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Semiconducting barium disilicide (BaSi2), which is composed of earth-abundant elements, has attractive 

features for thin-film solar cell applications; both a large absorption coefficient comparable to copper indium 

gallium diselenide and a minority-carrier diffusion length much larger than the grain size of BaSi2 can be 

used to improve solar cells properties. In this review article, we explore the potential of semiconducting 

BaSi2 films for thin-film solar cell applications. We start by describing its crystal and energy band structure, 

followed by discussing thin-film growth techniques and the optical and electrical properties of BaSi2 films. 

We used a first-principle calculation based on density-functional theory to calculate the position of the Fermi 

level to predict the carrier type of impurity-doped BaSi2 films using either a Group 13 or 15 element, and 

compare the calculated results with the experimental ones. Special attention was paid to the minority-carrier 

properties, such as minority-carrier lifetime, minority-carrier diffusion length, and surface passivation. The 

potential variations across the grain boundaries measured by Kelvin-probe force microscopy allowed us to 
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detect a larger minority-carrier diffusion length in BaSi2 on Si(111) compared with in BaSi2 on Si(001). 

Finally, we demonstrate the operation of p-BaSi2/n-Si heterojunction solar cells and discuss prospects for 

future development.    
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1. Introduction 

1.1 Thin-film solar cell materials: alternatives to Si 

A solar cell, which converts sunlight directly into electrical energy, is the primary device 

for photovoltaics (PV). PV systems have been rapidly and globally deployed and reached 

a cumulative installed capacity of over 200 GWp in 2015. However, it is necessary to 

further deploy PV systems to establish a sustainable energy supply while also avoiding 

the various environmental and safety issues related to burning fossil fuels and nuclear 

power plants. For this purpose, a reduction of the energy costs per watt-peak must be 

pursued based on improving the energy conversion efficiency of solar cells and 

decreasing manufacturing costs.  

At the moment, more than 90% of installed solar cells are based on crystalline silicon, 

and a large-scale production system for PV modules based on crystalline silicon solar 

cells is well established. Silicon is safe, stable, and earth-abundant, and crystalline silicon 

solar cells will continue to play an important role for the sustainable supply of energy in 

the near future.  

However, there are two main drawbacks to using crystalline silicon. One drawback is that 

silicon is an indirect band-gap semiconductor, which leads to it having a relatively low 

absorption coefficient. To efficiently absorb sunlight the wafer must therefore be thick, 
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and the average wafer thickness for commercially available solar cells amounts to ~180 

m. Although further reduction in the wafer thickness to ~100 m in 2023 is predicted 

[1], there will be a lot of technical challenges. Even if one can reduce the wafer thickness 

down to 100 m, silicon wafers will still account for the majority of the cell's price and 

thus the thickness reduction will not have a drastic impact on decreasing manufacturing 

costs.  

Another drawback is the width of its band gap. The band gap of silicon (1.1 eV) is slightly 

narrower compared with the ideal band gap (~1.4 eV) for a single-junction solar cell. 

Kaneka recently reported a record efficiency of 26.33% using a back-contact 

heterojunction crystalline silicon solar cell by utilizing advanced processing [2]. The 

achieved efficiency is already very close to the theoretical Shockley-Queisser limit [3] 

for a 1.1 eV band gap, and thus there is little room for further improvement in this regard. 

 To overcome the drawbacks of silicon, thin film solar cells using alternative 

materials with wider band gaps have been intensively studied and developed; for example, 

cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin film solar 

cells have already been commercialized. However, these materials lack some important 

properties for global deployment, which will make it difficult for them to become market 

leaders. Solar cell materials should be safe, stable, and earth-abundant like silicon. The 
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ideal alternative absorber material for thin film solar cells should have a high absorption 

coefficient, long minority carrier lifetime, and band gap close to 1.4 eV. Orthorhombic 

barium disilicide (BaSi2) has all these properties, which will be described in the following 

sections.  

