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1. Introduction 

1.1  Adenosine and its involvement in sleep regulation 

Adenosine is a purine nucleoside structured as an adenine attached to a β-D-

ribofuranose moiety. Its derivatives are widespread in nature and some of them have 

important roles in biochemical processes, such as energy transfer as ATP and ADP or 

signal transduction as cAMP. According to current knowledge, adenosine regulates 

cellular activity by acting on four evolutionarily well-conserved metabotropic receptors:  

the purinergic G protein-coupled A1, A2A, A2B, and A3 receptors. Adenosine is not a 

neurotransmitter or a typical neuromodulator, because its formation can be increased 

by various processes in all cell types, and in all cell parts. It is well established that 

adenosine modulates sleep by acting at A1 or A2A receptors. Evidence suggests that 

A2AR suppress wakefulness to induce sleep, i.e., induce sleep gating, however, A1R 

predominantly mediate sleep need. 

1.1.1 Cellular adenosine metabolism 

Metabolism of adenosine is well studied and established (Figure 1, Zhou & Lazarus.  

Adenosinergic control of sleep/wake behavior. Handbook of Sleep Research, 2019, in 

press). Basically adenosine is formed during the hydrolysis of AMP or SAH (Fredholm, 

2007; Schrader, 1983). It can be formed from SAH by the enzyme SAH hydrolase, which 

can also act to convert adenosine when there is excess L-homocysteine. This process 

happens intracellularly and the enzyme bi-directionally maintains constant presence of a 

defined concentration of adenosine in the cell, even though the contribution of SAH 

hydrolase to the generation of adenosine in the brain seems not significant (Latini & 
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Pedata, 2001). On the other hand, adenosine can be generated both intracellularly and 

extracellularly from 5 -́AMP by 5 -́NT, mediated by a set of different enzymes 

(Zimmermann, 2000). In extracellular environment, an ecto-5 -́NT is part of a cascade 

(together with ecto-ATPases) that terminates nucleotide actions such as ATP as a 

signaling molecule (Kovacs et al., 2013; Yegutkin, 2008; Zimmermann, 2000, 2006).  

Adenosine concentrations can be controlled by the depleting enzyme ADA when they 

are high enough, and by reuptake effects (Fredholm et al., 2005; Oishi et al., 2008; 

Parkinson et al., 2011). The adenosine re-absorbed by cells is rapidly phosphorylated to 

AMP by AdK which is an enzyme that effectively regulates the intracellular adenosine 

concentration. The equilibrative nucleoside transporters can bi-directionally modulate 

the concentration of adenosine (Dos Santos-Rodrigues, Grane-Boladeras, Bicket, & Coe, 

2014; Parkinson et al., 2011). Therefore, the production and depletion of extracellular 

adenosine regulate its concentrations. In the normal baseline conditions, extracellular 

adenosine levels are low which are calculated as approximately 30 to 300 nM (Ballarin 

et al., 1991). In some special diseases or environments like mild hypoxia or strenuous 

exercise, extracellular adenosine levels can be up to 1 µM or more. Moreover, in severely 

traumatic situations, including severe local ischemia, the levels can even be several tens 

of micromolar (Fredholm, 2007).  

 



3 
 

 

Figure 1. Schematic representation of adenosine metabolism. Adenosine is produced 

by intracellular or extracellular conversion of 5'-AMP catalyzed by 5'-NT or by 

hydrolysis of SAH catalyzed by SAH hydrolase. Adenosine levels are regulated by ADA 

or adenosine kinase AdK by conversion to inosine or 5'-AMP, respectively. Equilibrative 

nucleoside transporters (ENT) bi-directionally regulate the concentration of adenosine 

available to cell surface A1, A2A, A2B, and A3 receptors (A1R, A2AR, A2BR, and A3R). 

(Modified from Zhou & Lazarus.  Adenosinergic control of sleep/wake behavior. 

Handbook of Sleep Research, 2019, in press) 

 

1.1.2 The properties of adenosine receptors 

Extracellular adenosine exerts effects when it binds on one of the four types of receptors: 

A1R, A2AR, A2BR, and A3R (Fredholm et al., 2011). A1R and A3R are coupled with 

inhibitory Gi proteins, by contrast, A2AR and A2BR are coupled with excitatory Gs 

proteins (Fredholm et al., 2005). Activation of A1R or A3R inhibits adenylate cyclase 
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activity, followed by decreased production of cAMP from ATP. This in turn down 

regulates the activity of cAMP-dependent protein kinase and cAMP response element 

binding protein phosphorylation. Therefore, Gi-coupled receptor is inhibitory to cells. In 

contrast, activation of A2AR or A2BR enhances the cAMP production and cAMP-

dependent protein kinase activity, together with cAMP response element binding protein 

phosphorylation, functioning as cell stimulation (Cunha, 2001; Fredholm et al., 2011; 

Paes-de-Carvalho, 2002). 

The receptors for adenosine are distributed throughout the whole body in mammals. A1R 

are widely distributed, which has the highest abundance in the brain despite a low-density 

expression (Daly & Padgett, 1992). Interestingly, A2AR are expressed mainly in the 

respiratory and cardiovascular system, leukocytes, and the basal ganglia of the brain 

(Fredholm et al., 2001, 2011). A2BR are expressed at low abundance throughout the body 

and A3R are differently expressed among species. For example, A3R of rats are highly 

enriched in the testis and mast cells, but in humans, A3R are mainly expressed in the lung 

and liver (Linden et al., 1993; Salvatore et al., 1993). Basal adenosine levels are able to 

activate its receptors under physiologic conditions except for the A2BR which requires a 

higher concentration (Fredholm et al., 2011). Nevertheless, the effect of adenosine at low 

concentrations also depends on the abundance of receptors. In case of only a few 

receptors, effects are possible only in a high adenosine concentration. Currently, it is 

reported that A1R and A2AR are involved in sleep regulation but the other two are not 

(Lazarus et al., 2017).
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1.1.3 Associations between adenosine levels and sleep 

Adenosine was initially isolated for the first time from cardiac tissue extracts in 

1929.More than 60 years have passed since the discovery of its hypnotic effect in the cat 

brain in 1954 (Drury & Szent-Gyorgyi, 1929; Feldberg & Sherwood, 1954). Similar 

somnogenic effects of adenosine were subsequently observed in a dogs, fowls, rats, and 

mice (Dunwiddie et al., 1982; Haulica et al., 1973; Marley et al., 1972; Radulovacki et 

al., 1984, 1985; Ticho et al., 1991). However, how adenosine regulates sleep, i.e, the 

brain cell types involved in the adenosinergic sleep-inducing effects, and the relative 

contributions of A1R and A2AR to sleep/wake regulation remain unclear. 

 There is a hypothesis that adenosine actually stands for a state of relative energy 

deficiency. Therefore, early concepts of sleep/wake regulation assumed that the desire 

for sleep periodically is to replenish low energy stores, at least partially if not all. (Pull 

& Mcilwain, 1972; Tobler & Scherschlicht, 1990; Vanwylen et al., 1986). Actually, in-

vivo microdialysis assays of extracellular adenosine levels in the hippocampus and 

neostriatum in freely-behaving rats revealed that adenosine levels are higher during the 

inactive period than the active period, which seems to be a strong support to this theory 

(Huston et al., 1996). Additionally, it is also hypothesized that extracellular adenosine 

levels allow the brain to assess the need for sleep. The discovery in rats suggests that 

systemic or intracerebroventricular administration of CPA, a selective A1R agonist, dose-

dependently increases SWA during sleep, similar to the response to sleep deprivation. 

SWA is a slow oscillatory neocortical activity (usually defined from 0.5 to 4.0 Hz) that 

is increased following prolonged wakefulness but descends during sleep thus it is 

javascript:void(null);


6 
 

considered as a marker of sleep homeostasis, in other words, a balance between waking 

and sleep (Benington et al., 1995).  

ATP depletion is positively correlated with an increase in extracellular adenosine levels 

(Kalinchuk et al., 2003) and sleep (Porkka-Heiskanen et al., 1997). Adenosine levels 

measured by in-vivo microdialysis from several brain areas in cats during spontaneous 

sleep-wake cycles were higher during sleep than wakefulness (Porkka-Heiskanen et al., 

1997, 2000). These experiments also revealed a 2-fold increase in adenosine levels in the 

BF during a prolonged 6h wakefulness compared with levels at the beginning of sleep 

deprivation (Porkka-Heiskanen et al., 1997, 2000). Therefore, adenosine is thought to 

control BF neurons via A1R since A1R mRNA is significantly increased in the BF after 

sleep deprivation. Besides, perfusion of adenosine or the A1R agonist 

cyclohexyladenosine into the BF induces sleep by inhibiting wake-active neurons, 

whereas the A1R antagonist CPT induces wakefulness (Basheer et al., 2000, 2001).  

Furthermore, pharmacological studies found that inhibition of ADA, AdK, and 

equilibrative nucleoside transporters leads to sleep due to increased extracellular 

adenosine levels (Oishi et al., 2008; Okada et al., 2003; Porkka-Heiskanen et al., 1997; 

Radulovacki et al., 1983). These results established a strong correlation between 

adenosine metabolism and sleep. 

 

1.2  The Nucleus accumbens and its role in sleep regulation 

1.2.1 The anatomical properties of the NAc 

The NAc is a nucleus located in the ventral striatum (Figure 2), containing core and 
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shell subunits which are composed of GABAergic projection neurons (about 95% 

MSNs and 1~2% interneurons) and cholinergic interneurons (about 1~2%) (George 

Paxinos & Keith Franklin, 2001; Robison & Nestler, 2011). Basically, the MSNs in the 

NAc can also be sorted into direct and indirect pathway neurons which can be 

distinguished by the expression of dopamine D1R or D2R respectively. The two kinds 

of heterogeneous MSNs play complementary but sometimes opposite roles in 

modulating brain functions and behaviors. Moreover, the MSNs of the direct pathway 

co-express the excitatory D1R and inhibitory adenosine A1R. In contrast, the indirect 

pathway neurons co-express inhibitory D2R and the excitatory adenosine A2AR (Lee et 

al., 2016; Nam et al., 2013). The NAc primarily is regulated by several typical 

neurotransmitters such as glutamate, dopamine and histamine from other brain regions 

(Blum et al., 2012; Gipson et al., 2014; Goto & O'Donnell, 2001; Malenka et al., 2009; 

Robison & Nestler, 2011). Glutamatergic inputs from the Amyg, mPFC and vHipp are 

considered the most robust sources of input to the NAc (Britt et al., 2012), while input 

from the PVT and VTA were also reported (Ren et al., 2018; Yu et al., 2019). It is well 

established that the NAc plays a pivotal role in mesolimbic dopamine regulation, in 

which the dopaminergic neurons in the VTA and medial SNc are usually taken as the 

major dopaminergic inputs (Brog et al., 1993; Joel & Weiner, 2000; Lynd-Balta & 

Haber, 1994; Swanson, 1982). Additionally, the TMN is the sole source of histamine in 

human and mouse brains, and, the NAc is one of the few regions that receive its 

histaminergic regulation (Haas & Panula, 2003; Inagaki et al., 1988; Swanson, 1982; 

Wada et al., 1991). Projection output from the NAc is widespread. Tracing by 
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immunohistochemistry and electron microscopy revealed that the D1R/A1R direct 

pathway neurons mainly project to the midbrain and lateral hypothalamus (Luo et al., 

2018). Similarly, the D2R/A2AR indirect pathway neurons mainly send termini to the 

BF, lateral hypothalamus and midbrain (Zhang et al., 2013). 

