<table>
<thead>
<tr>
<th>著者 (英)</th>
<th>Seiji HIRABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>言語</td>
<td>日</td>
</tr>
</tbody>
</table>
INTERACTIVE INFINITE MARKOV PARTICLE SYSTEMS WITH JUMPS

By
Seiji Hiraba

Abstract. In [2] we investigated independent infinite Markov particle systems as measure-valued Markov processes with jumps, and we gave sample path properties and martingale characterizations. In particular, we investigated the exponent of Hölder-right continuity in case that the motion process is absorbing α-stable motion on $(0, \infty)$ with $0 < \alpha < 2$, that is, time-changed absorbing Brownian motions on $(0, \infty)$ by the increasing $\alpha/2$-stable Lévy processes.

In the present paper we shall extend the results to the case of simple interactive infinite Markov particle systems. We also consider the absorbing stable motion on a half space $H = \mathbb{R}^{d-1} \times (0, \infty)$ as a motion process.

1. Settings and Previous Results

In this section we give the general settings and the known results which are given in [2] in order to describe the main results in §3 and §4.

Let S be a domain of \mathbb{R}^d. Let $(\nu(t), P_x)_{t \geq 0, x \in S}$ be a S-valued Markov process having life time $\xi(w) \in (0, \infty)$ such that $w \in \mathcal{D}([0, \xi(w)) \to S)$, i.e., $w : [0, \xi(w)) \to S$ is right continuous and has left-hand limits. For convenience, we fix an extra point $\Delta \notin S$ and set $\nu(t) = \Delta$ if $t \geq \xi(w)$. Moreover we shall extend functions f on S to on $\{\Delta\}$ by $f(\Delta) = 0$, if necessary.

We use the following notations: Let $S \subset \mathbb{R}^d$ be a domain.

- If $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$, then $\delta^{k}_{i \rightarrow \Delta} = \partial^k/(\partial x_{i_1} \cdots \partial x_{i_k})$, $\delta^k_i = \partial^k/(\partial x_i)$ and $\delta_i = \partial/\partial t$ for each $k = 0, 1, \ldots$, $i = 1, \ldots, d$. Moreover $\delta_i = \partial/\partial t$ for time $t \geq 0$.

2000 Mathematics Subject Classification: Primary 60G57; Secondary 60G75.

Key words and phrases: particle systems, measure-valued processes, jump processes.

Received April 12, 2012.
Revised March 25, 2013.
$f \in C_c \equiv C_c(S) \quad \text{if} \quad f$ is a continuous function on S with compact support in S, and $C^\infty_c = C^\infty_c(S) := C_c(S) \cap C^\infty(S)$.

- For each integer $k \geq 0$, $C^k_b := C^k_b(\mathbb{R}^d)|_S$, that is, $f \in C^k_b$ is a restriction to S of k-times continuously differentiable function on \mathbb{R}^d with bounded derivatives of order between 0 and k. Moreover $f \in C_0 \quad \text{if} \quad f$ is continuous on S and $f(x) \to 0$ whenever $x \to \partial S$ or $|x| \to \infty$. Furthermore $C_b := C^0_b$, $C^\infty_b := \bigcap_k C^k_b$, $C^k := C^k \cap C^k_b$ and $C^\infty := \bigcap_k C^\infty_k$.

- For a function space D on S, $f \in D^+ \quad \text{if} \quad f \in D$, $f \geq 0$.

- $\langle \mu, f \rangle := \int_S f(x)\mu(dx)$ for a function f on S and a measure μ on S.

The following two assumptions are the same as in [2].

ASSUMPTION 1. Let $(P_t)_{t \geq 0}$ be the transition semigroup of $(w(t), P_x)$, i.e., $P_t f(x) = E_x[f(w(t)) : t < \zeta]$.

(i) (P_t) is a strongly continuous nonnegative contraction semigroup on $(C_0, \| \cdot \|_\infty)$ with generator $(A, \mathcal{D}(A))$, where $\| f \|_\infty = \sup_{x \in S} |f(x)|$.

(ii) $C^\infty_c \subset \mathcal{D}(A)$ and there is a strictly positive function $g_0 \in C^\infty_c$ such that $g_0 \in \mathcal{D}(A)$ and that $g_0^{-1} A f \in C_b$ with $g_0^{-1} = 1/g_0$ for every $f \in C^\infty_c$ and $f = g_0$.

(iii) $\sup_{t \leq T} \| g_0^{-1} P_t g_0 \|_\infty < \infty$ for every $T > 0$.

Under this assumption we introduce a function space $D_{g_0} \subset \mathcal{D}(A)$ as follows:

$f \in D_{g_0} \quad \text{if} \quad f \in \mathcal{D}(A) \quad \text{such that} \quad \| g_0^{-1} f \|_\infty < \infty$ and $\| g_0^{-1} A f \|_\infty < \infty$.

Clearly $g_0 \in D_{g_0}$ and $C^\infty_c \subset D_{g_0}$. Moreover since C^∞_c is dense in C_0 and $P, C^\infty_c \subset D_{g_0}$ for every $t \geq 0$, D_{g_0} is a core for A. However, D_{g_0} may be too large, so we further need the following assumption:

ASSUMPTION 2. There exist a bounded function $g_1 \in C^\infty_c; \ g_1 \geq g_0(> 0)$ and a core $D \subset D_{g_0}$ (we denote $D = D_g$ with $g = (g_0, g_1)$) satisfying the following:

(i) If $f \in D_g$, then $\lim_{t \downarrow 0} \frac{1}{t} (P_t f^2(x) - f(x)^2)$ exists for each $x \in S$ (we also denote the limit as $A f^2(x)$), $\partial_t P_t f^2(x) = A P_t f^2(x) = P_t A f^2(x)$ ($\to A f^2(x)$ as $t \downarrow 0$ for each $x \in S$), $A f^2 \in C_b$ and $\| g_1^{-1} A f^2 \|_\infty < \infty$.

(ii) For each $T > 0$, $\sup_{t \leq T} \| g_1^{-1} P_t g_1 \|_\infty < \infty$.

(iii) For each $0 < s < T$, $\sup_{t \leq s} \| g_0^{-1} P_t g_1 \|_\infty < \infty$.

(iv) There exist constants $0 \leq \gamma < 1, \delta > 0$ such that $\sup_{0 \leq t \leq \delta} t^{\gamma} \| g_0^{-1} P_t g_1 \|_\infty < \infty$.

(v) $g_0 \in D_g$.
Interactive IMPS with jumps

All through the present paper we suppose that Assumption 1 and 2 are fulfilled. We shall sometime use the notation \(\| \cdot \|_{g_0} = \| \cdot / g_0 \|_{\infty} \).

Let \(\mathscr{M}_{g_0} = \mathscr{M}_{g_0}(S) \) be a space of counting measures on \(S \) defined as

\[\mu \in \mathscr{M}_{g_0} \iff \mu = \sum_n \delta_{x_n} \text{ such that } \langle \mu, g_0 \rangle < \infty \text{ and} \]

\[\mu_n \to \mu \quad \text{in } \mathscr{M}_{g_0} \iff \sup \langle \mu_n, g_0 \rangle < \infty, \]

\[\langle \mu_n, f \rangle \to \langle \mu, f \rangle \quad \text{for all } f \in C_C \text{ and } f = g_0, \]

where \(C_C = C_c(S) \) denotes the space of all continuous functions with compact supports on \(S \). Then \(\mathscr{M}_{g_0} \) is metrizable and separable.

We mainly consider the case that the generator has the form

\[A = A^c + A^d, \]

with

\[A^c f(x) = \frac{1}{2} \sum_{i,j=1}^d a^{ij}(x) \partial^2_{ij} f(x) + \sum_{i=1}^d b^i(x) \partial_i f(x), \]

\[A^d f(x) = \int_{S \setminus \{x\}} \left[f(y) - f(x) - \nabla f(x) \cdot (y - x) I(|y - x| < 1) \right] \nu(x, dy) \]

\[- k(x) f(x) + \sum_{i=1}^d c^i(x) \partial_i f(x) \]

for \(f \in D_B \), where \(a^{ij}, b^i \in C_b(S) \), \((a^{ij}) \) is positive definite, \(k(x) \geq 0 \) denotes the killing rate by jumps, \((c^i(x)) \) depends on jumps, and \(\nu(x, dy) \) is the Lévy kernel on \(S \times (S \setminus \{x\} \) satisfying that

\[\sup_{x \in S} \int_{S \setminus \{x\}} (1 \wedge |y - x|^2) \nu(x, dy) < \infty. \]

Independent IMPS; Results in [2]

Let \((X_t, P_\mu) \) be an (indistinguishable) independent Markov particle system (IMP) associated with the motion process \((w(t), P_\mu) \), i.e., for many independent motions \((w_n(t), P_{\mu_n}) \overset{(d)}{=} (w(t), P_\mu), \)

\[X_t = \sum_n \delta_{w_n(t)} I_S \quad \text{if } \mu = \sum_n \delta_{x_n} \text{ on } S, \text{ and } P_\mu = \prod_n P_{\mu_n}. \]
The generator \mathcal{L}_0 of this particle system is given by the following: for $f \in C_c^\infty$,

$$\mathcal{L}_0 e^{-\langle \xi, f \rangle}(\mu) = -\langle \mu, e^f A(1 - e^{-f}) \rangle e^{-\langle \mu, f \rangle}$$

$$= -\langle \mu, A f - \Gamma f \rangle e^{-\langle \mu, f \rangle},$$

where $\Gamma f := Af - e^f A(1 - e^{-f})$. In fact, let $\{\mathcal{F}_t\}$ be the filtration generated by $\{X_t\}$ and set

$$V_tf(x) = -\log P_x[\exp -f(w(t))] = -\log \{1 - P_t(1 - e^{-f})(x)\}.$$

We have that if $0 \leq s < t$, then

$$E_\mu[e^{-\langle X_t, V_t \rangle} | \mathcal{F}_s] = \exp[-\langle X_s, V_{t-s}f \rangle].$$

