m/2) are shown in Fig. 1. The real function
F;(1) is the envelope function of the incident pulse,
whereas the real function F,(z) is the apparatus function
of the detector. The frequencies {2; and (), represent, re-
spectively, the mean values of the frequencies constitut-
ing the incident and the scattered lights. The time ¢, indi-
cates the moment when the incident pulse, generated by
the source at f;, comes to the matter, and the time ¢
represents the instant when the photons, which are going
to be detected at ¢, are emitted from the matter. Note
that the existence of the apparatus function F,(¢) allows
us to observe the time-resolved spectrum in spite of the
Heisenberg uncertainty principle with respect to time and
energy.

The general formula of the time-resolved spectrum of
the photon counting rate for the second-order optical
processes is given by (3.21) with (3.31)-(3.33).

IV. AMODEL OF THE MATTER SYSTEM

Now let us apply the formula derived in the previous
section to an analytically solvable model of the localized-
electron and phonon system [3]. The localized electron
has three electronic states which are optically active, as
depicted in Fig. 2. The incident photon with energy w; is
absorbed by the matter with the transition of the local-
ized electron from the ground state |1,1) to the inter-

FIG. 2. Energy diagram of the three-state model.

mediate state |3,3), and the photon with energy o, is
emitted from the matter with the transition of the local-
ized electron from the intermediate state |3,3) to the
final state |[2,2). This is the typical situation of Raman
(w; > w,) or anti-Raman (w; <@, ) scattering. The energy
of the intermediate state is modulated dynamically (fre-
quency modulation) by the phonon interaction mode
which dissipates its energy to the rest of the phonon
modes. The modulation of the intermediate state causes
the emission of luminescence which greatly reflects the
characteristics of the matter system.

We assume that the phonon modes besides the phonon
interaction mode are in the thermal equilibrium state
specified by a temperature B! (kz=1). The interaction
mode can initially (at t =¢,) be out of the equilibrium
state. We also assume that the electronic state at the ini-
tial time ¢ =t is in the ground state |1,1).

The matter operators M, for the model are given by

Mki=c1]‘c3, Mks=c§c3 , 4.1)

where c; (e 7 ), with j =1,2,3, are the creation (annihila-

tion) operators for the jth electronic state. The time-
evolution generator A M becomes

gM-;HM_ﬁM-{-iﬁph , (4.2)
with
Hy=H +H, +H,, , 4.3)
Hy= é wjcfe;, Hy=ogb'b @4
ji=1

H o, =8btbC§C3 ’ 4.5

fl,,=—«[(1+27)(6"6 +5"5)—2(1+7)bb
—2mb"b ") — 27 (4.6)

where b(b) is the creation (annihilation) operator of the
interaction mode of the phonon system, and 7 is the equi-
librium number of the interaction mode,

1
A=—. 4.7)
ePr 1
The damping generator ﬁph describes the dissipative time
evolution of the interaction mode due to the coupling
with the rest of the phonon modes, which are assumed to
be in a thermal equilibrium state with a certain tempera-
ture B 1.
For simplicity, we will assume that the initial condition
for the matter system is given by

104 =11,1)4l0) , 4.8)
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where |1,1),, means that the electronic system is in its
ground state, i.e.,

cle 1, 1) =1, (4.9)
¢je;lia=0 (for j=2,3), (4.10)

and the initial thermal vacuum |0ph) for the interaction
mode is specified by the thermal state condition

bl0,,)=s5"10,) , @.11)
with
f= (4.12)

1+n ’

where n is the initial phonon number of the interaction
mode.

With the thermal state condition (4.12), we can obtain
moments with respect to the corresponding thermal vac-
uum [0,), e.g.,

(1l6"bl0,,)=7(1/6'5"0,,)
=/(116"0"0,,)
=f(1lbb0,,) , (4.13)

(L | Mg (e )M (1) (1) (2)]0, ) =e

=il (t,—t,)_+ . —ifl
t el-ph'3 4c§c

XT,C;3e

—iw,(t, —t3)+iw3l(12—14)< 1

leading to

(16%b10,,) =n . (4.14)
At the second equality in (4.13), we used the commuta-
t1v1ty between the tilde and nontilde operators, i.e.,
[b bT] 0, and, at the th1rd equality, the thermal state
condition (2.5), i.e., {1|5T=(1|b.