 

Figure 2. Scheme of anatomical representation of the NAc in the brain. a A typical 

sagittal representative section of the NAc in the brain. b The coronal section part of Fig 

2a. Red dash lines and characters represent the NAc core and the dark blue characters 

indicates the NAc shell. (Modified from George Paxinos, & Keith Franklin. (2001). The 

Mouse Brain in Stereotaxic Coordinates. 2nd edn. Academic Press.).  

 

1.2.2 The NAc plays an important role in sleep/wake regulation 
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Previous studies revealed an important role of the NAc MSNs in regulating both sleep 

and arousal. Caffeine, as the most consumed psychoactive substances in the world every 

day, exerts its strong arousal effect via A2AR in the NAc shell in mice (Huang et al., 

2005; Lazarus et al., 2011). Bilateral nonspecific-neurotoxic lesion of the NAc core or 

shell by microinjected 1% ibotenic acid resulted in increased wakefulness in rats (Qiu 

et al., 2012). Besides, in-vivo electrophysiological recordings in the NAc discovered a 

decreased firing rate of numerous neurons during SWS in rats (Tellez et al., 2012). 

Further study revealed that opto- and chemogenetic activation of D1R direct pathway 

neurons can induce fast transitions from SWA to arousal and prolonged wakefulness, 

indicating that D1R/A1R positive neurons in the NAc play an important role in arousal 

onset and maintenance (Luo et al., 2018). Moreover, Oishi and colleagues uncovered a 

prominent role of A2AR expressing neurons in the NAc in sleep/wake regulation and 

proposed a novel brain circuit (NAc core - VP) for sleep control by motivated behavior 

(Oishi et al., 2017). Activation of the indirect pathway D2R/A2AR expressing neurons 

in the NAc core robustly induces sleep, however, inhibition of these neurons decreases 

sleep baseline without disturbing sleep homeostasis, indicating a necessity of these 

neurons in sleep. Besides, motivational stimuli inhibit the activity of the VP-projecting 

NAc A2AR expressing neurons and suppress sleep (Oishi et al., 2017). This brain circuit 

may explain the tendency to fall asleep in the absence of motivating stimuli, i.e., when 

bored. However, how these sleep-promoting D2R/A2AR expressing neurons are 

activated in-vivo is still unknown. Adenosine is an obvious candidate molecule that 

activates NAc A2AR-expressing neurons because sufficient levels of adenosine are 



10 
 

available under basal conditions and bind to excitatory A2AR. The source of the 

adenosine, however, remains obscure. 

 

1.3  Astrocyte, a promising source of extracellular adenosine 

Astrocytes, also known as astroglia, are a kind of glia cells distributed throughout the 

brain and spinal cord (the other kinds of glia cells are microglia and oligodendrocyte). 

This kind of star-shaped cell constructs the biggest cell population in the brain, 

outnumbering neurons five-fold (Sofroniew & Vinters, 2010). Astrocytes are well 

known for many classical functions like structural support (forming blood vessels and 

the BBB), balancing extracellular concentration of ions and neurotransmitters, nutrition 

delivery, synaptic transmission modulation, and so on (Brooks, 2009; Sofroniew & 

Vinters, 2010). A protein named as GFAP expressed by astrocytes plays an essential 

role in exerting their functions especially when they are activated and form into 

astrogliosis (Pekny et al., 1995; Pekny & Pekna, 2004; Sofroniew, 2009). It is well 

known that GFAP is a typical and specific astroglial marker since, generally, neurons 

and other glia do not express this protein. However, only a fraction of astrocytes (~20% 

to 40%) express detectable GFAP mRNA in basal condition (Sofroniew, 2009; 

Sofroniew & Vinters, 2010). This made GFAP a reliable marker in labelling reactivated 

astrocytes but notorious in labelling basal ones, compared to the other specific astroglial 

markers, for example, S100β.  

For a long time, astrocytes were taken for granted as inert participants in regulating 

behavioral functions since they are “silent”, i.e., they cannot fire like neurons. But with 
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developing knowledge and neurobiological techniques, a number of novel functions of 

astrocytes, especially involvement in sleep regulation, are starting to emerge. It is well 

established that adenosine (and ATP, which is rapidly degraded into adenosine) can be 

released in the brain from neurons and glia cells. Genetically engineered mice in which 

a dnSNARE domain is selectively expressed in astrocytes to non-specifically block the 

release of ATP exhibit decreased levels of extracellular adenosine (Chen & Scheller, 

2001; Pascual et al., 2005; Raingo et al., 2012). Although in these mice, the amount of 

wakefulness, SWS and REM sleep are indistinguishable from that in wild-type mice, 

they exhibit reduced SWA and recovery sleep after sleep deprivation (Halassa et al., 

2009), suggesting that adenosine released from astrocytes is involved in an 

accumulation of sleep pressure. Direct proof is still lacking, however, and thus the exact 

sources of adenosine remain unknown. Work by Greene and colleagues provides 

evidence for adenosine-mediated regulation of the homeostatic sleep need via 

activation of neuronal A1R controlled by glial AdK (Bjorness et al., 2009, 2016). As a 

matter of fact, mice deficient in glial AdK exhibit increased SWA rebound and 

consolidation, and an increased time constant of SWA during an average sleep episode. 

These findings implicate astrocytes as a promising source of adenosine in sleep 

regulation; however, the role of NAc astrocytes in sleep regulation is not known. 

 

1.4  Diphtheria toxin and its novel applications in research 

Diphtheria toxin is an exotoxin secreted by corynebacterium diphtheria, which is 

famous for causing the severe disease “diphtheria” after infection. It consists of two 
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fragments: fragment A and B. When the diphtheria toxin contacts a cell expressing its 

receptor, fragment B binds to it followed by penetration through the cellar membrane 

(Bell & Eisenberg, 1996; Mitamura et al., 1995). Fragment A is cleaved and released 

after reaching the cytosol of the victim cell and soon kills the cell by inhibiting a subunit 

ADP-ribosylates host EF-2 which is required for protein synthesis (Honjo et al., 1968; 

Kimata & Kohno, 1994; Kohno et al., 1986; Kohno & Uchida, 1987; Robinson et al., 

1974; Van Ness et al., 1980). Diphtheria toxin fragment A is extremely toxic. A cell can 

be killed by even just one molecule of DTA in the cytosol (Yamaizumi et al., 1978). 

Humans and monkeys are highly susceptible to the diphtheria toxin, however, mice and 

rats are resistant. A comparative study showed that the native DTR of rodents lacks a 

transport process, thus explaining the lower efficiency of the toxin compared to humans 

or monkeys (Chang & Neville, 1978).  

The diphtheria toxin fragment A is widely used in cell ablation studies. Cytotoxic DTA 

genes are usually specifically expressed in the ablation target cells directly by classic 

AAV vector or transgenic mice, especially Cre-recombinase dependent mice created by 

the CRISPR-Cas9 genome editing method (Brockschnieder et al., 2004; Kohlschutter 

et al., 2010; Palmiter et al., 1987). However, there is a conspicuous deficiency of these 

tools in which the ablation of cells immediately starts after DTA expression. Thus it is 

impossible to measure baseline parameters. For example, in neurobiological 

experiments, mice usually need several days to recover from the injuries caused by 

virus injection. However, cell ablation starts from the moment of infection, which 

makes it impossible to assess accurate baseline parameters during recovery. Therefore, 
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to solve this issue, specific expression of DTR (usually from monkey) in mice were 

established (Iwasaki et al., 2018; Saito et al., 2001).  

 

2. The aim of this study 

In this study, we aimed to ablate GFAP positive cells in the NAc to investigate if there 

is any change in sleep/wake cycle, using virus-mediated expression of DTR and 

intraperitoneal administration of DT. Meanwhile immunohistochemical and 

neurochemical investigations related to the behavioral study were also performed. 

 

3. Materials and methods 

3.1  Animals  

A mouse strain expressing EYFP in mouse GFAP-positive cells (lox-stop-lox-

EYFP/mGFAP-Cre) was established by crossing R26-stop-EYFP mice (Jackson 

Laboratory, strain number 007903) (Srinivas et al., 2001) with mGFAP-Cre mice 

(Garcia et al., 2004). In addition, a global A2AR knockout mouse line was used (Chen 

et al., 1999). All mice (weighing 20–35 g, 8–24 weeks old) used in the present study 

were housed at a constant temperature of 23 ± 1°C with a relative humidity of 60 ± 2% 

in an automatically controlled 12-h light/dark cycle (lights on at 7:00, off at 19:00), and 

provided with water and food ad libitum. All experiments were performed in 

accordance with the Animal Care Committee of the University of Tsukuba and the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals, and 

every effort was made to minimize the number of animals used, as well as any pain and 
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discomfort. 

 

3.2  Plasmids and AAV generation 

To generate the pAAV-GFAP-DTR-P2A-mCherry plasmid, the hM4D(Gi) fragment in 

pAAV-GFAP-hM4D(Gi)-mCherry, kindly provided by Dr. Bryan Roth (University of 

North Carolina; Addgene plasmid #50479), was replaced with a PCR-amplified 

fragment containing the DTR-P2A coding sequence using restriction cloning.  