It is easy to see that $(V_t)_{t \geq 0}$ is a nonnegative contraction semigroup on C_0 and that by (ii) of Assumption 1 if $f \in C_c^\infty$, then $1 - e^{-f} \in C_c^\infty \subset D_g$, hence we have

$$\partial_t V_t f = \frac{P_t A(1 - e^{-f})}{1 - P_t(1 - e^{-f})} = \frac{AP_t(1 - e^{-f})}{1 - P_t(1 - e^{-f})} = e^{V_t} A(1 - e^{-V_t f})$$

$$\rightarrow e^f A(1 - e^{-f}) = Af - \Gamma f \quad (t \downarrow 0).$$

Note that since $V_t f \leq P_t f$ (by Jensen's inequality), Γ is nonnegative;

$$\Gamma f = Af - \partial_t V_t f |_{t=0+} = \lim_{t \downarrow 0} \frac{1}{t} [(P_t f - f) - (V_t f - f)] \geq 0$$

and that for each $f \in C_c^\infty$, $v_t = V_t f$ is the unique solution to the following equation:

$$\partial_t v_t = e^h A(1 - e^{-v_t}), \quad v_0 = f$$

(because $u_t := 1 - e^{-v_t}$ satisfies $\partial_t u_t = Au_t$, $u_0 = 1 - e^{-f}$ and the unique solution is given as $u_t = P_t(1 - e^{-f})$). Moreover if $Av_t(x)$ is well-defined for $t > 0$, $x \in S$, then

$$\partial_t v_t = Au_t - \Gamma v_t, \quad v_0 = f.$$

By using the Markov property and by induction we have

Proposition 1 (Prop. 1 in [1]). For every $0 \leq t_1 \leq \cdots \leq t_n$ and $f_i \in D_g^+$, $i = 1, 2, \ldots, n,$
Interactive IMPS with jumps

\[E_\mu[\langle X_{t_1}, f_1 \rangle \cdots \langle X_{t_n}, f_n \rangle] \]

\[\leq \prod_{i=1}^{n} \langle \mu, P_i f_i \rangle + C_1^{(n)} \sum_{i=1}^{n} \prod_{j \neq i} \langle \mu, P_j f_j \rangle \]

\[+ C_2^{(n)} \sum_{i, \neq i} \prod_{j=i, i} \langle \mu, P_j f_j \rangle + \cdots + C_{n-1}^{(n)} \sum_{j=1}^{n} \langle \mu, P_j f_j \rangle + C_n^{(n)}, \]

where \(C_k^{(n)}, k = 1, \ldots, n \) are positive constants, depending on \((n, \| f \|_\infty, t\leq n). \)

We introduce a non-negative operator \(Q \) as \(Qf = Af^2 - 2Af \) for \(f \in D_q \), which is well-defined by (i) of Assumption 2 and plays an important role to investigate the exponents of Hölder (right) continuity. The non-negativity follows from \((P_i f^2 - f^2)^2 - 2f(P_i f - f)^2 + f^2 \) for \(f \in D_q \).

Theorem 1 (Th. 2.3 and Cor. 2.1 in [2]). Let \((w(t), P_t) \) be a discontinuous Markov process in \((\mathbb{D}(\{0, \xi(w)\}) \to \mathbb{S}) \) with transition semigroup \((P_t) \) satisfying Assumption 1 and 2. Let \(\mu \in \mathbb{M}_{\mathbb{S}} \). The following holds with \(P_\mu \)-probability one.

(i) \(\{\langle X_t, g_0 \rangle \} \) is \((1-\gamma)/2 - \varepsilon \)-Hölder right continuous at \(t = 0 \) for sufficiently small \(\varepsilon > 0 \), where the constant \(0 \leq \gamma < 1 \) is in (iv) of Assumption 2.

(ii) If \(\langle \mu, g_1 \rangle < \infty \), in particular, if \(g_1(x) = g_0(x) \) then \(\{\langle X_t, g_0 \rangle \} \) is \((1/2 - \varepsilon) \)-Hölder right continuous at \(t = 0 \) for sufficiently small \(\varepsilon > 0 \).

(iii) For each fixed \(t_0 > 0 \), \(\{\langle X_t, g_0 \rangle \} \) is \((1/2 - \varepsilon) \)-Hölder right continuous at \(t = t_0 \) for sufficiently small \(\varepsilon > 0 \).

2. Sampling Replacement Markov Particle Systems

Let \(\mu = \sum_n \delta_{x_n} \in \mathbb{M}_{\mathbb{S}} \). Let \((Y_t, P_t^\mu) \) be a sampling replacement Markov particle system associated with the motion process \((w(t), P_t) \), sampling replacement rate \(\lambda > 0 \) and sampling replacement probability \(q(d(m,n)) = \sum_{k,l} p_{k,l} \delta_{(k,l)}(d(m,n)) \) on \(\mathbb{N}^2 \), where \(p_{k,l} \geq 0, p_{k,k} = 0 \) and \(\sum p_{k,l} = 1 \). Each particle first moves independently each other. After a \(\lambda \)-exponential random time, two particles are selected randomly, for example, \(m \)-th and \(n \)-th particles are selected with probability \(p_{m,n} \), and at that time the \(m \)-th particle jumps to the place of the \(n \)-th particle. Then the \(m \)-th particle moves independently. And these operations are continued. We denote each particle by \(Y_n^*(t) \) such that \(Y_n^*(0) = x_n \), and hence \(Y_t = \sum_n \delta_{Y_n^*(t)} \). Note that if \((P_t) \) is non-conservative, then it is possible that the dead particles come life again.
Recall \((X_t, \mathbf{P}_\mu)\) is the independent Markov particle system with the motion process \((\omega(t), \mathbf{P}_\mu)\). For \(f \in D_g\), set \(L^Y_t(\mu) = E^Y_\mu[\exp - \langle Y_t, f \rangle]\) and \(L_t(\mu) = E^Y_\mu[\exp - \langle X_t, f \rangle]\). Then
\[
L_t(\mu) = e^{-\langle \mu, \omega(t) \rangle} \quad \text{with} \quad V_t f(x) = -\log E_x[\exp - f(\omega(t))] = -\log(1 - P_t(1 - e^{-f})).
\]
It is easy to see that \(L^Y_t(\mu)\) satisfies the following equation:
\[
L^Y_t(\mu) = e^{-\lambda t} L_t(\mu) + \lambda \int_0^t ds e^{-\lambda s} \int_{\mathbb{N}^2} q(d(m, n)) \mathbf{P}_s(\Theta_{m,n} L_{t-s})(\mu),
\]
where \((\mathbf{P}_t)\) is the transition semigroup of \((X_t, \mathbf{P}_\mu)\) and \(\Theta_{m,n}\) is an operator such that it makes the \(m\)-th particle jump to the place of \(n\)-th particle of \(\mu = \sum \delta_k \in \mathcal{M}_{\geq 0}\) on a class of all functions \(F(\mu)\) and it is defined by \(\Theta_{m,n} F(\mu) = F(\mu^{m,n})\) with \(\mu^{m,n} = \mu - \delta_{x_m} + \delta_{x_n}\). Note that \(P_t \Theta_{m,n} = \Theta_{m,n} P_t\) holds. The solution is given as
\[
(2.1) \quad L^Y_t(\mu) = T_t e^{-\langle \cdot, \omega(t) \rangle}(\mu) \quad \text{with} \quad T_t = \sum_k e^{-\lambda t} \frac{(\lambda t)^k}{k!} \left(\int_{\mathbb{N}^2} q(d(m, n)) \Theta_{m,n} \right)^k,
\]
where \(T_t\) is an operator on a class of functions \(F(\mu)\) with polynomial growth of \(\langle \mu, f_1 \rangle, \langle \mu, f_2 \rangle, \ldots, \langle \mu, f_n \rangle\) \((f_i \in D_g)\) and
\[
\left(\int_{\mathbb{N}^2} q(d(m, n)) \Theta_{m,n} \right)^k F(\mu) = \left(\int_{\mathbb{N}^2} q(d(m, n)) \Theta_{m,n} \right)^{k-1} \sum_{m,n \in \mathbb{N}} p_{m,n} F(\mu^{m,n}).
\]

The generator \(\mathcal{L}^Y\) of this particle system is given by the following: for \(f \in C_c^{\infty}\),
\[
\mathcal{L}^Y e^{-\langle \cdot, f \rangle}(\mu) = \mathcal{L}^Y_0 e^{-\langle \cdot, f \rangle}(\mu) + \lambda \int (e^{-\langle \mu^{m,n} f \rangle} - e^{-\langle \mu, f \rangle}) q(d(m, n))
\]
\[
= -\left\{ \langle \mu, Af - \Gamma f \rangle + \lambda \langle \delta_{x_m} - \delta_{x_m}, f \rangle q(d(m, n)) \right\}
\]
\[
= -\lambda \left\{ (e^{-\langle \delta_{x_m} - \delta_{x_m}, f \rangle} - 1 + \langle \delta_{x_m} - \delta_{x_m}, f \rangle) q(d(m, n)) \right\} e^{-\langle \mu, f \rangle}
\]
(more general formula of \(\mathcal{L}^Y F(\mu)\) is given in §5). We have the following result.
Recall that we denote the particles of \(Y_t\) by \(w_n^a(i)\), i.e., \(Y_t = \sum \delta_{w_n^a(i)}\). Note that \(w_n^a(i)\) moves like as \(w_n(i)\) during the jump times.
Theorem 2 (Semi-martingale Representation of Y_t). Under Assumptions 1 and 2 for (P_t), if $\mu \in \mathcal{M}_{0\alpha}$, then (Y_t, P^Y_t) is an $\mathcal{M}_{\alpha 0}$-valued Markov process with sample paths in $\mathbb{D}(\mathbb{R})$ satisfying the following:

(i) $\langle Y_t, \gamma_0 \rangle$ has the same exponent of Hölder right continuity as in Theorem 1.