Taking ¢, as the time at which all the representations
(the Heisenberg, the Schrodinger, and the interaction rep-
resentations) coincide, we see that the deexcitation opera-
tor M;(t) of the matter system, for example, has the form

iA(t— —if(t—
Mj(t)=e' (¢ to)Mje iH(t—1g) 4.15)
—im3j(t—to)eiﬂel_ph(t—-to)
—ift _
Xc;rc;e Herpnlt 10 , (4.16)
where 0;; =w;—w;, and
ﬁel-Ph =He1-ph —ﬁel-ph +iﬁph (4.17)

The matrix elements in (3.31)—(3.33) can be treated as

—ifl, . (t,—t,) —if g (1,—1;)
el-ph'?1 2013‘C el-ph'f27 13

Mlc;CSe

(t,—t
l-ph'°4 O
el-p! |0M

b

—log,(t) —ty)tieg (t,—t,)

g*(t,—ty,t,—1t3,t3—1,0,1;0,0;1,0) , (4.18)

Ly | M (28 ()M 4 W (£4)]10y ) =e 21TV GT o w oyt 1 —1,0,T51,T;1,0) (4.19)

(Lol M (1) B ()M ()M (1)]0y ) =e ™ T2 TN ™ g (1 1y — 1,0, —1431,0:1,T31,0) (4.20)
[

i —iAQ ( iAQ, 4 ~ =~
where we introduced (1)*= AQ (r+p)+idQ;(p+ >g(7.,”,0,;0’1;0’0;1’0)
8(t1totsi Ay, A1 Ay, A3 45, 43) XF,(t, =t )F2(t,—t, + 7+ p)F2(t, —7—1,)

={ylGl; 4, 4)) XFy(t,—1—p—o—1,) , (4.26)
XG(ty; Ay, A,)G(ty; A5, 43)[0,,) ,  (4.21) —iAQ T+iAQ o ~ = =
25 A2 £270055 430 43 10m (I)*=e %% (21 50,7;1,7;1,0)
with
B XF(t;—tFHt,+1—t ) )F*(t,—1—pu—t;)
G(t;;4;,4;)= exp(—lﬁ(lpht ), (4.22)
XF(t,—1—p—0—t,), 4.27)
ﬁ(j) ﬁ l — A T Z~T -+ . l T+i g
don=Han ' =g4;b'b —g A;b'b+ifly, . 4.23) (D)= % 4% g (£ 4. 6:1,0;1,1;1,0)

Here, for simplicity, we further assume that the pho- XFHt,—t)F(t, 17—t )F*t,—T—p—t,)
non interaction mode is in thermal equilibrium with the Y o P '
rest of the phonon modes, i.e., n =7i. Then we have XF(t,—7—pu—o-—t;), (4.28)
A,,10,, ) =0 which leads to

where we introduced the notation
f1,,10,,) =0, (4.24)
or T=t—t,, pu=t,—t;, o=t;—t,, (4.29)
AY,10,,)=0 (for 4,=4,=0) . 425 and
Inserting (4.18)—(4.20) into (3.31)-(3.33), we obtain AQ;=Q,—w3, AQ=Q,—w;, (4.30)
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0% e, 13,3 AY=1g(4;+ 4 —5"5), (4.32)
Y ‘= _ & 2 bt BB+
: 12,2) fij=—2>4,6" +5'5)+11,, , 4.33)
o e Y =A,(d]d,+dd,)+2us, 4.34)
ay . . 13,3) =M1} +2«7s, 4.35)
: »>Y 122> where
D Aj=—kp;, (4.36)
o u T
1 ig -
s;i=— |1+—=4.— , (4.37)
o) 13,3) I om 2 i Pj
V.. ) 2 ) 172
e 12,2) _ 18 =18 2
) pi=1 |1+ 2 A;| t+4n P A; , (4.38)
11,1
o BT A=4,—4; . (4.39)
FIG. 3. Diagrammatic expressions of the second-order opti- v t
cal process for the three-state model. The solid line represents The operators dj’ dj ’ dj »and aj are defined by
the time path among the electronic states described by nontilde dr=(Q; Hvpv (4.40)

operators, and the dotted line by tilde operators.
where we have introduced the thermal doublet notation

d;

di= |34
d;