The AAV serotypes of shH10 for recombinant AAV-GFAP-DTR-mCherry and AAV-

GFAP-mCherry were generated as described previously (Zolotukhin et al., 1999). In 

brief, the AAVs were generated by tripartite transfection into 293A cells. After 3 days, 

the 293A cells were resuspended in artificial cerebrospinal fluid, freeze-thawed four 

times, and treated with Benzonase® nuclease (Millipore, Burlington, MA) to degrade 

all forms of DNA and RNA. Subsequently, the cell debris was removed by 

centrifugation and the virus titer in the supernatant was determined using an AAVpro 

Titration Kit for Real Time PCR (Takara Bio, Kusatsu, Japan). 

 

3.3  Stereotaxic AAV injection, EEG/EMG recordings and vigilance 

state assessment 

Surgeries for brain microinjections were conducted under pentobarbital anesthesia 

(60 mg/kg, i.p.). Using aseptic techniques, the mice were stereotaxically and bilaterally 

injected into the NAc with recombinant AAV-GFAP-DTR-mCherry (264 nl/side, 

1× 1011 particles ml−1) or AAV-GFAP-mCherry (264 nl/side, 9× 1010 particles ml−1) 
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with a glass micropipette and an air pressure injector system (Chamberlin et al., 1998). 

The following coordinates were used according to the mouse brain atlas of Paxinos and 

Franklin (2001): AP + 1.5 mm; ML ± 1.2 mm; DV –4.1 mm.  

Mice were chronically implanted with EEG and EMG electrodes for polysomnography, 

as previously described (Oishi et al., 2016). Briefly, the implant contained two stainless-

steel screws (1 mm diameter) serving as EEG electrodes, one of which was placed 

epidurally over the right frontal cortex (1.0 mm anterior and 1.5 mm lateral to bregma) 

and the other over the right parietal cortex (1.0 mm anterior and 1.5 mm lateral to 

lambda). Two insulated Teflon-coated, silver wires (0.2 mm in diameter), which were 

placed bilaterally into the trapezius muscles, served as EMG electrodes. Both EEG and 

EMG electrodes were connected to a microconnector, and the whole assembly was then 

fixed to the skull with self-curing dental acrylic resin. 

After recovering for at least 3 weeks, the mice were connected to an EEG/EMG 

recording cable in a soundproof recording chamber and habituated for at least 3 days 

before any polysomnographic recording (Figure 3a, b, c). The EEG/EMG signals were 

amplified, filtered (EEG, 0.5–30 Hz; EMG, 20–200 Hz), digitized at a sampling rate of 

128 Hz, and recorded using SLEEPSIGN software ver. 3 (Kissei Comtec, Matsumoto, 

Japan) (Kohtoh et al., 2008). 
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Figure 3. Schematic diagram of the polysomnographic recording system in 

Lazarus lab in IIIS. a Schematic representation of the polysomnographic recording 

system. b Computers and video monitors used for sleep recording. c A mouse 

undergoing recording in the recording chamber. 

 

EEG/EMG data visualized by the analysis software were calculated in 10-s epochs and 

three stages were recognized based on their spectrum and wave properties (Oishi et al., 

2016): SWS, rapid eye movement (REM) sleep, and wakefulness (Fig 4). SWS is 

recognized by low-frequency, synchronized high-amplitude and spindle-like EEG, 

silenced EMG and a high percentage of delta power (0.5-4.0 Hz) (Fig 4). In contrast, 

wakefulness is distinguished by high-frequency but low amplitude and desynchronized 

EEG and active EMG (Fig 4). REM sleep EEG looks like wakefulness but with almost 

silenced EMG and a remarkably high theta power (Fig 4). Percent change of slow-wave 

activity was also calculated based on the SWS delta power (0.5–4 Hz) during 24 h and 

normalized to the baseline condition.  
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Figure 4. The characterizations of vigilance stages ： SWS, REM sleep and 

wakefulness.  

 

3.4  Microdialysis in freely behaving mice and measurement of 

adenosine by HPLC 

Under pentobarbital anesthesia (60 mg/kg, i.p.), mice were bilaterally implanted with 

guide cannulas (inner diameter 0.40 mm, outer diameter 0.50 mm; Eicom, Kyoto, Japan) 

into the brain using the following coordinates according to the mouse brain atlas of 

Paxinos and Franklin (2001): AP +1.4 mm; ML ±1.2 mm; DV −2.9 mm. Two stainless-

steel screws (1 mm diameter) were also implanted to stabilize the guide cannulas, and 

then dummy cannulas (diameter 0.37 mm, Eicom) were inserted to prevent the guide 

cannula from clogging. After recovering for at least 3 weeks, the mice were transferred 

to the recording chambers for habituation. On the sampling day, each mouse was 

quickly anesthetized using isoflurane and the dummy cannula was removed followed 

by insertion of the microdialysis probe (1 mm membrane length, 8.4% adenosine 

recovery rate; Eicom) into the guide cannula. The probe was infused continuously using 

an infusion pump with Ringer’s solution (147 mM NaCl, 4 mM KCl, and 2.4 mM CaCl2) 

at a flow rate of 0.5 μl/min (Figure 5a). Two hours after inserting the probe, dialysates 
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were continuously collected from the probe for 3 h (Figure 5a). The dialysates were 

kept at −20°C until adenosine was measured by HPLC (Figure 5b). A TSKgel®ODS-

100V HPLC column (Tosoh Bioscience, Tokyo, Japan) together with a mobile phase 

comprising 100 mM NaH2PO4 and acetonitrile in a ratio of 96:4 at a flow rate of 1 

ml/min was used for HPLC separation, and 80 μl of each dialysate was injected into a 

HPLC-LabSolutions LC system (Shimadzu, Kyoto, Japan) equipped with a UV (260 

nm) detection system. External adenosine standards were used to determine the 

retention time and to calculate the adenosine concentrations in the dialysates by the 

HPLC software (Figure 5c).  

 

Figure 5. Schematic representations of the adenosine assay system. a Schematic 

representation of microdialysis in freely moving mice. b Shimadu-LabSolution HPLC 

system used in this study in the IIIS. c A typical chromatograph of a dialysate sample 

analyzed by the HPLC system. 

 

3.5  Histology 

Under deep chloral hydrate (500 mg/kg, i.p.) anesthesia, the mice were perfused via the 

heart with saline followed by a 10% formalin solution. The brains were removed and 
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immersed in the same fixative overnight at 4°C and then transferred into a 20% sucrose 

solution.  

For immunohistochemistry, the brains were then frozen on dry ice and sectioned at 

40 µm on a freezing microtome (Thermo Fisher Scientific, Waltham, MA). 

Immunohistochemistry was performed on free-floating sections as described previously 

(Lazarus et al., 2011). In brief, the sections were rinsed in PBS, incubated in 0.3% 

hydrogen peroxide in PBS for 30 min at room temperature, and then sequentially 

incubated at room temperature in 3% normal donkey serum and 0.25% Triton X-100 in 

PBS (PBT) for 1 h and then overnight in primary antibody diluted in PBT with 0.02% 

sodium azide. After overnight incubation with rabbit anti-DsRed antibody (1:5000; 

Cat# 632496, Takara Bio), the sections were rinsed and incubated for 2 h in biotinylated 

antibody (Jackson ImmunoResearch Lab, West Grove, PA) at a dilution of 1:1000. All 

tissue sections were then treated with avidin-biotin complex (1:1000; Vectastain ABC 

Elite kit, Vector Labs, Burlingame, CA) for 1 h, and immunoreactive cells were 

visualized by reaction with 3,3′-diaminobenzidine and 0.01% hydrogen peroxide. 

Tissue sections mounted on glass slides were scanned with a Hamamatsu NanoZoomer-

XR Digital slide scanner (Hamamatsu Photonics, Hamamatsu, Japan), and digital 

photomicrographs were analyzed using Hamamatsu NDPView software v2.4.26. 

For fluorescent double-labeling, the sections were rinsed in PBT and incubated in PBT 

containing 10% BlockAce (DS PharmaBiomedical, Osaka, Japan) for 30 min at room 

temperature. The sections were then incubated with the rabbit anti-GFAP antibody 

(1:200, Cat# HPA056030, Sigma-Aldrich, St. Louis, MO), goat anti-mCherry antibody 
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(1:1000, Cat# AB0040-200, SICGEN, Cantanhede, Portugal), mouse anti-NeuN 

antibody (1:100, Cat# MAB377, Millipore), rabbit anti-S100β (1:100, Cat# 

HPA015768, Sigma-Aldrich, St. Louis, MO) or rabbit anti-TMEM119 antibody (1:200, 

Cat# ab209064, Abcam, Cambridge, UK) containing 5% BlockAce at room 

temperature in the combinations described in the Results section. After overnight 

incubation, the sections were rinsed in PBT and incubated with donkey anti-goat Alexa 

Fluor® 594 nm (1:1000, Thermo Fisher Scientific), donkey anti-mouse Alexa Fluor® 

647 nm (1:500, Thermo Fisher Scientific), or donkey anti-rabbit Alexa Fluor® 647 nm 

(1:500, Thermo Fisher Scientific) containing 5% BlockAce for at least 2 h. The sections 

were then mounted on glass slides and sealed with mounting medium containing DAPI 

dye (Vector Labs, Cat# H-1200) and cover glass. Fluorescence signals were visualized 

using an LSM 700 confocal microscope (Zeiss, Oberkochen, Germany). 

For quantitative histologic analysis, pictures of tissues containing the NAc at the same 

bregma level were obtained using a confocal microscope in the Z stack mode. In Fig. 

6b, a 0.35 mm x 0.35 mm area in the NAc of each tissue was analyzed. The percentage 

of NeuN/mCherry and S100β/mCherry-positive cells among mCherry/DAPI-positive 

cells was calculated. In Fig. 8g, the number of GFAP/DAPI-positive cells was counted 

in and normalized to the AAV area. The AAV area (i.e., the area showing mCherry 

expression) was measured using ImageJ software. 

 

3.6  Statistical analysis 

Data are presented as mean ± standard error of the mean (SEM) and were analyzed 

using SPSS statistics 25 (IBM, Armonk, NY). One-way ANOVA followed by the 
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Fisher’s Protected Least Significant Difference test or two-way ANOVA followed by 

the PLSD test was performed for all the statistical analysis. In all cases, a p-value less 

than 0.05 was considered significant. 