(ii) If the motion process $(w(t), P_t)$ has generator A of the form as in (1.1), then for $f \in D_0$,

$$
\langle Y_t, f \rangle = \langle Y_0, f \rangle + \int_0^t \left\{ \langle Y_s, Af \rangle + \lambda \left[\langle \delta_w(s) - \delta_{w_0}(s), f \rangle q(d(m,n)) \right] \right\} ds
+ M^c_t(f) + M^d_t(f),
$$

where

$$M^c_t(f) \text{ is a continuous } L^2\text{-martingale}
$$

with quadratic variation $\langle \langle M^c(f) \rangle \rangle_t = \int_0^t \langle Y_s, Q^c f \rangle ds = 2 \int_0^t \langle Y_s, \Gamma^c f \rangle ds$ and

$$M^d_t(f) = \int_0^t \int_{\mathbb{R}^2} \langle \mu, f \rangle \tilde{N}(ds, d\mu) \text{ is a purely discontinuous martingale}
$$

where $\tilde{N} = N - \hat{N}$ is the martingale measure with

$$N(ds, d\mu) = \sum_{\omega: \Delta Y_{\omega} \neq 0} \delta_{(\omega, \Delta Y_{\omega})}(ds, d\mu): \text{ the jump measure of } \{Y_t\},
$$

$$\hat{N}(ds, d\mu) = ds \left\{ \int Y_s(dx) \left(\int v(x, dy) \delta_{(\theta_i - \theta_s)} + k(x) \delta_{-\theta_s} \right)
+ \lambda \left\{ q(d(m,n)) \delta_{(\theta^+ - \theta_{m,n}(\theta))}(d\mu) : \text{ the compensator of } N. \right\}
$$

Proof. The proof is the same as the independent case (Proof of Theorem 2.4 in [2]). However, we need some computations. First the Markov property can be shown by mathematical induction. For $t_1 < t_2$, $f_1, f_2 \in C^\infty$, let $L^{f_1, f_2}_{t_1, t_2}(\mu) = \mathbb{E}^\mu_{t_1}[\exp(-\langle Y_{t_1}, f_1 \rangle - \langle Y_{t_2}, f_2 \rangle)]$. Recall that $L^{f_1}_t(\mu) = L^{f_1}_1(\mu) = \mathbb{E}^\mu_{t_1}[\exp(-\langle Y_t, f \rangle)]$ satisfies (2.1) and the solution is given as $L^{f_1}_1(\mu) = T_t \mathbb{P}_t[\exp(-\langle \cdot, f \rangle)(\mu)]$. Hence it is easy to see that $L^{f_1, f_2}_{t_1, t_2}(\mu)$ satisfies the following equation:

$$L^{f_1, f_2}_{t_1, t_2}(\mu) = e^{-i\lambda} \mathbb{P}_{t_1}[e^{-i\lambda} L^{f_2}_{t_2 - t_1}(\mu)]
+ \lambda \int_0^{t_1} ds e^{-i\lambda} \int q(d(m,n)) \mathbb{P}_s(\Theta^{m,n}_s L^{f_1, f_2}_{t_1, t_2 - s})(\mu).$$
The solution is given as

\[L_{\mu}^{f_1, f_2} = \mathbb{P}_\mu \left(e^{-\langle \xi, f_1 \rangle} L_{\mu}^{f_2} \left(\int_{\mathbb{R}^d} e^{-\langle \xi, f_2 \rangle} \mathbb{P}_\mu \left(e^{-\langle \xi, f_1 \rangle} L_{\mu}^{f_2} \right) \mu \right) \right). \]

Therefore by induction, for every \(n \in \mathbb{N} \), if \(t_1 < t_2 < \cdots < t_n, f_1, \ldots, f_n \in C_c^\infty \), then it holds that

\[\mathbb{E}_\mu^Y \left[\exp(-\langle Y_{t_1}, f_1 \rangle - \cdots - \langle Y_{t_n}, f_n \rangle) \right] \]

\[= \mathbb{E}_\mu^Y \left[\exp(-\langle Y_{t_2}, f_2 \rangle \cdots \mathbb{E}_{Y_{t_1}}^Y \left[\exp(-\langle Y_{t_1}, f_1 \rangle \right) \cdots \mathbb{E}_{Y_{t_{n-1}}}^Y \left[\exp(-\langle Y_{t_{n-1}}, f_{n-1} \rangle \right) \cdots \right]. \]

Next we shall show that \((Y_t, \mathbb{P}_\mu^Y)\) satisfies a moment inequality of the same type as in Proposition 1.

Proposition 2. Let \(T > 0 \) and \(n \in \mathbb{N} \). For every \(0 \leq t_1 \leq \cdots \leq t_n \leq T \) and \(f_i \in D_g^+, i = 1, 2, \ldots, n \),

\[\mathbb{E}_\mu^Y \left[\langle Y_{t_1}, f_1 \rangle \cdots \langle Y_{t_n}, f_n \rangle \right] \]

\[\leq \prod_{i=1}^n \langle \mu, f_i \rangle + C_{n, T}^{(n)} \sum_{i=1}^n \prod_{j \neq i} \langle \mu, f_j \rangle \]

\[+ C_{2, T}^{(n)} \sum_{i \neq j_1, j_2} \prod_{i \neq j_1, j_2} \langle \mu, f_j \rangle + \cdots + C_{n-1, T}^{(n)} \sum_{j=1}^n \langle \mu, f_j \rangle + C_n^{(n)}, \]

where \(C_{k, T}, k = 1, \ldots, n \) are positive constants depending on \((n, T, \{\|f_i\| \}_{i \leq n})\).

Proof. For simplicity, we use notations \(f_m = f(s_m) \) and \(\| \cdot \| = \| \cdot \|_\infty \). Since \(\Theta_{m, \ell} \langle \mu, f \rangle = \langle \mu, f \rangle + f_m - f_m \leq \langle \mu, f \rangle + \|f\| \), we have for every \(k \in \mathbb{N} \),

\[\left(\int_{\mathbb{N}^2} q(d(m, \ell)) \Theta_{m, \ell} \right)^k \langle \mu, f_1 \rangle \cdots \langle \mu, f_n \rangle \leq \langle \mu, f_1 \rangle + k \|f_1\| \cdots \langle \mu, f_n \rangle + k \|f_n\|. \]

Moreover if we denote by \(M(j; \lambda t) \) the \(j \)-th moment of \(\lambda t\)-Poisson distribution, then

\[T_j \langle \cdot, f_1 \rangle \cdots \langle \cdot, f_n \rangle(\mu) \]

\[= \sum_{k=0}^n \mathbb{E}_\mu \left[e^{-\lambda t} \mathbb{P}_\mu \left(\int_{\mathbb{N}^2} q(d(m, \ell)) \Theta_{m, \ell} \right)^k \langle \cdot, f_1 \rangle \cdots \langle \cdot, f_n \rangle(\mu) \right] \]

\[\leq \sum_{j=0}^n M(n-j; \lambda t) \sum_{\{i_1, \ldots, i_n\} \in \{1, \ldots, n\}} \langle \mu, f_{i_1} \rangle \cdots \langle \mu, f_{i_j} \rangle \|f_{i_{j+1}}\| \cdots \|f_n\|. \]
Therefore by applying Proposition 1 and the above inequality to
\[E_\mu^Y \langle Y_{n+1}, f_{n+1} \rangle \cdots \langle Y_{n}, f_n \rangle = T_n (E_\mu^X \langle X_{n+1}, f_{n+1} \rangle \cdots \langle X_{n}, f_n \rangle) (\mu), \]
we can get the desired inequality. \hfill \square

Thus the proof can be proceeded by the same way as in the independent case (see §4 in [2]). In that way we can get the following result. For \(\mu = \sum_n \delta_{x_n} \in \mathcal{M}_{\mathfrak{g}0} \), \(f \in C_c^\infty \), let
\[
\Psi(\mu; f) = \langle \mu, Af - \Gamma f \rangle - \lambda \left[e^{-\langle \partial_{x_n} - \beta_n, f \rangle} - 1 \right] q(d(m, n)).
\]

Theorem 3. For \(f \in C_c^\infty \),
\[
e^{-\langle Y_{n+1}, f_{n+1} \rangle} - e^{-\langle Y_n, f \rangle} - \int_0^t \mathbb{P}_\mu^Y e^{-\langle \cdot, f \rangle} (Y_s) \, ds
\]
is a \(\mathbb{P}_\mu^Y \)-martingale. Moreover
\[
H_t(f) = \exp \left[-\langle Y_t, f \rangle + \int_0^t \Psi(Y_s; f) \, ds \right]
\]
is also a \(\mathbb{P}_\mu^Y \)-martingale.