1.2 Crystal structure and energy band structure 

Orthorhombic BaSi2 (lattice constants: a = 0.891 nm, b = 0.672 nm, c = 1.153 nm) is in a 

stable phase at room temperature (RT) and under atmospheric pressure [4–6]. The unit 

cell of BaSi2 is shown in Fig. 1. There are two crystallographically inequivalent sites for 

Ba (Ba(1) and Ba(2)) and three inequivalent sites for Si (Si(3), Si(4), and Si(5)). The unit cell 

contains eight formula units. Therefore, the stoichiometric description of the unit cell is 

Ba8Si16, and the atoms are distributed over 4Ba(1), 4Ba(2), 4Si(3), 4Si(4), and 8Si(5). In a Si 

tetrahedron, each Si atom forms four sp3 hybridized orbitals and connects with three other 

Si atoms, leaving one external sp3 orbital as a dangling bond. The four dangling bonds 

associated with each Si tetrahedron are thought to be filled with four electrons donated 

by two Ba atoms. In this way, each Si atom is associated with eight electrons. It is 

therefore safe to say that there are strong covalent bonds between the Si atoms via the sp3 

hybridized orbitals in addition to ionic bonding between Ba and Si in the tetrahedron, 

although the Ba-Si bonds will have some covalent characteristics. The Ba atoms situated 
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between the Si tetrahedra can therefore be regarded as working to connect the Si 

tetrahedra. First-principle calculations of the band structure of BaSi2 have been carried 

out [7–11]. Figs. 2(a) and 2(b) show the partial densities of states (DOS) of Si s, p, and 

Ba s, p, and d states, and their energy band structures, respectively, which were 

determined using VASP code [12] based on density-functional theory (DFT) using the 

projector-augmented wave pseudopotential [13] and Perdew-Wang Generalized Gradient 

Approximations method [14]. The total energy minimization was obtained via an 

optimization of the lattice parameters and a relaxation of the atomic positions in a 

conjugate gradient routine. The convergence in total energy was better than 1 meV/atom 

using an energy cutoff of 600 eV and a 6 × 8 × 4 grid of Monkhorst–Pack points [15]. 

We cannot take thermal effects at a finite temperature into account in our framework of 

first-principle DFT calculations. The Si p state appears dominant in the valence band 

maximum (VBM), while the conduction band minimum (CBM) mainly consists of the 

Ba d state [7], leading to large values of the dipole matrix elements [8–10]. The CBM is 

located at Τ(0, 1/2, 1/2), and the VBM is located at approximately (0, 1/3, 0) along the 

Υ(0, 1/2, 0) direction, as shown in Fig. 2(b). A direct transition occurs at approximately 

(0, 1/3, 0), and its gap value is higher than the band gap by approximately 0.1 eV. This 

might be the reason why experimental studies have revealed that BaSi2 has high 
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absorption coefficients in spite of its indirect band gap nature [16,17]. The effective mass 

for electrons and for holes are 0.41 and 0.53, respectively [9]. The effective density of 

states in conduction band and that in valence band is calculated to be 2.6 × 1019 cm-3 and 

2.0 × 1019 cm-3, respectively. Both theoretical and experimental studies have revealed that 

it has a band gap of approximately 1.3 eV [10,16,17] and has high absorption coefficients 

(α) exceeding 3 × 104 cm−1 for photon energies higher than 1.5 eV [17]. Recent 

experimental results demonstrating a large minority-carrier diffusion length (L 10 μm) 

[18,19], a long minority-carrier lifetime (τ 10 μs) [20-22], and potential variations across 

grain boundaries (GBs) [23] in BaSi2 confirm that this material is a new candidate for 

thin-film solar cells. The obtained values of α, L, and τ (described later) are sufficiently 

large for thin-film solar cell applications.  

  

2. Formation of BaSi2 films 

The formation of high-quality BaSi2 films is very important for device applications. 

Epitaxial growth of BaSi2 films was first reported by Mckees et al. We note here that 

[100]-oriented BaSi2 can be grown on the (001) and (111) faces of Si substrates by 

reactive deposition epitaxy (RDE; Ba deposition on hot Si) [24] and solid-phase epitaxy 

(SPE; Ba deposition on Si at RT with subsequent annealing) [25]. BaSi2(100) is a better 
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match for the Si(111) over the Si(001) face for BaSi2[001]//Si[1-10]. The lattice mismatch 

is only 1.1% for Si(111) while it is more than 10% for Si(001). In this article, we introduce 

three methods to grow BaSi2 films thicker than 1 μm, namely molecular beam epitaxy 

(MBE), vacuum evaporation, and sputtering, as described in sections 2.1, 2.2, and 2.3, 

respectively. 