In Fig. 3, we give a graphical representation of J
(4.26)-(4.28). We chose to look at the complex conjugate

for easy comparison with Ref. [3], i.e., (I)*, (II)*, and (IIT) and the matrix
above correspond, respectively, to (III), (II), and (I) in

) (4.41)

.o
,b_b’f

122 (@, — A, A
Ref. [3] Q= _ (a] }\.I)/C (a] j)/cl ’ (442)
In order to evaluate J 24, 1 1
g(tptzyt3§A1y11§A2,12;A3,Z3) with
further, let us rewrite the time-evolution generator Aav _ig A _
in (4.23) as a;= —2‘ Aj +x(1+27), (4.43)
A=A +ift; (4.31) c =2(147) . (4.44)
with Then we have
J
8ty 1yt 4y, ‘Zx;Azy 12;A3, 33)Eg(t1,t2,t3;1,2,3)
= lM‘eAiﬁ‘o”tlekiﬁgl’tze‘iﬁ}f’t3eﬁ']t1eﬁ;t2€ﬁgz3IOM>
=eZKﬁsltleZKﬁszlzeris3t3S(tl’tz’ts; 1’2’3) ’ (445)
with
0 i "
S(ty,t5,1551,2,3)=(1,le e 22 330, ) , (4.46)

where we used the properties
[ﬁ(()j) , ﬁ} 1=0, therefore [A’, ﬁ}' 1=0, (4.47)

—:fa —_f2) —if3)
lﬁo rle 130 t2e lﬂo t3=

(1yle 1. (4.48)

Solving the differential equation for S (¢,,¢,,%5;1,2,3) with a lengthy but simple algebraic manipulation (see Appendix B
for details), we finally arrive at

ol
;0,0;1,0 (=g

1
0, 1

8| K0, 4,0,

0,

=gi(7',‘u,(7) ’ (4.49)
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where
s(1)
g+(7p,0)= exp {2«n s(—1) 7+s(1)o
) -1
X l—r‘:s(l)[l-—K(a,l;C3) 1— ls(—-l)/s(l) K (u,0;C,)[1—K (7,£1;C,)] ] , (4.50)
[

with where m =—1,0,1.

V1 (11 _ Assuming that the time resolution F,(t) of the detector
K(om;C)=1={1=mp(m)[C—s(m)]}e, (1), 5D at r is equal to the width F;(¢) of the incident pulse which
C,=C,K (u,0;C;) , (4.52)  is supposed to have the Gaussian-form envelope function
C,=s(1)+[C;—s(1)]K N0, 1;C5) , 4.53) v
Cy=n""', (4.54) F(=F,(n= [%} e ¥, 4.58)
e, (t)=1—¢ 2pimt (4.55)

R 1 ; we obtain as a final result for the photon counting rate
stm)=s(4;=m)=—— 1+2im —p(m)|,  (4.56)
2n P(1,,AQ,,AQ,)=P,(t,,AQ,,AQ, )+ P,(t,,AQ,,AQ;)
2 172
p(m)=p;(4;=m)= 1+E%m +4n-2%m] ) +P4(1,,AQ,,AQ;) , (4.59)
4.57) with
i
_ @ © @ —iAQ (t+p)+iAQ (p+o)
Pl(tS,AQS,AQ,-)——ZRefo dffo d/.l.fo doe Mt 7,008 _(Ty0,0) (4.60)
) o © —iAQ T+iAQ;0
PZ(tS,AQ.s,AQ,-)=2Ref0 d'TfO d,ufo doe Nty Ty 0)g — (T a,0) (4.61)
© © © iAQ T+iAQ 0
P3(ts,AQS,AQ,-)=2Ref0 d’rfo dyfo doe N3ty Tty 0)8 1 (T ,0) (4.62)
where we introduced the functions
, 1172 5
(s, T, 0)= ey exp‘—T [[%('r-i-a)—ts]2+%('r+p)2+%(a+p)2] ] , (4.63)
, 1172 )
Mol 7o) = | 2 expl—T[[%(7'+a')]2+%(T+u—ts)2+%(o+y—ts)2]l, (4.64)
N5(t, T, 0)=1,(t5, T 10,0) . (4.65)

Here, we put the origin of time at ¢;=0 with the condi-
tion that the distance between the light source and the
matter is long enough, and that the detector is quite apart
from the matter, i.e., ry,7r — ©,t,— — ©,t — o keeping
t, finite [see (3.37)].