Proof. By the same way as in the proof of Theorem 4.1 in [2] we have if \(s < t \), then
\[
\partial_s E_\mu^Y (e^{-\langle Y_s, f \rangle} \, | \mathcal{F}_s) = \partial_s T_{t-s} (e^{-\langle \cdot, V_{t-s} f \rangle})(Y_s)
\]
\[
= \partial_{u=0} T_{t-s+u} (e^{-\langle \cdot, V_{t-s+u} f \rangle})(Y_s)
\]
\[
= \partial_{u=0} E_\mu^Y [T_{u} e^{-\langle \cdot, V_{t-s+u} f \rangle}(Y_t) \, | \mathcal{F}_s]
\]
\[
= E_\mu^Y [\partial_{u=0} \mathbb{P}_\mu^Y e^{-\langle \cdot, f \rangle}(Y_t) \, | \mathcal{F}_s]
\]
\[
= E_\mu^Y [\mathbb{P}_\mu^Y e^{-\langle \cdot, f \rangle}(Y_t) \, | \mathcal{F}_s]. \hfill \square
\]

By using the above results it is not difficult to prove the semi-martingale representation of \(Y_t \), as of \(X_t \), in [2]. In fact, for \(\mu \in C_c^\infty \), \(\langle Y_t, f \rangle \) is a special semi-martingale, thus,
\[
\langle Y_t, f \rangle = \langle Y_0, f \rangle + C_t(f) + M_t^c(f) + \tilde{N}_t(f) + N_t(f),
\]
where $C_t(f)$ is a continuous process of locally bounded variation, $M_t^c(f)$ is a continuous L^2-martingale with quadratic variation $\langle M_t^c(f) \rangle_t$, and

$$
\hat{N}_t(f) = \int_0^t \int_{\mathbb{R}^d} \langle \mu, f \rangle I(||\mu|| < 1) \hat{N}(ds, d\mu),
$$

$$
N_t(f) = \int_0^t \int_{\mathbb{R}^d} \langle \mu, f \rangle I(||\mu|| \geq 1) N(ds, d\mu)
$$

with the jump measure N of $\{Y_t\}$, its compensator \hat{N} and $\hat{N} = N - \hat{N}$. If we set

$$
B_t(f) = C_t(f) + \int_0^t \int_{\mathbb{R}^d} \langle \mu, f \rangle \hat{N}(ds, d\mu)
$$

$$
+ \lambda \int_0^t ds \int \langle \delta_{y_n(t)} - \delta_{y_n(t)}, f \rangle q(d(m, n)),
$$

then by applying Itô's formula for $Z_t(f)$ we can get

$$
-dB_t(f) + \frac{1}{2} \frac{d}{dt} \langle M_t^c(f) \rangle_t + \int |e^{-\langle \mu, f \rangle} - 1 + \langle \mu, f \rangle| \hat{N}(dt, d\mu)
$$

$$
= -\Psi(Y_t; f) dt
$$

$$
= \left\{-\langle Y_t, Af \rangle + \langle Y_t, Gf \rangle + \lambda \left(e^{-\langle \delta_{y_n(t)} - \delta_{y_n(t)}, f \rangle} - 1 \right) q(d(m, n)) \right\} dt
$$

$$
= \left\{-\langle Y_t, Af \rangle + \lambda \int \langle \delta_{y_n(t)} - \delta_{y_n(t)}, f \rangle q(d(m, n)) \right\} + \langle Y_t, G^c f \rangle
$$

$$
+ \langle Y_t, G^c f \rangle + \lambda \left(e^{-\langle \delta_{y_n(t)} - \delta_{y_n(t)}, f \rangle} - 1 + \langle \delta_{y_n(t)} - \delta_{y_n(t)}, f \rangle \right) q(d(m, n)) \right\} dt
$$

Thus we have

$$
B_t(f) = \int_0^t \langle Y_s, Af \rangle ds + \lambda \int \langle \delta_{y_n(t)} - \delta_{y_n(t)}, f \rangle q(d(m, n)),
$$

$$
\langle M_t^c(f) \rangle_t = 2 \int_0^t \langle Y_s, G^c f \rangle ds = \int_0^t \langle Y_s, Q^c f \rangle ds
$$

and
Therefore the proof is completed.

3. Martingale Problems for \mathcal{L}^γ

The following assumption is needed to prove the well-posedness of martingale problems.

Assumption 3. For each $f \in (C^\infty_c)^+$, $AV_i f = -A \log(1 - P_i(1 - e^{-f}))$ is well-defined and $AV_i f$ is continuous in t under the norm $\| g \|_\infty$, i.e.,

$$\| (AV_i f - AV_{i,0} f) / g \|_\infty \to 0 \quad (t \to t_0).$$

In the following we suppose that the generator A of the motion process has the form of (1.1).

For $\eta \in \mathcal{M}_{g_0}$, let $F(\eta) = \Phi(\langle \eta, f_1 \rangle, \ldots, \langle \eta, f_n \rangle) \in \mathcal{D}_0 \overset{\text{def}}{=} \Phi(x) \in C^\infty(\mathbb{R}^n)$ is a polynomial growth function with polynomial growth derivatives of all orders and $f_i \in D_{g_0}, i = 1, \ldots, n$. For this $F(\eta)$, the generator \mathcal{L}_0 of X, will be extended to the following form:

$$\mathcal{L}_0 F(\eta) = \sum_{i=1}^n \partial_i \Phi(\langle \eta, f_1 \rangle, \ldots, \langle \eta, f_n \rangle) \langle \eta, A f_i \rangle$$

$$+ \frac{1}{2} \sum_{i,j=1}^n \partial^2_{ij} \Phi(\langle \eta, f_1 \rangle, \ldots, \langle \eta, f_n \rangle) \langle \eta, Q^\circ(f_i, f_j) \rangle$$

$$+ \int_S \left(\int_{S \setminus \{x\}} \nu(x, dy) \left[\Phi(\langle \eta, f_1 \rangle + f_i(y) - f_i(x), \ldots, \langle \eta, f_n \rangle + f_n(y) - f_n(x)) - \Phi(\langle \eta, f_1 \rangle, \ldots, \langle \eta, f_n \rangle) \right.

\left. + \sum_{i=1}^n \partial_i \Phi(\langle \eta, f_1 \rangle, \ldots, \langle \eta, f_n \rangle)(f_i(y) - f_i(x)) \right] \right)$$
+ k(x) \left[\Phi(\langle \eta, f_1 \rangle - f_1(x), \ldots, \langle \eta, f_n \rangle - f_n(x)) \\
- \Phi(\langle \eta, f_1 \rangle, \ldots, \langle \eta, f_n \rangle) \\
+ \sum_{i=1}^{n} \delta_i \Phi(\langle \eta, f_1 \rangle, \ldots, \langle \eta, f_n \rangle) f_i(x) \right] \right \} \eta(dx),

where

\[Q^\nu(f, g)(x) = \sum_{i,j} a^\nu(x) \delta_i f(x) \delta_j g(x). \]

For \(F(\eta) \in \mathfrak{B}_0 \), the generator \(\mathfrak{L}^Y \) of \(Y \), will be extended to

\[\mathfrak{L}^Y F(\eta) = \mathfrak{L}_0 F(\eta) + \lambda \int (Q_{m,n} F(\eta) - F(\eta)) q(m,n). \]

Theorem 4 (Martingale Problem for \((\mathfrak{L}^Y, \mathfrak{B}_0, \mu))\). Under Assumption 1, 2 and 3, suppose that the generator \(A \) is given as in (1.1). Let \(\mu \in \mathfrak{M}_0 \).

(i) \(P_\mu^Y(Y_0 = \mu) = 1 \) holds and for each \(F(\mu) = \Phi(\langle \mu, f_1 \rangle, \ldots, \langle \mu, f_n \rangle) \in \mathfrak{B}_0 \),

\[M_t^F = F(Y_t) - F(Y_0) - \int_0^t \mathfrak{L}^Y F(Y_s) \, ds \quad \text{is} \quad P_\mu^Y \text{-martingale.} \]

(ii) If there is a probability measure \(Q_\mu \) on \(\mathfrak{D} = \mathfrak{D}(\{0, \infty\} \to \mathfrak{M}_0) \) such that the canonical process \(\tilde{Y}_t(\omega) = \omega(t) \) (\(\omega \in \mathfrak{D} \)) satisfies the same conditions as \((Y_t, P_\mu^Y) \) in (i) and

\[\int_0^t \langle \tilde{Y}_s, g_1 \rangle \, ds < \infty \quad Q_\mu \text{-a.s. for all } t \geq 0, \]

then \(Q_\mu = P_\mu^Y \circ Y^{-1} \) on \(\mathfrak{D} \), that is, martingale problem for \((\mathfrak{L}^Y, \mathfrak{B}_0, \mu)\) on \(\mathfrak{D} \) is well-posed.

Proof. The proof is essentially the same as the independent case (see §5 in [2]). However, the computations are more complicated, so we give the outline of the proof. (i) is easily obtained. We show (ii). We always fix \(f \in C_c^{\infty} \), \(T > 0 \), and set \(\Psi_t^T(\eta) = T_{T-t}(\exp - \langle \cdot, \mathcal{V}_{T-t} f \rangle)(\eta) \) (\(0 \leq t \leq T, \eta \in \mathfrak{M}_0 \)). It is no difficult to show that \(\{\Psi_t^T(\tilde{Y}_t)\}_{t \leq T} \) is a \(Q_\mu \)-martingale. In fact, by using Ito's formula
Interactive IMPS with jumps

\[d(\exp -\langle \tilde{Y}_t, f \rangle) = -\langle \tilde{Y}_t, Af - \Gamma f \rangle e^{-\langle \tilde{Y}_t, f \rangle} \, dt \]
\[+ \lambda \int q(d(m,n))(\Theta_{m,n} - I)e^{-\langle \cdot, \nu \rangle}(\tilde{Y}_t) \, dt + d(Q_\mu\text{-martingale}). \]

Since \(T_t \) is a bounded operator, we have (set \(v_t = v^{T_t} = V_{T_t} f \) again)

\[d(\Psi^T_t(\tilde{Y}_t)) = T_{T_t-1} \left(-\lambda \int q(d(m,n))(\Theta_{m,n} - I)e^{-\langle \cdot, \nu \rangle} - \langle \cdot, A v_t \rangle e^{-\langle \cdot, \nu \rangle} \right) (\tilde{Y}_t) \, dt \]
\[+ d(Q_\mu\text{-martingale}) \]
\[= T_{T_t-1}(-\langle \cdot, \partial_t v_t + A v_t - \Gamma v_t \rangle e^{-\langle \cdot, \nu \rangle})(\tilde{Y}_t) + d(Q_\mu\text{-martingale}) \]
\[= d(Q_\mu\text{-martingale}) \]

Hence for \(0 \leq s < t \leq T \), we have

\[Q_\mu[\Psi^T_t(\tilde{Y}_t)] |_{\mathcal{F}_s} = \Psi^T_s(\tilde{Y}_s) \]

and set \(T = t \), then

\[Q_\mu[e^{-\langle \tilde{Y}_t, f \rangle}] |_{\mathcal{F}_s} = T_{T-\lambda} e^{-\langle \cdot, \nu \rangle}(\tilde{Y}_s). \]

Therefore \(P_\mu = Q_\mu \) on \(D \).