2.1 Molecular beam epitaxy 

An ion-pumped MBE system equipped with an electron-beam evaporation source for Si 

and a standard Knudsen cell (K-cell) for Ba is used. We use a two-step growth method 

including RDE to form epitaxial templates and MBE (Ba and Si codeposition) on Si(111) 

[26,27] and Si(001) [28], as shown in Fig. 3. Templates act as a kind of seed crystal for 

overlayers, owing to which a-axis-oriented epitaxial layers of BaSi2 can be grown over a 

wide temperature range from 450 to 700 ºC [27]. The thickness of a BaSi2 film by RDE 

is calculated using the theoretical densities of Ba, Si, and BaSi2; 1 nm of Ba reacts with 

0.63 nm of Si, resulting in 1.38 nm of BaSi2. A substrate temperature TS of approximately 

580 ºC is optimal for MBE to achieve the highest crystalline quality BaSi2 films [29]. The 

BaSi2 deposition rate is approximately 1 nm/min. Note that a-axis-oriented BaSi2 layers 

are not single crystalline, but are instead multi-domain epitaxial layers. Fig. 4, panels (a) 

and (a’) through to (e) and (e’) show examples of the reflection high-energy electron 
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diffraction (RHEED) pattern, θ-2θ XRD pattern with Cu Kα radiation, X-ray pole figure 

using asymmetric BaSi2(301) and (203) diffractions, electron backscatter diffraction 

(EBSD), and schematics of epitaxial variants of a-axis-oriented BaSi2 epitaxial layers 

grown on Si(111) and Si(001), respectively. In spite of three epitaxial variants on Si(111), 

the RHEED pattern is streaky, as shown in Fig. 4(a) [30]. In contrast, as shown in Fig. 

4(a’), we observe two clear sets of streaky patterns with different spacings of the epitaxial 

layers on Si(001). The ratio of the wide streaky spacing to the narrow spacing is 

approximately 1.7, which is consistent with the ratio of 1/b to 1/c. Taking into account 

the fact that the electron beam was incident along the Si[-110] azimuth, these two streaky 

patterns with different spacings indicate the coexistence of epitaxial variants rotated by 

90º [28]. Owing to the symmetry of Si(111) and Si(001) substrates, there are three or two 

epitaxial variants rotating around each other by 120° or 90°, respectively, in the surface 

normal for a-axis-oriented BaSi2 epitaxial films, as shown in Fig. 4, panels (c) and (c’) as 

well as (d) and (d’). The grain size of BaSi2 variants can be increased by using a vicinal 

Si substrate [31,32] or by employing large grained RDE-grown BaSi2 templates [33]. The 

grain size can reach approximately 9 μm and 4 μm for BaSi2 on Si(001) and Si(111), 

respectively. 

2.2 Vacuum evaporation 
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Vacuum evaporation is a practical method to deposit thin films on large-area substrates. 

The process generally consists of pumping a chamber down to ~10−5 Torr and heating a 

source material to provide a vapor flux. Unlike in MBE, an ultrahigh vacuum (UHV) is 

not a prerequisite, and the equipment can therefore be simple and inexpensive. The 

deposition rate can be several orders of magnitudes higher than MBE. These advantages, 

which are compatible with production technology, led us to investigate the growth of 

BaSi2 thin films on various substrates by vacuum evaporation using air-stable BaSi2 

granules as a source material. 

Although the equipment for vacuum evaporation is simple, the fundamental growth 

process is rather complicated, especially when one uses compound source materials such 

as BaSi2. The equilibrium vapor pressure of the constituent elements of the compound 

can be vastly different. In addition, a chemical reaction between the source and boat 

materials may take place. Both these issues would lead to an inhomogeneous vaporization, 

and thin films resulting from such an inhomogeneous vapor are not necessarily comprised 

of the same compound as the source material. The possible chemical processes during the 

deposition of BaSi2 on Si by vacuum evaporation using BaSi2 source are illustrated in Fig. 

5. 