 

4. Results 

4.1  SWS increased after cytotoxic ablation of NAc GFAP-positive cells. 

To examine the role of NAc astrocytes in sleep–wake regulation, we ablated GFAP-

positive cells in the NAc core of mice by stereotaxic microinjection of AAV carrying 

DTR under a GFAP promoter (AAV-GFAP-DTR, Fig. 6a) and i.p. injection of DT 

(Wako, Japan) 3 weeks after microinjection. AAV-GFAP-DTR was injected in lox-stop-

lox-EYFP/mGFAP-Cre mice, denoted as A2ARWT mice, or A2AR knockout mice 

(A2ARKO mice). 

First, we evaluated the specificity of DTR expression in AAV-GFAP-DTR-injected 

A2ARWT mice by immunohistochemical investigation of the expression of the neuronal 

marker NeuN, the astrocytic marker S100β and the AAV-reporter protein mCherry (Fig. 

6b). We detected 21.4% ± 3.5% of NeuN/mCherry-positive cells and 73.0% ± 5.8% of 

S100β/mCherry-positive cells among all mCherry-positive cells across six NAc-

containing brain sections from three mice in each group, suggesting that most infected 

cells were astrocytes but a minority were neurons.  
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Figure 6. Adeno-associated virus-mediated expression of diphtheria toxin receptors. a 

Construct for multi-gene expression of DTR and mCherry via 2A self-cleaving peptide 

driven by the GFAP-promoter. b DTR is expressed in astrocytes and a small number of 

neurons after AAV infection as revealed by immunohistochemical staining with 

antibodies against the neuronal marker NeuN, astrocytic marker S100β and AAV 

reporter protein mCherry. White arrows indicate NeuN/mCherry-positive (top right 

panel) or S100β/mCherry-positive (bottom right panel) cells. Scale bar: 40 μm. 

 

Next, we stereotaxically microinjected AAV-GFAP-DTR bilaterally into the NAc core 

of A2ARWT mice, denoted as A2ARWT NAc GFAP-DTR mice, and as controls, we 

injected AAV-GFAP-mCherry into the NAc core of A2ARWT mice (A2ARWT NAc GFAP-

mCherry mice; Fig. 7a, b). Three weeks after the AAV injections, EEG and EMG 

recordings of the mice were analyzed to assess the baseline sleep/wake behavior of the 
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animals. Initially, only A2ARWT NAc GFAP-DTR mice were treated with DT (50 μg/kg, 

i.p.), and EEG and EMG recordings were obtained on days 9 to 14 following the 

treatment. We analyzed SWS amounts in A2ARWT NAc GFAP-DTR mice during dark 

and light periods compared with the baseline. We found that SWS was significantly 

increased in the dark and light periods of day 9 and then gradually returned to the 

baseline level until day 14 (Fig. 7c). Therefore, we next obtained EEG and EMG 

recordings of A2ARWT NAc GFAP-DTR and NAc GFAP-mCherry mice for 9 days after 

DT treatment. SWS increased in the A2ARWT NAc GFAP-DTR mice during the dark 

period from day 5 after DT treatment before reaching a maximum on day 7 after DT 

treatment, compared with DT-treated control mice (day 5: F(1, 9)=7.808, p=0.011; day 

6: F(1, 9)=6.470, p=0.024; day 7: F(1, 9)=21.858, p=0.0001; day 8: F(1, 9)=6.907, p=0.026; 

day 9: F(1, 9)=8.050, p=0.023; Fig. 7d). SWS also increased significantly in the A2ARWT 

NAc GFAP-DTR mice during the light period between days 1 and 8, compared to the 

DT-treated control mice (day 1: F(1, 9)= 3.948, p=0.015; day 2: F(1, 9)=7.591, p=0.002; 

day 3: F(1, 9)=3.205, p=0.024; day 4: F(1, 9)=2.971, p=0.031; day 5: F(1, 9)=4.316, 

p=0.012; day 6: F(1, 9)=4.379, p=0.021; day 7: F(1, 9)=8.384, p=0.011; day 8: F(1, 

9)=6.679, p=0.013; Fig. 7d). We also stereotaxically microinjected AAV-GFAP-DTR 

bilaterally into the NAc core of A2ARKO mice, denoted as A2ARKO NAc GFAP-DTR 

mice, and as controls, we injected AAV-GFAP-mCherry into the NAc core of A2ARKO 

mice (A2ARKO NAc GFAP-mCherry mice; Fig. 7a). SWS was not increased in DT-

treated A2ARKO NAc GFAP-DTR mice, however, compared with A2ARKO NAc GFAP-

mCherry mice in either the dark or light periods (Fig. 7e). This observation suggests 
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that the SWS increase after DT treatment is mediated by adenosine via A2AR.  

On day 7, when the mice had the strongest SWS increase, A2ARWT NAc GFAP-DTR 

mice exhibited increased SWS and REM sleep, especially during the dark period, 

compared with DT-treated control mice (Fig. 7f, g). Concomitantly, A2ARWT NAc 

GFAP-DTR mice had a lower amount of wakefulness. By contrast, we did not observe 

notable changes in the hourly SWS and REM sleep amounts of A2ARKO NAc GFAP-

DTR mice on day 7 after DT treatment, compared with A2ARKO NAc GFAP-mCherry 

mice (Fig. 7h, i). The increased amount of SWS in A2ARWT NAc GFAP-DTR mice 

during the dark period of day 7 after DT treatment was due to an increased number of 

SWS episodes, while the mean duration of SWS episodes was not changed (Fig. 7j, k). 

A change in SWA is considered a hallmark of sleep homeostasis disturbance (Dispersyn 

et al., 2017; Wang et al., 2018). To investigate whether sleep homeostasis was affected 

by cytotoxic ablation of NAc GFAP-positive cells, we calculated changes in SWA on 

day 7 normalized to the baseline; however, there was no significant difference in the 

normalized SWA in all the mouse groups (Fig. 7l, m). 
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Figure 7. SWS is increased after cytotoxic ablation of GFAP-positive cells in the NAc 

core in A2ARWT but not in A2ARKO NAc GFAP-DTR mice. a AAV-GFAP-DTR was 

bilaterally microinjected into lox-stop-lox-EYFP/mGFAP-Cre (A2ARWT) or A2ARKO 

mice. b Typical AAV infection in the NAc core as indicated by mCherry expression. 

Scale bar: 200 μm. c SWS during the dark and light periods 1 day before and at 9 to 14 

days after DT treatment in A2ARWT NAc GFAP-DTR mice (n=4). **p <0.01 vs baseline 

day (i.e., day before DT treatment), assessed by one-way ANOVA. d SWS during the 

dark and light periods 1 day before and for 9 days after DT treatment in A2ARWT NAc 

GFAP-mCherry (n=5) and NAc GFAP-DTR (n=6) mice. *p <0.05, **p <0.01 vs 

A2ARWT NAc GFAP-mCherry mice; assessed by one-way ANOVA. e SWS during the 

dark and light periods 1 day before and for 9 days after DT treatment in A2ARKO NAc 
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GFAP-mCherry (n=4) and NAc GFAP-DTR (n=6) mice. f-i SWS (f, h), and REM-

sleep (g, i) time-courses of all the mouse groups on day 7 after DT treatment. *p <0.05, 

**p <0.01 vs A2ARWT NAc GFAP-mCherry (f, g) or A2ARKO NAc GFAP-mCherry (h, 

i) mice; assessed by two-way ANOVA followed by the PLSD test. j, k Mean duration 

(j) and number (k) of SWS episodes during the dark and light periods on day 7 after 

DT treatment in A2ARWT NAc GFAP-mCherry (n=5) and A2ARWT NAc GFAP-DTR 

(n=6) mice. *p < 0.05 vs A2ARWT NAc GFAP-mCherry mice, assessed by one-way 

ANOVA. l, m SWS-SWA time-courses of all the mouse groups on day 7 after DT 

treatment. *p <0.05, **p <0.01 vs A2ARKO NAc GFAP-mCherry mice; assessed by two-

way ANOVA followed by the PLSD test. 

 

4.2  Cytotoxic ablation of NAc GFAP-positive cells led to increased 

activation of astrocytes and microglia  

We then evaluated the effects of cytotoxic ablation of GFAP-positive cells in the NAc 

after DT treatment by immunohistochemical investigation of the expression of the 

astrocyte-reporter protein EYFP and the AAV-reporter protein mCherry (Fig. 8a-c). No 

EYFP- and mCherry-positive cells were observed in A2ARWT NAc GFAP-DTR mice 

after DT treatment (Fig. 8a), whereas many double-positive cells were observed in 

A2ARWT NAc GFAP-DTR mice treated with saline or A2ARWT NAc GFAP-mCherry 

mice treated with DT (Fig. 8b, c). These findings suggest that cells infected with AAV-

GFAP-DTR were completely ablated by the administration of DT.  

Next, we examined the residual NAc astrocytes on day 7 after DT administration by 

immunohistochemical investigation of the expression of the endogenous astrocyte 

marker GFAP and the AAV-reporter protein mCherry (Fig. 8d-f). Surprisingly, GFAP 

expression was remarkably increased in A2ARWT NAc GFAP-DTR mice treated with 

DT compared with A2ARWT NAc GFAP-DTR mice treated with saline or A2ARWT NAc 

GFAP-mCherry mice treated with DT. The number of GFAP-expressing cells within 
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the AAV infection area, as indicated by the mCherry expression, was significantly 

higher than that in the control mice (F(2, 14)=10.380, p=0.008, A2ARWT NAc GFAP-

DTR/DT vs A2ARWT NAc GFAP-DTR/saline; F(2, 14)=10.380, p=0.001, A2ARWT NAc 

GFAP-DTR/DT vs A2ARWT NAc GFAP-mCherry/DT, Fig. 8g).  