4. Multi-Dimensional Absorbing Stable Motions on a Half Space

In §3 of [2] as a motion process we considered absorbing Brownian motion and absorbing stable motion on \((0, \infty)\) and discussed the Hölder (right) continuities of \(\{X_t\} \). It is possible to consider absorbing motions on \(H = \mathbb{R}^{d-1} \times (0, \infty) \) and we can get the same results as in Theorem 3.1 and in Corollary 3.1 of [2]. For the absorbing Brownian motion, it is not so difficult and essentially done in [1]. So in this section we only discuss the absorbing stable motion on \(H \).

For a function \(f \) on \(H \), let \(\tilde{f} \) be an extension of \(f \) to on \(\mathbb{R}^d \) defined as

\[\tilde{f}(x) = \begin{cases} f(x) & (x_d > 0), \\ f(\bar{x}, 0^+) = 0 & (x_d = 0), \\ -f(\bar{x}, -x_d) & (x_d < 0), \end{cases} \]
where $x = (\tilde{x}, x_d) \in H$. Note that if $x \in H$, then $\tilde{f}(x) = f(x)$. The generator $A^{-\alpha}$ of absorbing α-stable motion $(w^{-\alpha}(t), P_{x}^{-\alpha}) = (w^{-\alpha}(t), P_{x}^{-\alpha})$ on H is given as $A^{-\alpha}f(x) = A^{\alpha}\tilde{f}(x)$; ($A^{-\alpha}$ is the same as $L^{-\alpha}$ in §4 of [1], however, in which we have some miss-prints)

\begin{equation}
A^{-\alpha}f(x) = c \int_{R^{d+1}(0)} \left[\tilde{f}(x + y) - \tilde{f}(x) - \nabla \tilde{f}(x) \cdot y I(|y| < 1) \right] \frac{dy}{|y|^{d+\alpha}}
\end{equation}

\begin{align*}
&= c \int_{R^{d+1}} d\tilde{y} \int_{-\infty}^{\infty} \left[f(x + \tilde{y}) - f(x) - \nabla f(x) \cdot y I(|y| < 1) \right] \frac{dy_d}{|y|^{d+\alpha}} \\
&\quad + c \int_{R^{d+1}} d\tilde{y} \int_{\infty}^{\infty} \left[f(x + \tilde{y}) - f(\tilde{x} + \tilde{y}, y_d - x_d) - 2f(x) \right] \frac{dy_d}{|y|^{d+\alpha}}
\end{align*}

with some positive constant c, where in the last term the integral corresponding to $\nabla f(x) \cdot y$ is equal to zero by the symmetric property (of course, it is integrable). We can also write that if $0 < \alpha < 1$, then

\begin{align*}
A^{-\alpha}f(x) &= c \int_{R^{d+1}(x)} \left[f(y) - f(x) \right] \frac{dy}{|y - x|^{d+\alpha}} \\
&= c \int_{R^{d+1}} d\tilde{y} \left\{ \int_{0}^{\infty} [f(y) - f(x)] K(x, y) dy_d \\
&\quad - 2f(x) \int_{0}^{\infty} \frac{dy_d}{|y - \tilde{x}, y_d - x_d|^{d+\alpha}} \right\},
\end{align*}

and that if $1 \leq \alpha < 2$, then

\begin{align*}
A^{-\alpha}f(x) &= c \int_{R^{d+1}(x)} \left[f(y) - f(x) - \nabla f(x) \cdot (y - x) I(|y - x| < 1) \right] \frac{dy}{|y - x|^{d+\alpha}} \\
&= c \int_{R^{d+1}} d\tilde{y} \left\{ \int_{0}^{\infty} [f(y) - f(x) - \nabla f(x) \cdot (y - x) I(|y - x| < 1)] K(x, y) dy_d \\
&\quad + \int_{0}^{\infty} [-2f(x) - \nabla f(x) \cdot (y - x) I(|y - x| < 1) \\
&\quad - \nabla f(x) \cdot (y - \tilde{x}, y_d - x_d) I(|y - \tilde{x}, y_d - x_d| < 1)] \frac{dy_d}{|y - \tilde{x}, y_d - x_d|^{d+\alpha}} \right\}
\end{align*}
Interactive IMPS with jumps

\[= c \int_{\mathbb{R}^{d+1}} d\tilde{y} \int_0^\infty [f(y) - f(x) - \nabla f(x) \cdot (y - x) I(|y - x| < 1)]K(x, y) \, dy_d, \]

\[- f(x)k(x) + \nabla f(x) \cdot c(x), \]

where

\[K(x, y) = \frac{I(y \neq x)}{|y - x|^{d+\alpha}} \frac{1}{|I(\tilde{y} - \tilde{x}, y_d + x_d)|^{d+\alpha}}, \]

\[k(x) = k(x_d) = 2c \int_{\mathbb{R}^{d+1}} d\tilde{y} \int_0^\infty \frac{dy_d}{|y|^{d+\alpha}} \]

and

\[c(x) = c \int_{\mathbb{R}^{d+1}} d\tilde{y} \int_0^\infty \left[-(\tilde{y} - \tilde{x}, \tilde{y}_d - x_d) I(|(\tilde{y} - \tilde{x}, y_d + x_d)| < 1) \right] \]

\[- (y - x) I(|y - x| < 1) \frac{dy_d}{|I(\tilde{y} - \tilde{x}, y_d + x_d)|^{d+\alpha}} \]

\[= c \int_{\mathbb{R}^{d+1}} d\tilde{y} \int_0^\infty \left[((\tilde{y}, y_d + x_d) I(|(\tilde{y}, y_d + x_d)| < 1) \right] \]

\[- (\tilde{y}, y_d - x_d) I(|(\tilde{y}, y_d + x_d)| < 1) \frac{dy_d}{|I(\tilde{y}, y_d + x_d)|^{d+\alpha}}. \]

Let \(h_0(v) \) be a \(C^\infty \)-function on \((0, \infty)\) such that \(0 < h_0 \leq 1 \) on \((0, \infty)\),

\(h_0(v) = v \) for \(v \in (0, 1/2) \) and \(h_0(v) = 1 \) for \(v \geq 1 \). Let \(d < p < d + \alpha \). Set \(g_p(x) = (1 + |x|^2)^{-p/2} \) and \(g_{p,0}(x) := g_p(x) h_0(x_d) \) for \(x \in H \). Let \(f \in C_p \iff f \in C(\mathbb{R}^d)|_H; \|f/g_p\|_\infty < \infty, f \in C_{p,0} \iff f \in C(\mathbb{R}^d)|_H; \|f/g_{p,0}\| < \infty \). Moreover set

\[f \in C_p \iff f \in C_p^\infty \]

for \(i, j \neq d, f, \partial_\tilde{x}^2 f, \partial_i f, \partial_\tilde{x}^2 f \in C_{p,0} \) and \(\partial_{d,i} f, \partial_{d,i}^2 f \in C_p \).

Then we can take \(D_0 = C_{p,0}^\infty \).

Moreover for each \(0 < \alpha < 2 \), \(Q^{-\alpha} f \equiv Q^{-\alpha} f = Af^2 - fAf \) is given by the following formula:

\[Q^{-\alpha} f(x) = c \int_{\mathbb{R}^{d+1}} d\tilde{y} \int_{-x_d}^{x_d} [f(x + y) - f(x)]^2 \frac{dy_d}{|y|^{d+\alpha}} \]

\[+ c \int_{\mathbb{R}^{d+1}} d\tilde{y} \int_{x_d}^\infty [f(x + y) - f(x + \tilde{x}, y_d - x_d)]. \]
\[\{ f(x + y) + f(\tilde{y} + \tilde{x}, y_d - x_d) - 2f(x) \} + 2f(x)^2 \frac{dy_d}{|y|^{d+2}} \]

\[\int_{\mathbb{R}^{d+1}} d\tilde{y} \int_0^\infty |f(y) - f(x)| K(x, y) \, dy_d + f(x)^2 k(x). \]

Theorem 5. Let \(d \geq 1 \), \(d < p < d + \alpha \), \(\mu \in \mathcal{M}_{p, 0} \) and let the motion process be absorbing \(\alpha \)-stable motion on \(H \) with \(0 < \alpha < 2 \). Let \(\epsilon > 0 \) denote an arbitrary small number.

(i) For \((X_t, P_{\mu})\) the following holds.