Nakagawa et al. revealed that an appropriately high TS is crucially important to obtain 
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single-phase BaSi2 on Si by vacuum evaporation using a BaSi2 granular source [34]. Fig. 

6 compares the Raman spectra of the films on Si(111) deposited at various TS. The spectra 

of the films deposited at 500 °C and 600 °C are in good agreement with the reported 

spectrum for BaSi2 [35], and multiple peaks originating from the Td symmetry of the 

discrete [Si4]
4− anion are clearly observed. Recently, polarized Raman spectroscopy was 

utilized to identify each mode and new peak assignments to reflect crystal symmetry have 

been made [36]. Conversely, the spectra of the films deposited at 400 °C and RT contain 

a Si peak. No peaks from BaSi2 were found for the film deposited at RT. We interpret 

these data as resulting from a Ba-rich vapor flux and the reaction of excess Ba and Si 

supplied from the substrate. Hara et al. analyzed the boat used for vacuum evaporation 

using BaSi2 granules and confirmed the existence of a porous product of Si, which 

originates from the decomposition of BaSi2, and of a tungsten silicide layer formed by a 

chemical reaction [37]. They are both expected to produce Ba gas, which suggests the 

formation of a Ba-rich vapor flux at the initial stage of the evaporation. Therefore, the 

resultant thin film may be considered to be Ba-rich silicide instead of stoichiometric BaSi2. 

Interestingly, the thin film could still become BaSi2 if the substrate contains Si, e.g., single 

crystalline Si or SiO2, and a high enough substrate temperature is used to promote the 

reaction of excess Ba and Si. If the substrate temperature is not high enough, excess Ba 
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could be oxidized on exposure to air leaving Si, which explains why the Raman spectra 

showed a clear Si peak for the samples deposited at lower temperatures. The critical 

substrate temperature for the formation of BaSi2 depends on the film thickness [38]. Si 

atoms to compensate excess Ba can originate from deposited Si thin films on various 

substrates. Hara et al. have shown that pre-deposited amorphous Si (a-Si) is the key to 

obtaining stoichiometric BaSi2 thin films, and they succeeded in obtaining crack-free 

BaSi2 thin films on CaF2 substrates [39], which have a similar linear expansion coefficient 

to BaSi2 [40]. Other substrates, such as stainless steel, titanium [41], and Ge [42], have 

been used successfully as substrates for BaSi2 thin films. Although the thin films are 

generally polycrystalline, epitaxial growth of BaSi2 on Si by vacuum evaporation could 

be achieved by carefully controlling the source temperature. Nakagawa et al. attempted 

to provide only Ba vapor from a BaSi2 source by keeping the source current low so that 

the decomposition of BaSi2 preferentially takes place [43]. This resulted in the formation 

of a-axis oriented BaSi2, which can act as the template layer for subsequent epitaxial 

growth similar as for MBE. 

2.3 Sputtering 

Sputtering is another feasible thin-film deposition technology. There have been many 

studies on the formation of sputtered solar cell absorbers [44–46]. However, there has 
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been only one report on the formation of BaSi2 films by sputtering [47]. Yang et al. 

formed polycrystalline BaSi2 films on Si(111) by sputtering a Ba target at RT, followed 

by annealing at temperatures from 400 to 800 °C in UHV [47]. However, the grown films 

contained metallic phases such as Ba2Si and Ba5Si3. Single-phase BaSi2 can be grown on 

glass substrates by radio frequency (RF) sputtering using a polycrystalline BaSi2 target 

produced by the Tosoh Corporation [48,49]. BaSi2 films can be formed either by 

sputtering the BaSi2 target at RT, followed by post-annealing at 500 °C or by sputtering 

it at elevated temperatures such as 600 °C. Fig. 7 shows a typical example of θ-2θ XRD 

patterns with Cu Kα radiation formed at different temperatures. The benefit of this method 

is its higher deposition rate, which exceeds 30 nm/min. Distinct photoresponse spectra 

were obtained for photon energies greater than the band gap [48].  