Because we observed an unexpected increase in GFAP expression after cytotoxic 

ablation of NAc GFAP-positive cells, we also examined the morphology of microglia 

in A2ARWT NAc GFAP-DTR mice by immunohistochemical analysis with an antibody 

against the microglia marker TMEM119 (Fig. 8h, i). Activated microglia were detected 

in DT-treated A2ARWT NAc GFAP-DTR mice (Fig. 8i), but not in DT-treated A2ARWT 

NAc GFAP-mCherry mice. This observation suggests DT-mediated apoptosis of GFAP 

cells in the NAc is accompanied by microglia activation. 
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Figure 8. The number of GFAP-expressing cells is increased and microglia are 

activated after cytotoxic ablation of NAc GFAP-positive cells. a-c AAV-infected cells 

are destroyed in DT-treated A2ARWT NAc GFAP-DTR mice (a) but not in saline-treated 

A2ARWT NAc GFAP-DTR (b) or DT-treated A2ARWT NAc GFAP-mCherry mice (c) on 

day 7 after DT injection. White arrows indicate AAV-infected astrocytes. Scale bars: 50 

μm. d-f Increased number of GFAP-positive cells in DT-treated A2ARWT NAc GFAP-

DTR (d) compared with saline-treated A2ARWT NAc GFAP-DTR (e) or DT-treated 

A2ARWT NAc GFAP-mCherry mice (f). Scale bars: 50 μm. Red dashed lines indicate 

area with mCherry expression. g Number of GFAP-positive cells (astrocytes) in the 

AAV-infected area on day 7 after DT treatment in A2ARWT NAc GFAP-DTR/DT (n=6), 
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A2ARWT NAc GFAP-DTR/saline (n=5) and A2ARWT NAc GFAP-mCherry/DT (n=6) 

mice. Significance was assessed by one-way ANOVA followed by the PLSD test. h, i 

Immunostaining of activated or ramified microglia in A2ARWT NAc GFAP-DTR (h) or 

A2ARWT NAc GFAP-mCherry mice (i), respectively, after DT treatment. White arrows 

indicate activated/phagocytic microglia in the NAc. Scale bars: 40 μm. 

 

4.3  Extracellular adenosine levels increased after ablation of NAc 

GFAP-positive cells 

Finally, we investigated extracellular adenosine levels on day 7 after DT treatment using 

microdialysis (Fig. 9a, b). The dialysates were collected between 19:00 and 22:00 when 

there is a large increase in SWS and analyzed by HPLC. Dialysates were collected 

before and after DT treatment by inserting the same probe in contralateral sites of the 

mouse brain. The adenosine concentration was determined by comparison with 

adenosine standards (Fig. 9c) and normalized between the samples taken before and 

after DT treatment due to the varying recovery rates of the microdialysis probes. The 

position of the microdialysis probe was confirmed by immunohistochemical analysis 

of the expression of the AAV reporter protein mCherry (Fig. 9d). 

Adenosine levels increased significantly after DT administration in A2ARWT and 

A2ARKO NAc GFAP-DTR mice, compared with A2ARWT NAc GFAP-mCherry mice 

(A2ARWT NAc GFAP-mCherry vs A2ARWT NAc GFAP-DTR, F(2, 10)= 4.486, p=0.037; 

A2ARWT NAc GFAP-mCherry vs A2ARKO NAc GFAP-DTR, F(2, 10)= 4.486, p=0.019; 

Fig. 9e). These findings suggest that ablation of GFAP-positive cells in the NAc results 

in an increase in extracellular adenosine, at least on day 7 after cell apoptosis is initiated 

by DT treatment.  
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Figure 9. Measurement of extracellular adenosine levels in the NAc by microdialysis. 

a Microdialysis schedule before and after DT treatment. b Sampling schedule after 

inserting the microdialysis probe. c Typical HPLC chromatograms of a dialysate and 

external adenosine standards. d Typical implantation site for the guide cannula and 
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location of the microdialysis probe in the NAc. Immunostaining for mCherry indicates 

the AAV-infected area in the NAc. Scale bar: 200 μm. e Extracellular adenosine levels 

normalized to baseline in the NAc of A2ARWT NAc GFAP-mCherry (n=4), A2ARWT NAc 

GFAP-DTR (n=5), and A2ARKO NAc GFAP-DTR (n=4) mice on day 7 after treatment 

with 50 μg/kg DT. Significance was assessed by one-way ANOVA followed by the 

PLSD test. 

 

5. Discussion  

A recent study showed that chemogenetic or optogenetic activation of NAc core A2AR 

neurons projecting to the ventral pallidum strongly induces SWS, whereas 

chemogenetic inhibition of these neurons prevents sleep induction, but does not affect 

the homoeostatic sleep rebound (Oishi et al., 2017). We hypothesized that adenosine is 

a candidate molecule for activating NAc A2AR neurons. Where in the NAc adenosine 

is generated, however, remains unknown. Adenosine is not a neurotransmitter or a 

typical neuromodulator released from neurons, because it can be formed by various 

processes in all cell types (Ohana et al., 2001). Cytotoxic ablation of GFAP-positive 

cells, which are likely astrocytes, as well as a small number of neurons in the NAc led 

to a transient increase in SWS over several days in mice. Further analysis of the 

molecular mechanisms revealed that extracellular adenosine levels increased after 

ablation and the SWS increase was mediated by A2AR.  

Surprisingly, the number of astrocytes in the NAc core was also increased after GFAP-

positive cell ablation. The increase in the number of astrocytes may be due to 

astrogliosis, i.e., astrocyte migration or proliferation, after apoptotic destruction of 

astrocytes or neurons by DT (Aldskogius & Kozlova, 1998; Morimoto & Bonavida, 

1992). We suspect that the increase in extracellular adenosine is due to the increased 
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number of astrocytes. A role for astrocytes in sleep regulation has only recently started 

to emerge. Extracellular levels of adenosine and recovery sleep after sleep deprivation 

are reduced when the release of ATP is blocked by the transgenic expression of the 

dnSNARE protein in astrocytes (Chen & Scheller, 2001; Halassa et al., 2009; Pascual 

et al., 2005; Raingo et al., 2012) and astrocytic adenosine kinase is involved in 

regulating homeostatic sleep (Bjorness et al., 2016). Moreover, optogenetic stimulation 

of astrocytes in the posterior hypothalamus increases sleep (Pelluru et al., 2016).  

The possibility that activated microglia also contribute to the elevated adenosine levels 

cannot be excluded. Microglia are immune cells distributed throughout the brain, 

comprising 10% to 20% of the glial population (Ginhoux et al., 2013). Microglia in a 

phagocytic state are usually involved in the clearance of apoptotic cells (Lian et al., 

2016). The role of microglia in sleep regulation remains elusive. Some studies reported 

that microglia are activated after sleep deprivation (Huang et al., 2014; Wadhwa et al., 

2018; Wisor et al., 2011). Microglia activation is likely a consequence of sleep loss, 

however, rather than the cause of sleep rebound. Microglia are considered to be a major 

source of cytokines, but there is almost no evidence indicating that microglia can release 

adenosine (Hanisch, 2002; Smith et al., 2012). In contrast, adenosine has an important 

role in regulating microglia via adenosine receptors (Gyoneva et al., 2009; Luongo et 

al., 2014; Madeira et al., 2018; Orr et al., 2009). Future studies utilizing opto- or 

chemogenetic systems are needed to examine the ability of microglia to release 

adenosine and induce sleep. Moreover, cytokines have a known role in sleep/wake 

regulation, but the effects of cytokines released from microglia in the NAc on sleep 
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have never been investigated. The A2ARKO NAc GFAP-DTR mice exhibited no increase 

in SWS after DTR-mediated ablation of astrocytes and neurons, suggesting that 

cytokines are not involved in the sleep phenotype. 

Moreover, the DTR was also expressed in neurons to some extent due to leakage of the 

GFAP promoter used in our viral vector and thus, it is possible that we also ablated a 

small number of neurons by DT administration. We do not consider this directly 

relevant, however, because the sleep/wake behavior of A2ARKO mice is not affected by 

DTR-mediated ablation of astrocytes and neurons, and cytotoxic lesions of the NAc 

core or shell neurons induce wakefulness (Qiu et al., 2012). Neuronal ablation, however, 

may contribute to activate the astrocytes and microglia (Aldskogius and Kozlova, 1998). 

Strong reactivation of astrocytes and microglia in healthy mammalians is not a common 

phenomenon but usually it can be observed in brains with inflammation or injuries. 

Therefore, the cytotoxic ablation of astrocytes and neurons may mimic traumatic brain 

injury (TBI) which is often associated with sleep disorders. TBI patients experience 

high rates of insomnia (29%), hypersomnia (28%), and sleep apnea (25%) (Wickwire 

et al., 2016). For example, hypersomnia was observed in patients with thalamic 

astrogliosis and increased adenosine levels in the cerebral spinal fluid during an acute 

period after TBI (Hazra et al., 2014; Rowe et al., 2014; Zuzuárregui et al., 2018). An 

imbalance of neurotransmitters (e.g., GABA, glutamate and orexin) or increased 

cytokine production in the hypothalamus or brain stem after TBI, however, is believed 

to cause the sleep disturbance (Sandsmark et al., 2017). Although adenosine is known 
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to play an important role in neuroprotection after TBI (Lusardi, 2009), the involvement 

of adenosine, especially in the NAc, in TBI-related sleep disorders remains unclear. 

 

6. Conclusion 

Activation of A2AR neurons in the NAc core promotes SWS sleep and elevated 

adenosine levels in the NAc core increase SWS by acting on A2AR. Our findings 

provide the first evidence that adenosine is a strong candidate molecule for activating 

NAc core A2AR neurons to induce SWS. 

 

7. Acknowledgements  

I give special thanks to my family members for their essential supports and patience 

through the past 4 years of study. 

I express my gratitude to Dr. Michael Lazarus for his professional instructions, generous 

experimental supports and rigid supervision. I also feel thankful to the other Lazarus 

lab members especially the Phd students who helped me a lot and grew up together with 

me. 

 

8. Reference 

Aldskogius, H., & Kozlova, E. N. (1998). Central neuron-glial and glial-glial 

interactions following axon injury. Prog Neurobiol, 55(1), 1-26.  

Ballarin, M., Fredholm, B. B., Ambrosio, S., & Mahy, N. (1991). Extracellular levels 

of adenosine and its metabolites in the striatum of awake rats: inhibition of 

uptake and metabolism. Acta Physiol Scand, 142(1), 97-103.  



35 
 

Basheer, R., Porkka-Heiskanen, T., Strecker, R. E., Thakkar, M. M., & McCarley, R. W. 

(2000). Adenosine as a biological signal mediating sleepiness following 

prolonged wakefulness. Biol Signals Recept, 9(6), 319-327.  

Basheer, R., Halldner, L., Alanko, L., McCarley, R. W., Fredholm, B. B., & Porkka-

Heiskanen, T. (2001). Opposite changes in adenosine A(1) and A(2A) receptor 

mRNA in the rat following sleep deprivation. Neuroreport, 12(8), 1577-1580.  