(a) Under \(P_{\mu} \), \(\{X_t, g_{p, 0}\} \) is \((1/2(\alpha + 1)) - \epsilon\)-Hölder right continuous at \(t = 0 \). Moreover in case of \(1 < \alpha < 2 \), if \(\langle \mu, g_1 \rangle < \infty \) with \(g_1(x) = g_p(x) h_0(x_d)^{2-\alpha} \), then \(\{X_t, g_{p, 0}\} \) is \((1/2 - \epsilon)\)-Hölder right continuous at \(t = 0 \).

(b) If \(\theta > 0 \), then under \(P_{\mu} \), \(\{X_t, g_{p, 0}\} \) is \((1/2 - \epsilon)\)-Hölder right continuous at \(t = \theta \) for every \(0 < \alpha < 2 \).

(ii) For \((Y_t, P_{\mu}^r)\) the same results hold as above.

Proof. Let \(d \geq 2 \). The proof is proceeded in the same way as the case of \(d = 1 \). It suffices to check that the conditions in Assumption 1 and 2 are fulfilled with \(g_0 = g_{p, 0} \) and with suitable \(g_1 \in C^\infty \), \(0 \leq \gamma < 1 \) as follows. Let \(h_1 \in C^\infty \), \(0 < h_1 \leq 1 \), \(h_1(v) = v \log(1/v) \) for \(v \in (0, 1/e] \) and \(h_1(v) = 1 \) for \(v \geq 1 \).

(i) If \(0 < \alpha < 1 \), then \(g_1(x) = g_{p, 0}(x), \gamma = 0 \).

(ii) If \(\alpha = 1 \), then \(g_1(x) = g_p(x) h_1(x_d), \gamma = \delta \) for any small \(0 < \delta < 1 \).

(iii) If \(1 < \alpha < 2 \), then \(g_1(x) = g_p(x) h_0(x_d)^{2-\alpha}, \gamma = 1 - 1/\alpha \).

Note that as \(x_d \downarrow 0 \),

\[g_1(x) \sim x_d (0 < \alpha < 1), \quad \sim x_d \log(1/x_d) (\alpha = 1), \quad \sim x_d^{2-\alpha} (1 < \alpha < 2). \]

For simplicity of the notations we omit the superscript "\(\alpha \)" as \(P^{-\alpha}_t = P_t^{-\alpha}, A^{-\alpha}_t = A^{-\alpha} \). We shall show the following. Since they imply \(\|g_{p, 0}P^{-\alpha}_t g_1\|_\infty \leq C r^{-\gamma} \), we can get the \(((1 - \gamma)/2 - \epsilon)\)-Hölder right continuity.

(C1) \(C_{p, 0}^3 \subset \mathcal{Z}(A^{-\alpha}), P^{-\alpha}_t C^\infty \subset C_{p, 0}^3 \) for every \(t \geq 0 \), \(\sup_{t \geq 0, 0 < x_d < 1} |x_d^{-1} P^{-\alpha}_t g_{p, 0}(x)| < \infty \) and \(A^{-\alpha} C_{p, 0}^3 \subset C_{p, 0} \) (these imply Assumption 1 and that \(C_{p, 0}^3 \) is a core).
(C2) For every \(f \in C^3_{\beta,0} \), \(\partial_1 P_{\gamma} f^2(x) = A^{-1} P_{\gamma} f^2(x) = P_{\gamma} A^{-1} f^2(x) \) \((x \in H) \), \(A^{-1} f^2 \in C_0 \) and \(\| \gamma^{-1} Q^{-1} f \|_{\infty} < \infty \) (these imply (i) of Assumption 2).

(C3) For each \(0 < \beta \leq 1 \), \(\sup_{x \geq 0} P_{\gamma} (y_{\beta}^\infty)(x) \leq 2(1 + \beta)x_d^\beta \) for all \(x \in H \) (this implies (ii) of Assumption 2).

(C4) For each \(0 < \beta \leq 1 \), \(\sup_{0 < x_d \leq 1} x_d^{-1} P_{\gamma} (y_{\beta}^\infty)(x) \leq C_{\beta} x_d^{-1-\beta/\alpha} \) with a constant \(C_{\beta} > 0 \) depending only on \(\beta \) (this implies (iii), (iv) of Assumption 2).

Note that we take \(\gamma = (1 - \beta)/\alpha \) in Assumption 2. More exactly, if \(0 < \alpha < 1 \), then \(\beta = 1 \), i.e., \(\gamma = 0 \). If \(\alpha = 1 \), then \(\beta = 1 - \epsilon \) for any small \(0 < \epsilon < 1 \), i.e., \(\gamma = \epsilon \). If \(1 < \alpha < 2 \), then \(\beta = 2 - \alpha \), i.e., \(\gamma = 1 - 1/\alpha \). (C3) and (C4) can be shown in a way similar to the case of \(d = 1 \); (B3) and (B4) in [2] by using the following. For the density \(p^\alpha(x) \) of the rotation invariant \(\alpha \)-stable motion on \(\mathbb{R}^d \) starting from 0, \(p^\alpha(x) = \gamma^{-d/2} p^{1/\alpha}(t^{-1/\alpha} x) \) and \(p_\gamma(x) \leq C(1 + |x|^{-d-\alpha}) \). The transition density \(p_{\gamma}(x, y) \equiv p^{-\infty}(x, y) \) of absorbing \(\alpha \)-stable motion on \(H \) is given as

\[
p_{\gamma}(x, y) = p_{\gamma}(y - x) - p_{\gamma}(y - \bar{x}, y_d + x_d) = - \int_{-x_d}^{y_d} \partial_v p_{\gamma}(y - \bar{x}, y_d + v) dv.
\]

We also use the following result.

\[
\int_{\mathbb{R}} \int_{H} z_{d+1}^{\infty} p^\infty(x, z_d + u) dz \text{ is bounded in } u \in \mathbb{R}.
\]

From these results we can get (C3), (C4).

In each (C1), (C2), the claims except the last one can be shown by the same way as in \(d = 1 \). In order to show the last claims of (C1), (C2), it is enough to prove that for each \(f \in C^3_{\alpha,0} \), there is a constant \(C > 0 \) such that

\[
|A^{-1} f(x)| \leq C x_d \quad \text{for } 0 < x_d \leq 1/2 \quad \text{and} \quad Q^{-1} f(x) \leq C g_1(x) \quad \text{for all } x \in H.
\]

Let \(0 < x_d \leq 1/2 \). For \(A^{-1} \) we decompose as \(A^{-1} = (J_{1,1} + J_{1,2}) + (J_2 + J_3) \) and we shall show each term has order of \(x_d^\gamma, x_d, x_d \), respectively. The main calculus is of \(J_{1,2} (1 < \alpha < 2) \) and \(J_3 \). In the first term of (4.1) we divide the integral area to \(\{ |y| \geq 1 \} \cup \{ |y| < 1 \} \) and denote the corresponding terms by \(J_{1,1}(x), J_{1,2}(x) \) respectively. In the following we use the same symbols \(C', C'' \) as any positive finite constants which are independent of \(x \). First note that if \(|y| \geq 1 \) and \(|y_d| \leq x_d \leq 1/2 \), then \(|y|^2 \geq 1 - x_d^2 \geq 3/4 =: b \). By \(|f(y)| \leq C x_d \),
Next note that if $|y| < 1$, then $|\tilde{y}| < 1$ and that for some $\theta \in (0, 1)$,

$$
|f(x + y) - f(x) - \nabla f(x) \cdot y| = \frac{1}{2} \|f^{(2)}(x + \theta y)\cdot y\|^2 \leq \frac{1}{2} \|f^{(2)}\|_{\infty} |y|^2.
$$

If $0 < \alpha < 1$, then $|y|^{d-2+\alpha} \geq |y|^{d-2+\alpha}$ by $d - 2 + \alpha > 0$, and

$$
|J_{1,2}(x)| = \left| e \int_{\mathbb{R}^{d-1}} d\tilde{y} \int_{-\tilde{y}^d}^{\tilde{y}^d} [f(x + y) - f(x) - \nabla f(x) \cdot y] I(|y| < 1) \frac{dy_d}{|y|^{d+\alpha}} \right|
$$

$$
\leq e \int_{|\tilde{y}| < 1} d\tilde{y} \int_{-\tilde{y}^d}^{\tilde{y}^d} |f(x + y) - f(x) - \nabla f(x) \cdot y| \frac{dy_d}{|y|^{d+\alpha}}
$$

$$
\leq e \int_{|\tilde{y}| < 1} \tilde{y} \int_{0}^{\tilde{y}^d} \|f^{(2)}\|_{\infty} \frac{|y|^2}{|y|^{d+\alpha}} dy_d
$$

$$
\leq e \int_{|\tilde{y}| < 1} \tilde{y} \int_{0}^{\tilde{y}^d} \|f^{(2)}\|_{\infty} x_d dy_d
$$

$$
\leq e \int_{|\tilde{y}| < 1} \tilde{y} \int_{0}^{\tilde{y}^d} \|f^{(2)}\|_{\infty} x_d dy_d
$$

$$
= e \frac{\|f^{(2)}\|_{\infty} x_d}{1 - \alpha} = C' x_d.
$$

On the other hand if $1 \leq \alpha < 2$, then by using

$$
(f(x + y) - f(x) - \nabla f(x) \cdot y) = \frac{1}{2} f^{(2)}(x) \cdot y^2 + \frac{1}{6} f^{(3)}(x + \theta y) \cdot y^3
$$
with some \(\theta \in (0,1) \), and the corresponding integral to \(\sum_{i=1}^{d-1} \partial_{i}^{2} f(x) \cdot y_{i} \cdot y_{d} \) is equal to zero by symmetric property in \(y_{d} \), we have

\[
|J_{1,2}(x)| \leq c \int_{|\tilde{y}|<1} d\tilde{y} \int_{0}^{x_{d}} \left\{ \sum_{i,j=1}^{d-1} |\partial_{i} \partial_{j} f(x)| \cdot |y_{i}| \cdot |y_{j}| + |\partial_{i}^{2} f(x)| \cdot y_{d}^{2} \right. \\
+ \left. \frac{1}{3} \|f^{(3)}\| \cdot |y|^{3} \right\} \frac{dy_{d}}{|y|^{d+\alpha}}.
\]

Let \(0 < \epsilon < 2 - \alpha \) and set \(\alpha_{\epsilon} := \alpha + \epsilon \in (1,2) \), then \(|y|^{d+\alpha-2} \geq |\tilde{y}|^{d-1-\epsilon} \cdot |y_{d}|^{-1+\epsilon} \).