The result (4.59) is in complete correspondence with
those derived by means of the density operator method
where the phase-space method was used to solve the mas-
ter equation of the system [3].

V. SLOW AND FAST MODULATION

The effect of the phonon modulation can be character-
ized by the parameter [5]

= gVa(a+1) .

o (5.1

[
For a slow modulation, a >> 1, whereas for a fast modula-
tion, a << 1.

A. Slow modulation

In the case of slow modulation (a>>1), g4 (7,u,v) in
(4.50) reduce to

gilru,0)=[1+A—ah(r,u,c)] le 2Alrto)

1
1+n

0
e—2xn(r+a) 2 e—Blw[h (T,[.L,O')]I ,
1=0

(5.2)
with
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h(t,u,0)=e —i[£g —2ki(1+2m)]r, —i[g —2ki(1+27)]o

__(1+ﬁ)(1___e—2ku)(l_e—i[g—2K1(1+2ﬁ)]a)

X(l_e‘—i[ig—Zki(l+2ﬁ)]T) (5.3)
ze‘i[ig-in(l—ZrT)]‘re—i[g—2xi(1+2r_1)]a (5.4)
We see that (5.2) with (5.4) can be derived by
& —gle. —iLIAGEV LD
(T, ’0,)= e Blwe ! el-ph '®
B+ TH 1+ﬁ,§0
xe—i<l,ﬂﬁ(e:plh)f1,7)o ’ (5.5)
with
(LTIAYL LT =g 4,1 —2ki[A+(1427)] . (5.6)

The expression (5.5) indicates that, for slow modulation,
the scattered light consists of the superposition of each
light scattered by the intermediate electronic state, cou-
pled to the Il-phonon state (/=1,2,3,...), with the
weight e#'® /(147 ) of the canonical ensemble.

B. Fast modulation

In the case of fast modulation (a << 1), as can be seen
in the investigation of Appendix C, the modulation of the
phonon system can be taken into account by a random
force operator d Q) (¢t)=d Q') of a stationary stochastic
process, i.e., a quantum Gaussian process,

(dQ(1))=(dQ(1))=0, (5.7)
g dU1dQ(s)) =g*(dQ(1)dQ(s))
=2k2a’e ~ ' ~sldr ds . (5.8)
The latter correlation reduces to
gXdQ(t)dQ(s)) =g*(dQt)dQ(s))
=4ka®5(t —s)dt ds , (5.9)

in the limit of k— o, i.e., the limit of extremely fast
modulation yielding a quantum Wiener process.

The time evolution of the system is described by the
quantum stochastic Liouville equation of the Stratono-
vich type [11-13] as

dlo,(t))=—iH dto|0,(1)) , (5.10)
with
A, dt=ngAdt+gAdNt)—gAdd0) . (5.11)

The symbol o indicates the Stratonovich stochastic multi-
plication. The stochastic Liouville equation (5.10) can be
written in the form of the Ito type equation [11-13], for
the extreme limit k— o0, as

dlo,(0)=—iF,,0,(1)) , (5.12)
with
H,,dt =8, dt —i2a® A%t (5.13)

Taking the random average ( --- ) of (5.12) with

respect to the random process (5.8), we obtain the
Fokker-Planck equation of the system as

%IO(I))=—1‘I?|O(I)) , (5.14)
with

|0(t)>=<|of(z)>> (5.15)

ﬁ=<f{,,,>=ﬁg2—i2xa222, (5.16)

where we used the characteristics of the Ito multiplica-
tion

(A4dQ(1))=0. (5.17)
This Fokker-Planck equation gives us
g4 (1,u,0)= exp{[ Fifig —2xa’]7}
X exp{[ —ifig —2ka’]o} . (5.18)

Note that the Langevin equation for c; of the Stratono-
vich type is given by

dey(1)= —i[(wy+7g)+g dQD)]ocs(1) . (5.19)

This shows that, for fast modulation, the system reduces
to the model of phase modulation investigated by Kubo
when he introduced the stochastic Liouville equation
[21,5] (see also [22]).

VI. PROFILES OF TIME-RESOLVED SPECTRUM

In Figs. 414, we list the profiles of the time-resolved
optical spectrum in the model of the three-state localized
electron and phonon for typical parameters. The profiles
P(t,,AQ,) are shown with the axes AQ and t,. The
former is the distance of the frequency , from the ener-
gy separation w;, between the intermediate and the final
electronic states. The latter is the time when the matter
emits the absorbed light. The origin of the time axis, i.e.,
t, =0, represents the moment at which the peak of the in-
cident pulse is scattered by the matter.