Bell, C. E., & Eisenberg, D. (1996). Crystal structure of diphtheria toxin bound to 

nicotinamide adenine dinucleotide. Biochemistry, 35(4), 1137-1149.  

Benington, J. H., Kodali, S. K., & Heller, H. C. (1995). Stimulation of A1 adenosine 

receptors mimics the electroencephalographic effects of sleep deprivation. 

Brain Res, 692(1–2), 79-85.  

Bjorness, T. E., Kelly, C. L., Gao, T. S., Poffenberger, V., & Greene, R. W. (2009). 

Control and Function of the Homeostatic Sleep Response by Adenosine A(1) 

Receptors. J Neurosci, 29(5), 1267-1276.  

Bjorness, T. E., Dale, N., Mettlach, G., Sonneborn, A., Sahin, B., Fienberg, A. A., 

Yanagisawa, M., Bibb, J.A., & Greene, R. W. (2016). An Adenosine-Mediated 

Glial-Neuronal Circuit for Homeostatic Sleep. J Neurosci, 36(13), 3709-3721.  

Blum, K., Werner, T., Carnes, S., Carnes, P., Bowirrat, A., Giordano, J., Oscar-Berman 

M., & Gold, M. (2012). Sex, drugs, and rock 'n' roll: hypothesizing common 

mesolimbic activation as a function of reward gene polymorphisms. J 

Psychoactive Drugs, 44(1), 38-55. 

Britt, J. P., Benaliouad, F., McDevitt, R. A., Stuber, G. D., Wise, R. A., & Bonci, A. 



36 
 

(2012). Synaptic and behavioral profile of multiple glutamatergic inputs to the 

nucleus accumbens. Neuron, 76(4), 790-803.  

Brockschnieder, D., Lappe-Siefke, C., Goebbels, S., Boesl, M. R., Nave, K. A., & 

Riethmacher, D. (2004). Cell depletion due to diphtheria toxin fragment A after 

Cre-mediated recombination. Mol Cell Biol, 24(17), 7636-7642.  

Brog, J. S., Salyapongse, A., Deutch, A. Y., & Zahm, D. S. (1993). The patterns of 

afferent innervation of the core and shell in the "accumbens" part of the rat 

ventral striatum: immunohistochemical detection of retrogradely transported 

fluoro-gold. J Comp Neurol, 338(2), 255-278.  

Brooks, G. A. (2009). Cell-cell and intracellular lactate shuttles. J Physiol, 587(Pt 23), 

5591-5600.  

Chamberlin, N. L., Du, B., de Lacalle, S., & Saper, C. B. (1998). Recombinant adeno-

associated virus vector: use for transgene expression and anterograde tract 

tracing in the CNS. Brain Res, 793(1-2), 169-175.  

Chang, T., & Neville, D. M., Jr. (1978). Demonstration of diphtheria toxin receptors on 

surface membranes from both toxin-sensitive and toxin-resistant species. J Biol 

Chem, 253(19), 6866-6871.  

Chen, J. F., Huang, Z., Ma, J., Zhu, J., Moratalla, R., Standaert, D., Moskowitz, M.A., 

Fink, J.S., & Schwarzschild, M. A. (1999). A(2A) adenosine receptor deficiency 

attenuates brain injury induced by transient focal ischemia in mice. J Neurosci, 

19(21), 9192-9200.  

Chen, Y. A., & Scheller, R. H. (2001). Snare-mediated membrane fusion. Nat Rev Mol 



37 
 

Cell Biol, 2(2), 98-106.  

Cunha, R. A. (2001). Adenosine as a neuromodulator and as a homeostatic regulator in 

the nervous system: different roles, different sources and different receptors. 

Neurochem Int, 38(2), 107-125.  

Daly, J. W., & Padgett, W. L. (1992). Agonist Activity of 2-Substituted and 5'-

Substituted Adenosine-Analogs and Their N6-Cycloalkyl Derivatives at 

Adenosine-A1 and Adenosine-A2 Receptors Coupled to Adenylate-Cyclase. 

Biochem Pharmacol, 43(5), 1089-1093.  

Dispersyn, G., Sauvet, F., Gomez-Merino, D., Ciret, S., Drogou, C., Leger, D., Gallopin, 

T., & Chennaoui, M. (2017). The homeostatic and circadian sleep recovery 

responses after total sleep deprivation in mice. J Sleep Res, 26(5), 531-538.  

Drury, A. N., & Szent-Gyorgyi, A. (1929). The physiological activity of adenine 

compounds with especial reference to their action upon the mammalian heart. J 

Physiol, 68(3), 213-237.  

Dunwiddie, T. V., & Worth, T. (1982). Sedative and Anticonvulsant Effects of 

Adenosine-Analogs in Mouse and Rat. J Pharmacol Exp Ther, 220(1), 70-76.  

Feldberg, W., & Sherwood, S. L. (1954). Injections of drugs into the lateral ventricle of 

the cat. J Physiol, 123(1), 148-167.  

  

Fredholm, B. B., Ijzerman, A. P., Jacobson, K. A., Klotz, K. N., & Linden, J. (2001). 

International Union of Pharmacology. XXV. Nomenclature and classification of 

adenosine receptors. Pharmacol Rev, 53(4), 527-552.  



38 
 

Fredholm, B. B., Chen, J. F., Cunha, R. A., Svenningsson, P., & Vaugeois, J. M. (2005). 

Adenosine and brain function. Int Rev Neurobiol, 63, 191-270.  

Fredholm, B. B. (2007). Adenosine, an endogenous distress signal, modulates tissue 

damage and repair. Cell Death Differ, 14(7), 1315-1323.  

Fredholm, B. B., AP, I. J., Jacobson, K. A., Linden, J., & Muller, C. E. (2011). 

International Union of Basic and Clinical Pharmacology. LXXXI. 

Nomenclature and classification of adenosine receptors--an update. Pharmacol 

Rev, 63(1), 1-34.  

Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G., & Sofroniew, M. V. (2004). GFAP-

expressing progenitors are the principal source of constitutive neurogenesis in 

adult mouse forebrain. Nat Neurosci, 7(11), 1233-1241.  

George Paxinos, & Keith Franklin. (2001). The Mouse Brain in Stereotaxic Coordinates. 

2nd edn. Academic Press.  

Ginhoux, F., Lim, S., Hoeffel, G., Low, D., & Huber, T. (2013). Origin and 

differentiation of microglia. Front Cell Neurosci, 7, 45.  

Gipson, C. D., Kupchik, Y. M., & Kalivas, P. W. (2014). Rapid, transient synaptic 

plasticity in addiction. Neuropharmacol, 76 Pt B, 276-286. 

Goto, Y., & O'Donnell, P. (2001). Synchronous activity in the hippocampus and nucleus 

accumbens in vivo. J Neurosci, 21(4), RC131.  

Gyoneva, S., Orr, A. G., & Traynelis, S. F. (2009). Differential regulation of microglial 

motility by ATP/ADP and adenosine. Parkinsonism Relat Disord, 15 Suppl 3, 

S195-199.  



39 
 

Haas, H., & Panula, P. (2003). The role of histamine and the tuberomamillary nucleus 

in the nervous system. Nat Rev Neurosci, 4(2), 121-130.  

Halassa, M. M., Florian, C., Fellin, T., Munoz, J. R., Lee, S. Y., Abel, T., Haydon, P.G., 

& Frank, M. G. (2009). Astrocytic Modulation of Sleep Homeostasis and 

Cognitive Consequences of Sleep Loss. Neuron, 61(2), 213-219.  

Hanisch, U. K. (2002). Microglia as a source and target of cytokines. Glia, 40(2), 140-

155.  

Haulica, I., Ababei, L., Branisteanu, D., Braniste.D, & Topoliceanu, F. (1973). 

Preliminary Data on Possible Hypnogenic Role of Adenosine. J Neurochem, 

21(4), 1019-1020. 

Hazra, A., Macolino, C., Elliott, M. B., & Chin, J. (2014). Delayed thalamic astrocytosis 

and disrupted sleep-wake patterns in a preclinical model of traumatic brain 

injury. J Neurosci Res, 92(11), 1434-1445. 

Honjo, T., Nishizuka, Y., & Hayaishi, O. (1968). Diphtheria toxin-dependent adenosine 

diphosphate ribosylation of aminoacyl transferase II and inhibition of protein 

synthesis. J Biol Chem, 243(12), 3553-3555.  

Huang, C. T., Chiang, R. P., Chen, C. L., & Tsai, Y. J. (2014). Sleep deprivation 

aggravates median nerve injury-induced neuropathic pain and enhances 

microglial activation by suppressing melatonin secretion. Sleep, 37(9), 1513-

1523.  

Huang, Z. L., Qu, W. M., Eguchi, N., Chen, J. F., Schwarzschild, M. A., Fredholm, B. 

B., Urade, Y., & Hayaishi, O. (2005). Adenosine A2A, but not A1, receptors 



40 
 

mediate the arousal effect of caffeine. Nat Neurosci, 8(7), 858-859.  

Huston, J. P., Haas, H. L., Boix, F., Pfister, M., Decking, U., Schrader, J., & Schwarting, 

R. K. W. (1996). Extracellular adenosine levels in neostriatum and hippocampus 

during rest and activity periods of rats. Neuroscience, 73(1), 99-107.  

Inagaki, N., Yamatodani, A., Ando-Yamamoto, M., Tohyama, M., Watanabe, T., & 

Wada, H. (1988). Organization of histaminergic fibers in the rat brain. J Comp 

Neurol, 273(3), 283-300.  

Iwasaki, K., Komiya, H., Kakizaki, M., Miyoshi, C., Abe, M., Sakimura, K., Funato, 

H., & Yanagisawa, M. (2018). Ablation of Central Serotonergic Neurons 

Decreased REM Sleep and Attenuated Arousal Response. Front Neurosci, 12, 

535.  

Joel, D., & Weiner, I. (2000). The connections of the dopaminergic system with the 

striatum in rats and primates: an analysis with respect to the functional and 

compartmental organization of the striatum. Neuroscience, 96(3), 451-474.  

Kalinchuk, A. V., Urrila, A.-S., Alanko, L., Heiskanen, S., Wigren, H.-K., Suomela, M., 

Stenberg, D., & Porkka-Heiskanen, T.  (2003). Local energy depletion in the 

basal forebrain increases sleep. Eur J Neurosci, 17(4), 863-869.  