By \(|\partial_{i} \partial_{j} f(x)|, |\partial_{i}^{2} f(x)| \leq Cx_{d} \) for \(i, j \neq d \), corresponding terms to \(f^{(2)} \) are less than or equal to

\[
Cx_{d} \int_{|\tilde{y}|<1} \frac{d\tilde{y}}{|\tilde{y}|^{d-1-\epsilon}} \int_{0}^{x_{d}} \frac{dy_{d}}{y_{d}^{2-1+\epsilon}} = Cx_{d} \int_{0}^{1} r^{\alpha-1} dr \cdot \frac{2\epsilon r^{2}}{2 - \alpha_{\epsilon}} = \frac{C}{2 - \alpha_{\epsilon}} x_{d}^{3-\alpha_{\epsilon}}.
\]

For the last term, by \(d \geq 2, \alpha \geq 1 \), i.e., \(d + \alpha - 3 \geq 0 \), we have \(|y|^{d+\alpha-3} \geq |\tilde{y}|^{d+\alpha-3} \). Hence the last term is less than or equal to

\[
\int_{|y|<1} \frac{d\tilde{y}}{|\tilde{y}|^{d+\alpha-3}} \cdot \|f^{(3)}\|_{\infty} \cdot x_{d} = \int_{0}^{1} r^{1-\alpha} dr \cdot \|f^{(3)}\|_{\infty} \cdot x_{d} = \frac{\|f^{(3)}\|_{\infty}}{2 - \alpha} x_{d}.
\]

These estimates imply \(|J_{1,2}(x)| \leq C'x_{d} \). In the second term of (4.1) we also divide the integral area to \(\{|y| \geq 1\} \), \(\{|y| < 1\} \) and denote the corresponding terms by \(J_{2}(x), J_{3}(x) \) respectively. For \(J_{2}(x) \), by

\[
|f(x + y) - f(\tilde{x} + \tilde{y}, y_{d} - x_{d})| \leq 2x_{d} \|\partial_{d} f\|_{\infty}
\]

and \(|f(x)| \leq Cx_{d} \), we have

\[
|J_{2}(x)| = \left| \int_{R^{d-1}} d\tilde{y} \int_{x_{d}}^{\infty} \left[f(x + y) - f(\tilde{x} + \tilde{y}, y_{d} - x_{d}) - 2f(x) \right] I(|y| \geq 1) \frac{dy_{d}}{|y|^{d+\alpha}} \right| \\
\leq c \int_{H} 2\|\partial_{d} f\|_{\infty} + Cx_{d} I(|y| \geq 1) \frac{dy}{|y|^{d+\alpha}} \\
\leq C'x_{d} \int_{|y|<1} \frac{dy}{|y|^{d+\alpha}} = C''x_{d}.
\]

For \(J_{3}(x) = c \int_{R^{d-1}} d\tilde{y} \int_{x_{d}}^{\infty} \left[f(x + y) - f(\tilde{x} + \tilde{y}, y_{d} - x_{d}) - 2f(x) \right] I(|y| < 1) \frac{dy_{d}}{|y|^{d+\alpha}}, \)

\[
f(x + y) - f(\tilde{x} + \tilde{y}, y_{d} - x_{d}) - 2f(x) \\
= \left[f(x + y) - f(\tilde{x} + \tilde{y}, y_{d} - x_{d}) - 2f(\tilde{x} + \tilde{y}, x_{d}) \right] - 2\left[f(\tilde{x} + \tilde{y}, x_{d}) - f(x) \right].
\]
For the first term, by the same way as in case of $d = 1$ (in $J_3(x)$) corresponding to the variable y_d, we have

$$|f(x + y) - f(\tilde{x} + \tilde{y}, y_d - x_d) - 2f(x)|$$

$$\leq 2\|\partial_d^3 f\|_{\infty} x_d(y_d^2 + x_d^2) + C(y_d + x_d)x_d y_d + 2C x_d^3.$$

For the second term, note that

$$f(\tilde{x} + \tilde{y}, x_d) - f(x) = \sum_{i=1}^{d-1} \partial_i f(\tilde{x}, x_d) y_i + \frac{1}{2} \sum_{i,j=1}^{d-1} \partial_{ij}^2 f(\tilde{x} + \theta \tilde{y}, x_d) y_i y_j.$$

and $|\partial_d^2 f(\tilde{x} + \theta \tilde{y}, x_d)| \leq C x_d$ for $i, j \leq d$. Moreover note that by the symmetric property in y_i we have

$$\int_{R_{d-1}} d\tilde{y} \int_{x_d}^{\infty} \sum_{i=1}^{d-1} \partial_i f(\tilde{x}, x_d) y_i I(|y| < 1) \frac{dy_d}{|y|^{d+\alpha}}$$

$$= \sum_{i=1}^{d-1} \partial_i f(\tilde{x}, x_d) \int_{x_d}^{1} dy_d \int_{|y| < \sqrt{1-y_d^2}} \frac{y_i d\tilde{y}}{|y|^{d+\alpha}} = 0.$$

Let $0 < \epsilon < 2 - \alpha$ and set $\alpha := \alpha + \epsilon \in (0, 2)$, then $|y|^{d+\epsilon} \geq |\tilde{y}|^{d-1-\epsilon} |y_d|^{1+\alpha}$ by ϵ. Thus we can get the following: by $x_d \leq y_d$,

$$|J_3(x)| \leq c \int_{|\tilde{y}| < 1} d\tilde{y} \int_{x_d}^{1} \frac{dy_d}{|y|^{d+\alpha}}$$

$$+ c \int_{|\tilde{y}| < 1} d\tilde{y} \int_{x_d}^{1} \frac{1}{2} \sum_{i,j=1}^{d-1} |\partial_{ij}^2 f(\tilde{x} + \theta \tilde{y}, x_d) y_i y_j| \frac{dy_d}{|y|^{d+\alpha}}$$

$$\leq C x_d \int_{|\tilde{y}| < 1} \frac{d\tilde{y}}{|\tilde{y}|^{d-1-\epsilon}} \int_{x_d}^{1} (y_d^2 + x_d y_d + x_d^2) \frac{dy_d}{|y_d|^{1+\alpha}}$$

$$+ c \int_{|\tilde{y}| < 1} \frac{1}{2} C x_d |\tilde{y}|^2 \frac{dy_d}{|y|^{d+\alpha}}$$

$$\leq 3 C x_d \frac{1}{\epsilon} \int_{0}^{1} y_d^{1-\alpha} dy_d + \frac{c C}{2} x_d \int_{|\tilde{y}| < 1} d\tilde{y} |\tilde{y}|^2 \int_{0}^{1} \frac{dy_d}{|y|^{d+\alpha}}.$$

For the second term if $0 < \alpha < 1$, then by $|y|^{d+\epsilon} \geq |\tilde{y}|^{d} y_d^\beta$,

$$\int_{|\tilde{y}| < 1} d\tilde{y} |\tilde{y}|^2 \int_{0}^{1} \frac{dy_d}{|y|^{d+\alpha}} \leq \int_{|\tilde{y}| < 1} |\tilde{y}|^2 \int_{0}^{1} dy_d = \frac{1}{1 - \alpha},$$
or if $1 \leq \alpha < 2$, then by $|y|^{d+\alpha} \geq |\tilde{y}|^{d+1-\alpha} y_{\tilde{d}}^{\alpha-1}$,

$$\int_{|\tilde{y}|<1} d\tilde{y} |\tilde{y}|^2 \int_0^1 \frac{dy_{\tilde{d}}}{|\tilde{y}|^{d+\alpha}} \leq \int_{|\tilde{y}|<1} \frac{|\tilde{y}|^2}{|\tilde{y}|^{d+1-\alpha}} d\tilde{y} \int_0^1 \frac{dy_{\tilde{d}}}{y_{\tilde{d}}^{\alpha-1}} = \frac{1}{c(2-\alpha)}. $$

Therefore

$$|J_3(x)| \leq \begin{cases}
\left(\frac{3C}{c(2-x)} + \frac{6C}{2(1-x)} \right) x_d & (0 < \alpha < 1) \\
\left(\frac{6C + 2C}{2(1-x)} \right) x_d & (1 \leq \alpha < 2)
\end{cases}
= C'' x_d.$$

Therefore we have $|A^{-f}(x)| \leq C'' x_d$.