For every profile, we fixed the parameter 6 at the value
5=0.5, which is the width of the envelope function of the
incident pulse, and of the apparatus function of the de-
tector. The other parameters for each profile are listed in
Table I.

We put AQ,;=1.0 for Fig. 4, and AQ;=—1.0 for Fig.
5, while the other parameters are the same. We see that
the former intensity of the spectrum is larger than the
latter. This is because, in the former case, the incident
pulse is absorbed and/or scattered extensively by the
matter, since there are a lot of modulated intermediate
electronic states in the energy region larger than w;, cor-
responding to the number of phonons of the interaction
mode. On the other hand, in the latter case, only the tail
of the incident pulse, which is in the energy region larger
than o;,, is absorbed and/or scattered by the matter. We
observe also that, in the former case, the Raman and
luminescence components are hard to distinguish, and
that, in the latter case, they are well separated. The Ra-
man component is found in Fig. 5 as a Gaussian profile
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FIG.5. AQ;,=—1.0, g =1.0, 2«=0.5, 7=10.0, a=21.0.
FIG.4. AQ;=1.0, g =1.0, 2«=0.5, 7=10.0, a=21.0.

P( s, AQs)

centered at the origin, (¢,,AQ,)=(0,0), which reflects the
position and shape of the incident pulse. We will investi-
gate the case AQ);=—1.0 much more deeply in the fol-
lowing. Note that time and frequency in every figure are

scaled by |AQ;], i.e., t, should be interpreted as |AQ, |z, ',{é;, &
and AQ, as AQ, /|AQ,|. .z{,g,;,;,;,;,',,,
. . I/

Between Figs. 5 and 6, we made 2k ten times larger, Lz

keeping the other parameters fixed. We observe that, in

Fig. 6, the intensities of both Raman and luminescence A48s
components are reduced approximately by a factor of 1,
and that the peak of the luminescence shifts to larger
P(ts, AQs)
TABLE 1. Parameters for each profile.
Fig. no. AQ; g 2k n a
4 1.0 1.0 0.5 10.0 21.0
5 —1.0 1.0 0.5 10.0 21.0
6 —1.0 1.0 5.0 10.0 21.0
7 —1.0 1.0 5.0 5.0 1.10
8 —1.0 1.0 5.0 2.5 0.592
9 —1.0 2.0 5.0 5.0 2.19
10 —1.0 0.5 5.0 5.0 0.548
11 —1.0 1.0 10.0 5.0 0.548
12 —1.0 1.0 2.5 5.0 2.19
13 —1.0 2.0 0.05 1.0 56.6
14 —1.0 1.0 10.0 1.0 0.141

FIG.6. AQ;=—1.0, g =1.0, 2k=5.0, 7=10.0, a=2.10.
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AQ, which is consistent with the characteristics observed
in the absorption spectra of the model investigated in
Refs. [23,19]. As 2« becomes larger, so does the width of
the phonon levels. Therefore, for larger 2«, the overlap-
ping among the adjacent phonon levels is getting larger,
which may cause the shift of the peak of luminescence
component to larger AQ);.

Among Figs. 6, 7, and 8, we varied 7, which indicates
the temperature of the matter [see (4.7)]. When the value
of 7 gets smaller (i.e., the temperature of the matter gets
lower), the profile P(z,A(),) becomes larger, and the posi-
tions of the peaks for Raman and luminescence com-
ponents become closer. The lower the temperature of the
material becomes, the fewer the number of phonons and
the smaller the influence of the modulation on the inter-
mediate electronic state. This is again consistent with the
observations in Refs. [23,19].

Among Figs. 9, 7, and 10, we changed g. We see that,
as g becomes smaller, the photon counting rate becomes
larger. Since the value of g measures the strength of cou-
pling between the intermediate electronic state and the
phonon interaction mode, the smaller g indicates that the
modulation to the intermediate electronic state is getting
inefficient. This makes the intensity of the profile larger.
Note that the distance between the neighboring levels of
the interaction mode is equal to g [see (5.6)].