 

3. Control of carrier type and carrier concentration by impurity doping 

3.1 Intrinsically doped n-BaSi2 

Before going into details about impurity-doped BaSi2, we first present the electrical 

properties of intrinsically doped n-BaSi2. Intrinsically doped BaSi2 shows n-type 

conductivity regardless of thin-film growth method. An electron concentration n varies 

from n ~ 1016 cm-3 for MBE-grown BaSi2 films [16,50] to n >1018 cm-3 for sputtered or 
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vacuum-evaporated BaSi2 films [48,51,52]. A first-principles DFT supercell approach 

revealed that this n-type conductivity arises from Si vacancies [53]. Hereafter, we denote 

intrinsically doped n-BaSi2 simply as n-BaSi2. Figure 8 shows the temperature 

dependence of electron mobility of n-BaSi2 grown by MBE. The n is 5 × 1015 cm-3 at 300 

K [16]. The electron mobility is as large as approximately 800 cm2/Vs at 300 K. For lower 

impurity concentrations, the mobility is limited by phonon scattering at high temperatures. 

The measured slope, however, is slightly different from 3/2 probably because of 

different scattering mechanism. Scattering mechanisms in BaSi2 have yet to be 

investigated.  

 The basic structure of a solar cell is a pn junction. Therefore, control of the carrier 

type of BaSi2 by impurity doping is required to create a solar cell. Impurity doping in 

BaSi2 was first attempted experimentally using Al or In [54], followed by a first-principle 

calculation [55]. In this article, we first calculate the DOSs and total energies of impurity-

doped BaSi2 to find the position of the Fermi level, EF, and which sites the impurity atoms 

are most likely to occupy in the lattice. We next describe the experimental results with 

regards to the carrier type and carrier concentration of impurity-doped BaSi2.  

3.2 Group 13 or 15 doping by first-principle calculation 

As described in section 1.2, the VBM is mostly composed of the Si p state in BaSi2. Hence, 
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we expect that the replacement of some Si atoms in BaSi2 by a Group 13 (15) element 

will decrease (increase) the valence electron concentration and cause BaSi2 to become a 

p- (n-) type semiconductor. We describe impurity-doped BaSi2 as, for example, 

Ba8Ga(3)Si15, where one of the Si(3) sites of Ba8Si16 has been substituted with Ga. 

Meanwhile, Ba7Ga(1)Si16 signifies that one of the Ba(1) sites has been replaced with Ga. 

According to Imai and Watanabe [55], the energy differences between Ba7Ga(1)Si16 and 

Ba7Ga(2)Si16 and between Ba8Ga(3)Si15, Ba8Ga(4)Si15, and Ba8Ga(5)Si15 are small. The same 

is true for In doping [55]. In this article we therefore chose one Ba(1) site for Ba 

substitution, and one Si(3) site for Si substitution although there are two other Si sites, Si(4) 

and Si(5), and another Ba site, Ba(2), in Ba8Si16. Regarding the interstitial site, the most 

probable insertion sites are the 4c sites [55], where an impurity atom is surrounded by 

three Si atoms, one of which is at a corner of one of the Si-tetrahedrons while the other 

two make up one of the edges of the other Si-tetrahedron. Thus, we chose one of the 4c 

sites, the fractional coordinate of which is (0.5841, 0.25, 0.2251). This compound is 

described as Ba8Si16Ga. 

Table I summarizes the calculated electronic energies for Ba8Si16 doped with a Group 13 

element (B, Al, Ga, or In) or a Group 15 element (N, P, As, or Sb). The binding energy of 

Ba8Si16 is calculated to be 133.696 eV. The total energy after impurity doping is 
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calculated using the binding energies of the optimized structures as follows: for one P 

atom replacing one Ba atom at the Ba(1) site, the total energy of Ba7P
(1)Si16 + Ba is given 

by 128.697 1.912 = 130.609 eV. Meanwhile, for a P atom replacing a Si atom at the 

Si(3) site, the total energy of Ba8P
(3)Si15 + Si is 131.007 5.514 = 136.494 eV. In the 

same way, the total energy of Ba8Si16P is calculated to be135.698 eV. From an energetic 

point of view, these results imply that replacement of Si with P is most likely to occur in 

P-doped BaSi2. The same assumption can be applied to doping with other elements, 

except for B- or O-doped BaSi2—B or O atoms are more likely to occupy an interstitial 

site.  