Kimata, Y., & Kohno, K. (1994). Elongation factor 2 mutants deficient in diphthamide 

formation show temperature-sensitive cell growth. J Biol Chem, 269(18), 

13497-13501.  

Kohlschutter, J., Michelfelder, S., & Trepel, M. (2010). Novel cytotoxic vectors based 

on adeno-associated virus. Toxins (Basel), 2(12), 2754-2768.  



41 
 

Kohno, K., Uchida, T., Ohkubo, H., Nakanishi, S., Nakanishi, T., Fukui, T., Ohtsuka, 

E., Ikehara, M., & Okada, Y. (1986). Amino acid sequence of mammalian 

elongation factor 2 deduced from the cDNA sequence: homology with GTP-

binding proteins. Proc Natl Acad Sci U S A, 83(14), 4978-4982.  

Kohno, K., & Uchida, T. (1987). Highly frequent single amino acid substitution in 

mammalian elongation factor 2 (EF-2) results in expression of resistance to EF-

2-ADP-ribosylating toxins. J Biol Chem, 262(25), 12298-12305.  

Kohtoh, S., Taguchi, Y., Matsumoto, N., Wada, M., Huang, Z. L., & Urade, Y. (2008). 

Algorithm for sleep scoring in experimental animals based on fast Fourier 

transform power spectrum analysis of the electroencephalogram. Sleep and 

Biological Rhythms, 6(3), 163-171.  

Kovacs, Z., Dobolyi, A., Kekesi, K. A., & Juhasz, G. (2013). 5'-nucleotidases, 

nucleosides and their distribution in the brain: pathological and therapeutic 

implications. Curr Med Chem, 20(34), 4217-4240.  

Latini, S., & Pedata, F. (2001). Adenosine in the central nervous system: release 

mechanisms and extracellular concentrations. J Neurochem, 79(3), 463-484.  

Lazarus, M., Shen, H.Y., Cherasse, Y., Qu, W.M., Huang, Z.L., Bass, C. E., Winsky-

Sommerer, R., Semba, K., Fredholm, B.B., Boison, D., Hayaishi, O., Urade, Y., 

& Chen, J.F. (2011). Arousal effect of caffeine depends on adenosine A2A 

receptors in the shell of the nucleus accumbens. J Neurosci, 31(27), 10067-

10075.  

Lazarus, M., Chen, J. F., Huang, Z. L., Urade, Y., & Fredholm, B. B. (2017). Adenosine 



42 
 

and Sleep. Handb Exp Pharmacol.  

Lee, H. J., Weitz, A. J., Bernal-Casas, D., Duffy, B. A., Choy, M., Kravitz, A. V., 

Kreitzer, A. C., & Lee, J. H. (2016). Activation of Direct and Indirect Pathway 

Medium Spiny Neurons Drives Distinct Brain-wide Responses. Neuron, 91(2), 

412-424. 

Lian, H., Roy, E., & Zheng, H. (2016). Microglial Phagocytosis Assay. Bio Protoc, 

6(21).  

Linden, J., Taylor, H. E., Robeva, A. S., Tucker, A. L., Stehle, J. H., Rivkees, S. A., 

Fink, J.S., & Reppert, S. M. (1993). Molecular cloning and functional 

expression of a sheep A3 adenosine receptor with widespread tissue distribution. 

Mol Pharmacol, 44(3), 524-532.  

Luo, Y. J., Li, Y. D., Wang, L., Yang, S. R., Yuan, X. S., Wang, J., Cherasse, Y., Lazarus, 

M., Chen, J.F., Qu, W.M., & Huang, Z. L. (2018). Nucleus accumbens controls 

wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. 

Nat Commun, 9(1), 1576.  

Luongo, L., Guida, F., Imperatore, R., Napolitano, F., Gatta, L., Cristino, L., Giordano, 

C., Siniscalco, D., Di Marzo, V., Bellini, G., Petrelli, R., Cappellacci, L., Usiello, 

A., de Novellis, V., Rossi, F., & Maione, S. (2014). The A1 adenosine receptor 

as a new player in microglia physiology. Glia, 62(1), 122-132.  

Lusardi, T. A. (2009). Adenosine neuromodulation and traumatic brain injury. Curr 

Neuropharmacol, 7(3), 228-237.  

Lynd-Balta, E., & Haber, S. N. (1994). The organization of midbrain projections to the 



43 
 

ventral striatum in the primate. Neuroscience, 59(3), 609-623.  

Madeira, M. H., Rashid, K., Ambrosio, A. F., Santiago, A. R., & Langmann, T. (2018). 

Blockade of microglial adenosine A2A receptor impacts inflammatory 

mechanisms, reduces ARPE-19 cell dysfunction and prevents photoreceptor 

loss in vitro. Sci Rep, 8(1), 2272.  

Malenka, R., Nestler, E., & Hyman, S. (2009). Chapter 6: Widely Projecting Systems: 

Monoamines, Acetylcholine, and Orexin. Molecular Neuropharmacol: A 

Foundation for Clinical Neuroscience (2nd ed.), 175-176.  

Marley, E., & Nistico, G. (1972). Effects of Catecholamines and Adenosine Derivatives 

Given into Brain of Fowls. Br J Pharmacol, 46(4), 619-636.  

Mitamura, T., Higashiyama, S., Taniguchi, N., Klagsbrun, M., & Mekada, E. (1995). 

Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of 

human heparin-binding EGF-like growth factor/diphtheria toxin receptor and 

inhibits specifically its mitogenic activity. J Biol Chem, 270(3), 1015-1019.  

Morimoto, H., & Bonavida, B. (1992). Diphtheria toxin- and Pseudomonas A toxin-

mediated apoptosis. ADP ribosylation of elongation factor-2 is required for 

DNA fragmentation and cell lysis and synergy with tumor necrosis factor-alpha. 

J Immunol, 149(6), 2089-2094.  

Nam, H. W., Bruner, R. C., & Choi, D. S. (2013). Adenosine signaling in striatal circuits 

and alcohol use disorders. Mol Cells, 36(3), 195-202.  

Ohana, G., Bar-Yehuda, S., Barer, F., & Fishman, P. (2001). Differential effect of 

adenosine on tumor and normal cell growth: focus on the A3 adenosine receptor. 



44 
 

J Cell Physiol, 186(1), 19-23.  

Oishi, Y., Huang, Z. L., Fredholm, B. B., Urade, Y., & Hayaishi, O. (2008). Adenosine 

in the tuberomammillary nucleus inhibits the histaminergic system via A1 

receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci U S 

A, 105(50), 19992-19997.  

Oishi, Y., Takata, Y., Taguchi, Y., Kohtoh, S., Urade, Y., & Lazarus, M. (2016). 

Polygraphic Recording Procedure for Measuring Sleep in Mice. J Vis Exp(107), 

e53678. 

Oishi, Y., Xu, Q., Wang, L., Zhang, B. J., Takahashi, K., Takata, Y., Luo, Y.J., Cherasse, 

Y., Schiffmann, S.N., de Kerchove d'Exaerde, A., Urade, Y., Qu, W.M., Huang, 

Z.L., & Lazarus, M. (2017). Slow-wave sleep is controlled by a subset of 

nucleus accumbens core neurons in mice. Nat Commun, 8(1), 734.  

Okada, T., Mochizuki, T., Huang, Z. L., Eguchi, N., Sugita, Y., Urade, Y., & Hayaishi, 

O. (2003). Dominant localization of adenosine deaminase in leptomeninges and 

involvement of the enzyme in sleep. Biochem Biophys Res Commun, 312(1), 

29-34.  

Orr, A. G., Orr, A. L., Li, X. J., Gross, R. E., & Traynelis, S. F. (2009). Adenosine A(2A) 

receptor mediates microglial process retraction. Nat Neurosci, 12(7), 872-878.  

Paes-de-Carvalho, R. (2002). Adenosine as a signaling molecule in the retina: 

biochemical and developmental aspects. An Acad Bras Cienc, 74(3), 437-451.  

Palmiter, R. D., Behringer, R. R., Quaife, C. J., Maxwell, F., Maxwell, I. H., & Brinster, 

R. L. (1987). Cell lineage ablation in transgenic mice by cell-specific expression 



45 
 

of a toxin gene. Cell, 50(3), 435-443.  

Parkinson, F. E., Damaraju, V. L., Graham, K., Yao, S. Y., Baldwin, S. A., Cass, C. E., 

& Young, J. D. (2011). Molecular biology of nucleoside transporters and their 

distributions and functions in the brain. Curr Top Med Chem, 11(8), 948-972.  

Pascual, O., Casper, K. B., Kubera, C., Zhang, J., Revilla-Sanchez, R., Sul, J. Y., Takano, 

H., Moss, S. J., McCarthy, K., & Haydon, P. G. (2005). Astrocytic purinergic 

signaling coordinates synaptic networks. Science, 310(5745), 113-116.  

Pekny, M., Leveen, P., Pekna, M., Eliasson, C., Berthold, C. H., Westermark, B., & 

Betsholtz, C. (1995). Mice lacking glial fibrillary acidic protein display 

astrocytes devoid of intermediate filaments but develop and reproduce normally. 

EMBO J, 14(8), 1590-1598.  

Pekny, M., & Pekna, M. (2004). Astrocyte intermediate filaments in CNS pathologies 

and regeneration. J Pathol, 204(4), 428-437.  

Pelluru, D., Konadhode, R. R., Bhat, N. R., & Shiromani, P. J. (2016). Optogenetic 

stimulation of astrocytes in the posterior hypothalamus increases sleep at night 

in C57BL/6J mice. Eur J Neurosci, 43(10), 1298-1306.  

Porkka-Heiskanen, T., Strecker, R. E., Thakkar, M., Bjorkum, A. A., Greene, R. W., & 

McCarley, R. W. (1997). Adenosine: a mediator of the sleep-inducing effects of 

prolonged wakefulness. Science., 276(5316), 1265-1268.  

Porkka-Heiskanen, T., Strecker, R. E., & McCarley, R. W. (2000). Brain site-specificity 

of extracellular adenosine concentration changes during sleep deprivation and 

spontaneous sleep: an in vivo microdialysis study. Neuroscience, 99(3), 507-



46 
 

517.  

Pull, I., & Mcilwain, H. (1972). Metabolism of [C-14] Adenine and Derivatives by 

Cerebral Tissues, Superfused and Electrically Stimulated. Biochem J, 126(4), 

965-973.  