Let us consider here how the parameter a character-
izes the profiles. For Figs. 6 and 9, the values of a are
close, and the profiles are alike. Similarly, Figs. 8 and 10
have nearly the same profiles. On the other hand, Figs.

P(ts, 4Q;)

{2
N
o"”.'" =/
“‘7//, /9
27
A
/I//,I

N8 TN

N,
2
.'¢/
/1
;’;”O
i

L7
7z

e

{7
".
0'.

Y
(X
:’/".
'0
,'......
LR
22

o

’/
Y
X/
'//,///
(/

i
‘/ (/
A
“
A

4
K555
9
Wil
R
il
GFI

()
(X)
%
{/
4
L
<
2

()

()
(X
’NO

0‘,0,

"/;:0

%
74

6
0
Y,

0

FIG.7. AQ;=—1.0, g =1.0, 2k=5.0, i=5.0, a=1.10.

NN
AR
RS

FIG. 8. AQ;=—1.0, g=1.0, 2k=5.0, n=2.5, a=0.592.

P( tSl A'QS)

L7

L 75552,

'. 747, &,

G Z>
",, I//,,/,/,/’/é,_,,_ II"... l

T s

<2
o, 227
OO 19% . . &,
LA K )55 L7
R Z A /K547 7L )L >
] 7SS
AL LS
LA

&7

FIG.9. AQ;,=—1.0, g =2.0, 2«=5.0, =5.0, a=2.19.



50 TIME-RESOLVED OPTICAL SPECTRUM FOR TRANSIENT ... 133

P(ts, AQq)

P(ts, A Q)
5>
o .V,
9V, 77, <2
S IR
(GRLIEZEZ AR KRR
..00,,{/0_,,:',,,',{4'.0 QR
&2

<5 KA
LRSS [ X IR RIS
(R p55ZH | TN ORI
,‘{,’;{'/I,W//I"’O’f”

%
o2 My W77 425
4y, ///' ‘ L7
5 "'

Z|

)
:
Pose| -5
| 40
2P

/ , 2R3
Iy 15
LA

\
AN
LN

>

\
\

-4 5 FIG. 11. AQ,=—1.0, g=1.0, 2k=10.0, 7#=35.0, a=0.548.

FIG. 10. AQ;=—1.0, g =0.5, 2k=5.0, 7=5.0, a=0.548.

11 and 12 have, respectively, just the same value of a as P( ts, AQs)
the cases of Figs. 10 and 9, but their profiles are not like
each other. Rather, the profiles of Figs. 11 and 9 look
similar, as do those of Figs. 12 and 10. Therefore one
cannot distinguish the shape of the luminescence profile
only by the parameter a for the present dynamical model.
This is a contrast with the cases in the stochastic model

ts
where the parameter a characterizes the profile of the
time-resolved spectrum [5]. -5
In Figs. 13 and 14, we put the limiting cases of the slow AQ,

and the fast modulations. The former can be analyzed by
substituting (5.5) for g (7,u,0) in the formula (4.59), and
the latter by substituting (5.18) in (4.59). In Fig. 13, we
observe the phonon sideband in the profile of the
luminescence component. Note that the widths of the
phonon sidebands are convoluted by that of the ap-
paratus function F,(¢), causing a larger width than the
expected one, i.e., 2x[7 +(1+27)I], for the Ith sideband
[see (5.5)]. In Fig. 14, we see that the luminescence com-
ponent changes its profile with respect to A, from a
Gaussian to a Lorentzian shape in the early stage of its
time evolution. This is consistent with the investigation
performed by Kubo, Toda, and Hashitsume [5].

Note that in the case of k=0 only the phonon levels
excited directly by the incident pulse can emit lumines-
cence. On the other hand, in the case of g =0, only the
Raman component appears, since there is no modulation
due to phonons for the intermediate electronic state, i.e., FIG. 12. AQ;=—1.0, g=1.0, 2k=2.5, n=5.0, a=2.19.
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P(ts, AQs) X0.1

FIG. 13. AQ;=-—1.0, g =2.0, 2«=0.05, 7=1.0, a=156.6.
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FIG. 14. AQ;=—1.0, g =1.0, 2k=10.0, 7=1.0, a=0.141.

a purely quantum mechanical light scattering problem
mediated by three electronic states.