Next in order to show $Q^{-f}(x) \leq Cg_1(x)$, it suffices to prove that there is a constant $C > 0$ such that for $0 < x_d \leq 1$, if $0 < \alpha < 1$, then $Q^{-f}(x) \leq C x_d$, if $\alpha = 1$, then $Q^{-f}(x) \leq C x_d \log(1/x_d)$ if $1 < \alpha < 2$, then $Q^{-f}(x) \leq C x_d^{2-\alpha}$. We use the first formula of (4.2). In the following we decompose as $Q^{-f} = (R_1 + R_2) + (S_1 + S_2)$ and we shall show each R_1, R_2, S_1 has order of x_d^3, $x_d^{2-\alpha}$, x_d respectively, and the main parts is S_2. In the first term of the right hand side of (4.2), we divide the integral area of R^{d-1} to $\{|\tilde{y}| \geq 1\}$, $\{|\tilde{y}| < 1\}$ and denote the corresponding terms by $R_1(x)$, $R_2(x)$ respectively. By $f(x) \leq C x_d$, we have

$$R_1(x) = c \int_{|\tilde{y}| \geq 1} d\tilde{y} \int_{-x_d}^{x_d} [f(x+y) - f(x)]^2 \frac{dy_{\tilde{d}}}{|\tilde{y}|^{d+\alpha}}
\leq 2c \int_{|\tilde{y}| \geq 1} \frac{d\tilde{y}}{|\tilde{y}|^{d+\alpha}} \int_0^{x_d} C^2 (2x_d + y_d)^2 dy_d
= C x_d^3.$$

For R_2, by $|\tilde{\partial}_i f(x)| \leq C x_d$ if $i \neq d$,

$$R_2(x) = 2c \int_{|\tilde{y}| \leq 1} d\tilde{y} \int_0^{x_d} [f(x+y) - f(x)]^2 \frac{dy_{\tilde{d}}}{|\tilde{y}|^{d+\alpha}}
\leq 2c \int_{|\tilde{y}| \leq 1} d\tilde{y} \int_0^{x_d} \left[C(x_d + y_d) \sum_{i=1}^{d-1} y_i + \|\tilde{\partial}_d f\|_\infty y_d \right]^2 \frac{dy_{\tilde{d}}}{|\tilde{y}|^{d+\alpha}}
\leq C \int_{|\tilde{y}| \leq 1} d\tilde{y} \int_0^{x_d} \left[(x_d^2 + y_d^2)|\tilde{y}|^2 + y_d^2 \right] \frac{dy_{\tilde{d}}}{|\tilde{y}|^{d+\alpha}}.$$

In the above we first consider the last term (which is the main term), i.e.,
\[\int_{|y|<1} d\tilde{y} \int_0^{x_d} y_d^2 \frac{dy_d}{|y|^{d+\alpha}} = \int_0^{x_d} dy_d \int_{|y|<1} \left(\int_{|y|<1} + \int_{y_d \leq |y| < 1} \right) \frac{d\tilde{y}}{|y|^{d+\alpha}} =: R_{2,1}(x) + R_{2,2}(x). \]

For \(R_{2,1}, \) let \(\alpha_\varepsilon = \alpha + \varepsilon < 2 \) be the same as before. By \(|y|^{d+\alpha} \leq |y|^{d-1-\varepsilon} \),
\[\int_{|y|<1} \frac{d\tilde{y}}{|y|^{d-1-\varepsilon}} = \int_0^{x_d} y_d^{d-1} \, dr = \frac{y_d^d}{\varepsilon}. \]

Hence
\[R_{2,1}(x) \leq \int_0^{x_d} \frac{y_d^2}{y_d^{d+2+\varepsilon}} \frac{dy_d}{\varepsilon} = \frac{1}{\varepsilon} \int_0^{x_d} y_d^{1-\alpha} \, dy_d = \frac{1}{(2-\alpha)\varepsilon} x_d^{2-\alpha}. \]

For \(R_{2,2}, \) by \(|y|^{d+\alpha} \geq |y|^{d-2} \) and
\[\int_{y_d \leq |y| < 1} \frac{d\tilde{y}}{|y|^{d-1+\alpha}} = \int_{y_d}^{1} dr = \frac{1}{1 + \alpha} (y_d^{-1} - 1) \leq \frac{1}{1 + \alpha} y_d^{-1-\alpha}. \]

Hence
\[R_{2,2}(x) \leq \int_0^{x_d} \frac{y_d^2}{1 + \alpha} y_d^{1-\alpha} \, dy_d = \frac{1}{1 + \alpha} \int_0^{x_d} y_d^{1-\alpha} \, dy_d = \frac{1}{(1 + \alpha)(2-\alpha)} x_d^{2-\alpha}. \]

Furthermore we can show more easily that the other terms of \(R_2 \) are \(o(x_d^2) \). In fact, by \(|y|^{d+\alpha} \geq |y|^{d-1+\alpha} |y_d|^{1-\varepsilon} \),
\[\int_{|y|<1} \frac{d\tilde{y}}{|y|^{d+1+\alpha}} \leq \int_{|y|<1} \frac{|\tilde{y}|^2}{|y|^{d+1+\alpha}} d\tilde{y} \int_0^{x_d} (y_d^2 + y_d^2) \frac{dy_d}{|y|^{1-\varepsilon}} = C x_d^{2+\varepsilon}. \]

Therefore we have \(R_2(x) \leq C x_d^{2-\varepsilon} \) for all \(0 < \alpha < 2 \).

In the second term of the right hand side of (4.2), we divide the integral area to \(\{|y| \geq 1\}, \{|y| < 1\} \) and denote the corresponding terms by \(S_1(x), S_2(x) \) respectively. For \(S_1, \) by
\[(4.3) \quad |f(x + y) - f(\tilde{y} + x_d, y_d - x_d)| \leq 2x_d \| \partial_d f \|_\infty, \]
we have
\[S_1(x) \leq (2x_d \| \partial_d f \|_\infty \cdot 3 \| f \|_\infty + 2C x_d^2) \int_{|y| \geq 1} \frac{dy_d}{|y|^{d+\alpha}} \leq C x_d. \]

For \(S_2, \) by (4.3) and by \(|f(x)| \leq C x_d, \)
\[
\left\{ \begin{array}{c}
(f(x + y) - f(x + \bar{x}, y_d - x_d)) \{ f(x + y) + f(x + \bar{x}, y_d - x_d) - 2f(x) \} + 2f(x)^2 \\
\leq 2\| \partial_d f \|_\infty x_d \cdot C(x_d + y_d) + 2Cx_d^2 \\
\leq Cx_d(x_d + y_d).
\end{array} \right.
\]

Hence, noting that \(\{ |y| < 1 \} = \{ |\bar{y}| < 1 \} \times \{ |y_d| < 1 \} \),

\[
|S_2(x)| \leq Cx_d \int_{|y| < 1} \left(\int_{x_d}^{x^1} (\partial_d y) \frac{dy_d}{\| y \|^{d+\alpha}} \right) \leq 2Cx_d \int_{|y| < 1} \left(\int_{x_d}^{x^1} \frac{dy_d}{\| y \|^{d+\alpha}} \right).
\]

By the same way as in R2, we can show the desired estimate as follows. Let

\[
\int_{x_d}^{x^1} \frac{dy_d}{\| y \|^{d+\alpha}} =: (S_{2,1}(x) + S_{2,2}(x)).
\]

Then \(|S_2(x)| \leq Cx_d(S_{2,1}(x) + S_{2,2}(x)) \). Let \(0 < \epsilon < 2 - \alpha \). By \(|y|^{d+\alpha} \geq |\bar{y}|^{d-1-\epsilon} |y_d|^{1+\alpha} \),

\[
S_{2,1}(x) \leq \int_{x_d}^{x^1} \frac{dy_d}{\| y \|^{d+\alpha}} \int_{|y| < 1} \left(\int_{x_d}^{x^1} \frac{dy_d}{\| y \|^{d+\alpha}} \right) \leq 1 \int_{x_d}^{x^1} \frac{dy_d}{\| y \|^{d+\alpha}} = 1 \int_{x_d}^{x^1} \frac{dy_d}{\| y \|^{d+\alpha}}.
\]

That is, if \(0 < \alpha < 1 \), then \(S_{2,1}(x) \leq C \), if \(\alpha = 1 \), then \(S_{2,1}(x) \leq C \log(1/x_d) \), if \(0 < \alpha < 1 \), then \(S_{2,1}(x) \leq Cx_d^{-1-\alpha} \). Moreover for \(S_{2,2} \), as in R2, by

\[
\int_{x_d}^{x^1} \frac{dy_d}{\| y \|^{d+\alpha}} \leq y_d^{-1-\alpha}/(1 + \alpha),
\]

\[
S_{2,2}(x) \leq \int_{x_d}^{x^1} \frac{dy_d}{\| y \|^{d+\alpha}} \int_{|y| < 1} \frac{dy_d}{\| y \|^{d+\alpha}} \leq \int_{x_d}^{x^1} \frac{dy_d}{1 + \alpha} y_d^{-1-\alpha} dy_d = 1 \int_{x_d}^{x^1} y_d^{-1-\alpha} dy_d.
\]

Thus \(S_{2,2} \) satisfies the same estimates as \(S_{2,1} \). By \(|S_2(x)| \leq Cx_d(S_{2,1}(x) + S_{2,2}(x)) \), we have if \(0 < \alpha < 1 \), then \(S_2(x) \leq Cx_d \), if \(\alpha = 1 \), then \(S_2(x) \leq Cx_d \log(1/x_d) \) if \(1 < \alpha < 2 \), then \(S_2(x) \leq Cx_d^{-2-\alpha} \). These imply our desired result.

By \(P_{t}^\alpha C_{d}^\infty \subset C_{p,0}^3 \), the following result for martingale problem is obtained by the same way as in \(d = 1 \).

Theorem 6. Let \(\mu \in \mathcal{M}_{p,0} \). The martingale problems for \((\mathcal{L}_0, \mathcal{D}_0, \mu)\), \((\mathcal{L}_1, \mathcal{D}_0, \mu)\) associated with absorbing stable motion on \(H \) are well-posed.

Acknowledgment

The author would like to be grateful to the referee for his suggestions and comments.
References

Department of Mathematics
Faculty of Science and Technology
Tokyo University of Science
2641 Yamazaki, Noda City
Chiba 278-8510, Japan
E-mail: hiraba_seiji@ma.noda.tus.ac.jp