Qiu, M. H., Liu, W., Qu, W. M., Urade, Y., Lu, J., & Huang, Z. L. (2012). The role of 

nucleus accumbens core/shell in sleep-wake regulation and their involvement 

in modafinil-induced arousal. PLoS One, 7(9), e45471.  

Radulovacki, M., Virus, R. M., Djuricicnedelson, M., & Green, R. D. (1983). Hypnotic 

Effects of Deoxycorformycin in Rats. Brain Res, 271(2), 392-395.  

Radulovacki, M., Virus, R. M., Djuricicnedelson, M., & Green, R. D. (1984). 

Adenosine-Analogs and Sleep in Rats. J Pharmacol Exp Ther, 228(2), 268-274.  

Radulovacki, M., Virus, R. M., Rapoza, D., & Crane, R. A. (1985). A Comparison of 

the Dose-Response Effects of Pyrimidine Ribonucleosides and Adenosine on 

Sleep in Rats. Psychopharmacol, 87(2), 136-140.  

Raingo, J., Khvotchev, M., Liu, P., Darios, F., Li, Y. C., Ramirez, D. M., Adachi, M., 

Lemieux, P., Toth, K., Davletov, B., & Kavalali, E. T. (2012). VAMP4 directs 

synaptic vesicles to a pool that selectively maintains asynchronous 

neurotransmission. Nat  Neurosci, 15(5), 738-745.  

Ren, S., Wang, Y., Yue, F., Cheng, X., Dang, R., Qiao, Q., Sun, X., Li, X., Jiang, Q., 

Yao, J., Qin, H., Wang, G., Liao, X., Gao, D., Xia, J., Zhang, J., Hu, B., Yan, J., 

Wang, Y., Xu, M., Han, Y., Tang, X., Chen, X., He, C., & Hu, Z. (2018). The 

paraventricular thalamus is a critical thalamic area for wakefulness. Science, 



47 
 

362(6413), 429-434.  

Robinson, E. A., Henriksen, O., & Maxwell, E. S. (1974). Elongation factor 2. Amino 

acid sequence at the site of adenosine diphosphate ribosylation. J Biol Chem, 

249(16), 5088-5093.  

Robison, A. J., & Nestler, E. J. (2011). Transcriptional and epigenetic mechanisms of 

addiction. Nat Rev Neurosci, 12(11), 623-637.  

Rowe, R. K., Striz, M., Bachstetter, A. D., Van Eldik, L. J., Donohue, K. D., O'Hara, B. 

F., & Lifshitz, J. (2014). Diffuse brain injury induces acute post-traumatic sleep. 

PLoS One, 9(1), e82507. doi: 10.1371/journal.pone.0082507 

Saito, M., Iwawaki, T., Taya, C., Yonekawa, H., Noda, M., Inui, Y., Mekada, E., Kimata, 

Y., Tsuru, A., & Kohno, K. (2001). Diphtheria toxin receptor-mediated 

conditional and targeted cell ablation in transgenic mice. Nat Biotechnol, 19(8), 

746-750.  

Salvatore, C. A., Jacobson, M. A., Taylor, H. E., Linden, J., & Johnson, R. G. (1993). 

Molecular cloning and characterization of the human A3 adenosine receptor. 

Proc Natl Acad Sci U S A, 90(21), 10365-10369.  

Sandsmark, D. K., Elliott, J. E., & Lim, M. M. (2017). Sleep-Wake Disturbances After 

Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep, 40(5).  

Schrader, J. (1983). Metabolism of Adenosine and Sites of Production in the Heart. In 

R. Berne, T. Rall & R. Rubio (Eds.). Regulatory Function of Adenosine (Vol. 2, 

pp. 133-156): Springer US. 

Smith, J. A., Das, A., Ray, S. K., & Banik, N. L. (2012). Role of pro-inflammatory 



48 
 

cytokines released from microglia in neurodegenerative diseases. Brain Res 

Bull, 87(1), 10-20.  

Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar 

formation. Trends Neurosci, 32(12), 638-647.  

Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta 

Neuropathol, 119(1), 7-35.  

Srinivas, S., Watanabe, T., Lin, C. S., William, C. M., Tanabe, Y., Jessell, T. M., & 

Costantini, F. (2001). Cre reporter strains produced by targeted insertion of 

EYFP and ECFP into the ROSA26 locus. BMC Dev Biol, 1, 4.  

Swanson, L. W. (1982). The Projections of the Ventral Tegmental Area and Adjacent 

Regions - a Combined Fluorescent Retrograde Tracer and Immunofluorescence 

Study in the Rat. Brain Res Bull, 9(1-6), 321-353.  

Tellez, L. A., Perez, I. O., Simon, S. A., & Gutierrez, R. (2012). Transitions between 

sleep and feeding states in rat ventral striatum neurons. J Neurophysiol, 108(6), 

1739-1751. 

Ticho, S. R., & Radulovacki, M. (1991). Role of Adenosine in Sleep and Temperature 

Regulation in the Preoptic Area of Rats. Pharmacol Biochem Behav, 40(1), 33-

40.  

Tobler, I., & Scherschlicht, R. (1990). Sleep and Eeg Slow-Wave Activity in the 

Domestic Cat - Effect of Sleep-Deprivation. Behav Brain Res, 37(2), 109-118.  

Van Ness, B. G., Howard, J. B., & Bodley, J. W. (1980). ADP-ribosylation of elongation 

factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-



49 
 

diphthamide and its hydrolysis products. J Biol Chem, 255(22), 10710-10716.  

Vanwylen, D. G. L., Park, T. S., Rubio, R., & Berne, R. M. (1986). Increases in Cerebral 

Interstitial Fluid Adenosine Concentration during Hypoxia, Local Potassium 

Infusion, and Ischemia. J Cereb Blood Flow Metab, 6(5), 522-528.  

Wada, H., Inagaki, N., Yamatodani, A., & Watanabe, T. (1991). Is the histaminergic 

neuron system a regulatory center for whole-brain activity? Trends Neurosci, 

14(9), 415-418.  

Wadhwa, M., Chauhan, G., Roy, K., Sahu, S., Deep, S., Jain, V., Kishore, K., Ray, K., 

Thakur, L., & Panjwani, U. (2018). Caffeine and Modafinil Ameliorate the 

Neuroinflammation and Anxious Behavior in Rats during Sleep Deprivation by 

Inhibiting the Microglia Activation. Front Cell Neurosci, 12, 49.  

Wang, Z., Ma, J., Miyoshi, C., Li, Y., Sato, M., Ogawa, Y., Lou, T., Ma, C., Gao, X., 

Lee, C., Fujiyama, T., Yang, X., Zhou, S., Hotta-Hirashima, N., Klewe-

Nebenius, D., Ikkyu, A., Kakizaki, M., Kanno, S., Cao, L., Takahashi, S., Peng, 

J., Yu, Y., Funato, H., Yanagisawa, M., & Liu, Q. (2018). Quantitative 

phosphoproteomic analysis of the molecular substrates of sleep need. Nature, 

558(7710), 435-439.  

Wickwire, E. M., Williams, S. G., Roth, T., Capaldi, V. F., Jaffe, M., Moline, M., 

Motamedi, G. K., Morgan, G. W., Mysliwiec, V., Germain, A., Pazdan, R. M., 

Ferziger, R., Balkin, T. J., MacDonald, M. E., Macek, T. A., Yochelson, M. R., 

Scharf, S. M., & Lettieri, C. J. (2016). Sleep, Sleep Disorders, and Mild 

Traumatic Brain Injury. What We Know and What We Need to Know: Findings 



50 
 

from a National Working Group. Neurotherapeutics, 13(2), 403-417.  

Wisor, J. P., Schmidt, M. A., & Clegern, W. C. (2011). Evidence for neuroinflammatory 

and microglial changes in the cerebral response to sleep loss. Sleep, 34(3), 261-

272.  

Yamaizumi, M., Mekada, E., Uchida, T., & Okada, Y. (1978). One molecule of 

diphtheria toxin fragment A introduced into a cell can kill the cell. Cell, 15(1), 

245-250.  

Yegutkin, G. G. (2008). Nucleotide- and nucleoside-converting ectoenzymes: 

Important modulators of purinergic signalling cascade. Biochim Biophys Acta, 

1783(5), 673-694.  

Yu, X., Li, W., Ma, Y., Tossell, K., Harris, J. J., Harding, E. C., Ba, W., Miracca, G., 

Wang, D., Li, L., Guo, J., Chen, M., Li, Y., Yustos, R., Vyssotski, A. L., 

Burdakov, D., Yang, Q., Dong, H., Franks, N. P., & Wisden, W. (2019). GABA 

and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci, 

22(1), 106-119. 

Zhang, J. P., Xu, Q., Yuan, X. S., Cherasse, Y., Schiffmann, S. N., de Kerchove 

d'Exaerde, A., Qu, W.M., Urade, Y., Lazarus, M., Huang, Z.L., & Li, R. X. 

(2013). Projections of nucleus accumbens adenosine A2A receptor neurons in 

the mouse brain and their implications in mediating sleep-wake regulation. 

Front Neuroanat, 7, 43.  

Zimmermann, H. (2000). Extracellular metabolism of ATP and other nucleotides. 

Naunyn Schmiedebergs Arch Pharmacol, 362(4-5), 299-309.  



51 
 

Zimmermann, H. (2006). Ectonucleotidases in the nervous system. Novartis Found 

Symp, 276, 113-128; discussion 128-130, 233-117, 275-181.  

Zolotukhin, S., Byrne, B. J., Mason, E., Zolotukhin, I., Potter, M., Chesnut, K., 

Summerford, C., Samulski, R. J., & Muzyczka, N. (1999). Recombinant adeno-

associated virus purification using novel methods improves infectious titer and 

yield. Gene Ther, 6(6), 973-985.  

 Zuzuárregui, J. R. P., Bickart, K., & Kutscher, S. J. (2018). A review of sleep 

disturbances following traumatic brain injury. Sleep Science and Practice, 2(1), 

2.  

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

9. Source 

The contents previously published in Neurochemistry International. 2019 

Mar;124:256-263. (doi: 10.1016/j.neuint.2019.01.020.) are re-used in this dissertation 

following the guidance from Public Library of Science (or based on the approval from 

Elsevier after the procedure with Copyright Clearance Center) 

 

 

 

 

 

 

 

 

 

 

 
 