VII. DISCUSSION

We derived a general formula of the time-resolved opti-
cal spectrum for transient resonant light scattering by
means of the formalism of NETFD. The formula is ap-
plied to the second-order light scattering due to a local-
ized electron which has three optically active electronic
states whose intermediate state is dynamically modulated
by phonons.

The derivation of the formula of the spectrum and its
application showed that the algebraic manipulations
within NETFD serve a transparent and straightforward
methodology which enables us to treat nonequilibrium
transient and dissipative systems, common in macroscop-
ic quantum systems (e.g., mesoscopic quantum systems),
much more easily by a similar process as in quantum
mechanics and in quantum field theory.

The investigations of the profiles of the luminescence
component in time-resolved spectrum revealed, by a sin-
gle formula, how the stochastic character comes out in
the fast modulation limit, and how the dynamical
behavior of the phonon system causing the modulation of
the intermediate electronic state comes out in the slow
modulation limit. This was possible with the help of the
solvability of the model, which gave us the analytical ex-
pression for the formula of the profile which mediates be-
tween the fast and slow modulation limits.

Although we restricted ourselves to a simple case
where the phonon interaction mode is in a thermal equi-
librium state with the rest of the phonon modes, the
present formula can be applied to a further nonequilibri-
um transient situation where the phonon interaction
mode and the rest of the phonon modes are initially out
of equilibrium. Application of the derived formula to a
more realistic model of a localized-electron and phonon
system without the introduction of the phonon interac-
tion mode, and to other systems, such as excitons, would
be interesting future problems.
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APPENDIX A: LINEAR RESPONSE
OF MATERIAL SYSTEMS

Let us consider the linear response to the external radi-
ation field of the system specified by A. Since the defor-
mation of the thermal vacuum is given by

510(t)) = ~ RS V(2,21 0l0(1,)) (A1)
with
S§N(t,t0)=—i [ 'dr'Agy(r) (A2)
fy
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the linear response of an observable

(=3 Ql(n+H.c. (A3)
k
is given by

8Q(1)=—33 fotdt't‘bq,k(t,t')Re[gkak(t')], (A4)
q k

with

and that the field is given by

Reg, o, (t)= Reg af(t)=|g o, | cos(w t +¢) . (A7)

APPENDIX B: DERIVATION OF g (,,t5,t3)

Rewriting the function S(¢,,¢,,¢3;1,2,3) defined by
(4.46) as

S(tl,t29t3;l,2,3)=(lMlenltI|OM(t2,t3;2,3)> y (Bl)
@ (61)=i {1 |[Qg(1), M (t)]|0) ) +c.c.  (AS) with
Here, we assumed that the state of the external radiation A% A
field is the coherent state defined by |_OM(t2,t3;2,3)>=e 226735310,,) , (B2)
ala)=apla) , (A6) we have
J
d e N 103 23)
d_tls(tl,tz,t3,1,2,3)—2)\v1<lldldle |0M(t2’t3’2’3) (B3)
al_kl f(tl,tz,t3;1,2,3)—(al+}»1)/C
=c|1— t1,t,,t41,2, B4
¢ ] I—f it 52,3) o riishd) (B4)
=— lgi—ln[l—r +re2k"'] }S(tl,tz,t3;l,2,3) , (BS)
1
where
fl(tl)t2yt371’2)3)
t ’t ,t ;1) b = ’
A NPT ATRTIC ) (B6)
with
fl(tl’t2’t3;1)2)3) ‘r3ll fl(tz,t3;2,3)
—_ 1°1
Faltytyt531,2,3) |~ Q1€ Falty,13:2,3) (B7)
and
[C_(al_}bl)]fl(tz,t3,2,3)
r=r(t,,ty;1,2,3)= .
2t [c—(a;—A)1f1(tp15,2,3) Flc +(a;— ) fa(tsr1a,2,3) B8)
[
Here, f(t,,t5;2,3) and f,(t,,t5;2,3) are defined through which are defined by
the relation
d, Yt =B (t,,t,,25;1,2,3)*"b,(2,)", B12)
at | |0t 1332,3)) Tt =B, (8 "B~ 1y, 15,531,2,3)%
_ Sf1(t,13;2,3) eﬂ;’,z ;',35”0 y (B9) with the help of the time-dependent Bogoliubov transfor-
T fa(25,2532,3) € M7 mation
and are given by Z, 0
B(t,,t5,t5;1,2,3)*= 0 Z
F112,1532,3) —n-1 T3hyty H—1 T3ty —1 f ?
Falty,1352,3) | TQ1 Qe 77702 Qse TT05 g | 1 = flty,t5,151,2,3)
X b
(B10) —1 1
In deriving (B5), we introduced the annihilation and (B13)
creation operators with
71(2y) Z,\Z,=[1—f(t,,t5,15;1,2,3)] " B14
i H= yHu 7t =y ft) —7(2,), 122 = 1= f (81, 15,1351,2,3)] 77 (B14)
1

(B11)

Here, f(t,,t,,t3;1,2,3) is give_n by (B6), and the time-
dependent operators b (¢)* and b(¢)* are defined by
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, , by(ty) e e
by (0, ymeMirpg Mt [5*1T(: )l ’ (Lyle 9 #(e)=0. (B17)
LIS The differential equation (BS) can be solved as
- M, —, Ml ~ (B15) 2Rt 1—1
byt F=e Vlpte '=(bl(¢;) —b,(z,) . S(ty,tp,t3;1,2,3)=[1—r+re” "']71, (B18)
L ) . with 7 being given by (B8).
The annihilation and creation operators satisfy With the help of the time-dependent Bogoliubov trans-
formation (B13), we can rewrite {1”, defined in (4.35), in
y1(£)]0p(25,25;2,3)) =0, (B16)  terms of the annihilation and creation operators as
J
fI"=A/dld, +dld)) (B19)
_c 2 a; _A'l al+;\.1 N
T Z; {1~ c ] - c YY1,
a, —A +A
+Z]ZZ {1_ ! ] [f(tl,tz,t3;l,2,3)'— ! (7f‘171,t1+1)
a,—A a,+A
+ZIZ2 f(tl’t2’13;1’2’3)— ! c ! ] 1— - - Y#t]Yl,tl
2 al "')\.] al +A’l
+Zl f(tlat21t3;172)3)_ f(tl’t27t3;1’2’3)_ yf‘lyiﬂl “+t.c. s (BZO)
where APPENDIX C: THE AUTOCORRELATION OF gb(2)b (1)
Vi, With the help of the thermal state condition (4.11), the
7/’“-'1 = . # , 7—,111’“ = [.},fttl T, ] (B21) autocorrelation of the operator ngb can be calculated as
ot
’ (gb™(0)b(1)gb ()b (5)),
is defined through the relation = lphlgb )b (t)gb”(s)b (S)|0ph) —gzn ()n(s)
o _ﬁlltl u n’1'1 = o "ﬁlltl—p nlltl
vit F=e vige ", Tale)=e Vi€ =gln(s)[1+n(s)]e =9 t>5, (cy
(B22) where
Here, we dropped the subscript j, for simplicity. n(t)=< lphlb”(t )b ( t)loph Y =7+ Ane "2 (C2)

The expression (B20) is the normal ordered form of the
generator f1”, whereas the expression (B19) is the diago-
nalized form of the generator. Note that, in the usual
quantum mechanics or quantum field theory, the opera-
tor which diagonalizes a Hamiltonian and the operator
which defines the normal ordering are the same. It is a
special feature in transient nonequilibrium situations that
the diagonalizing operator for the time-evolution genera-
tor within NETFD is different from the normal ordering
operator.

with An =n —#. In the stationary case, i.e., An =0, the
autocorrelation reduces to

(gb™ ()b (1)gb M (s)b(5)), =g*m(A+1)e 29
t=>s . (C3)

We see that the parameter a is the ratio of the intensity
of the correlation, gV ni(77+1), and the relaxation rate of
the correlation, 2«.
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FIG. 1. Setup of the system under consideration.



P(ts, AQ:s) %01

3

==
=)

—_—
==

=
==
—

=
S

—
2z

—
==
—

27
=

—_———
==

—

Z =
—
4

——
—
F—2

—
_—
=

N

——
—-—
r—

s
—

B
NS
o

——

10
AQs

FIG. 13. AQ,=—1.0, g =2.0, 2k=0.05, =1.0, a=56.6.



P(ts, 4Q5) X041

W%
o7 P
)
5] ZHXK
Y aam NS
AT
FLITIRES
o Y
s

s
XY

=0.141.

FIG. 14. AQ,=—
,=—1.0, g=1.0, 2x=10.0, 7=1.0
] =LY, a