Fig. 9 shows the total DOSs of impurity-doped BaSi2 near EF. The DOSs of Ba8Si16B and 

Ba8Si16O are also presented, where their EF’s represent the energy zero. For BaSi2 doped 

with a Group 13 element, EF crosses the top of the valence band, EV, and the resultant 

doped BaSi2 is p-type. Note that interstitial B gives rise to localized states within the band 

gap. In BaSi2 doped with a Group 15 element, EF moves to the bottom of the conduction 

band, thereby forming an n-type material. The interesting thing from an energetic point 

of view is that O is most likely to be located at an interstitial site and does not generate 

defective states within the band gap, whereas other impurities generate states in the band 

gap. BaSi2 is a Zintl phase compound consisting of an electropositive Ba and an 
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electronegative Si, where the electropositive Ba donates its electrons to Si, which uses 

the electrons in the formation of covalent bonds in Si4 tetrahedra to satisfy valence 

requirements [56]. It was experimentally confirmed that the Si p state is dominant around 

EV in BaSi2 [57].  

3.3 Ex-situ and in-situ doping  

Ex-situ doping by ion implantation has been widely used to control the electrical 

properties of semiconductors. Generally, ion implantation is accompanied by subsequent 

annealing to recover implantation damage and activate dopants to produce charge carriers. 

As for ex-situ p-type doping in BaSi2 thin films on Si, Hara et al. attempted to use a BF2 

source for ion implantation with a dose of 1.0  1012 cm−21.0  1014 cm−2 followed by 

annealing [58]. They revealed that rapid thermal annealing (RTA) at 700 °C or 800 °C for 

30 s could remove implantation damage while suppressing oxidation of BaSi2. Raman 

spectra indicated that Si sites have been substituted with B after RTA, indicating that B 

acts as a dopant to achieve p-type BaSi2. 

As for ex-situ n-type doping, ion implantation of P ions with a dose of 1.0  1013 cm−21.0 

 1015 cm−2 in BaSi2 thin films on Si has been investigated [59]. RTA at 600800 °C for 

30 s was found to be useful to remove implantation damage. However, P atoms segregated 

and concentrated itself at the surface and BaSi2/Si interface, while the formation of a 
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metastable trigonal BaSi2 phase was revealed. By reducing the thermal budget to 500 °C 

for 30 s or 700 °C for 1 s, the suppression of the segregation of P atoms, removal of the 

implantation damage, and activation of dopants can be simultaneously achieved. As a 

result, n-type BaSi2 with n ~ 1018 cm−3 can be obtained with P-doping [60]. Doping of 

BaSi2 with As ions by ion implantation was also attempted, and the highest possible n 

was estimated to be less than 2  1017 cm−3 [61]. Therefore, P-doping is more efficient if 

one uses ion implantation to obtain n-type BaSi2. 

In-situ doping in BaSi2 has been performed by depositing Ba, Si, and impurity atoms on 

RDE-grown BaSi2 templates [54,62–67]. Impurities were supplied from K-cells. Table 2 

summarizes the carrier type and highest carrier concentration achieved so far for 

impurity-doped BaSi2 by ex-situ and in-situ methods. In accordance with the calculation 

results shown in Fig. 9, Group 13 elements give rise to p-type BaSi2 (except for Ga), 

while Group 15 elements create n-type BaSi2. As for p-type BaSi2, p can only be 

controlled over a wide range between 1016 and 1019 cm−3 by B doping. In contrast, n can 

be controlled over a relatively wide range by As, P, or Sb doping. 

The diffusion coefficient is a decisive parameter that will affect the steepness of a pn 

junction. In the case of B, we formed BaSi2 epitaxial layers capped with a 180 nm thick 

B layer, followed by post-annealing in UHV at different temperatures for various 
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durations. Fig. 10(a) shows the measured and simulated secondary ion mass spectrometry 

(SIMS) depth profile of B for a sample annealed at 800 ºC for 1 h. Both lattice and grain 

boundary (GB) diffusions were taken into consideration to reproduce the experimental 

profile [68]. The concentration distribution C(x, t) of impurity atoms owing to the lattice 

diffusion is given by Eq. (1), where x = 0 is set at the B/BaSi2 interface and C0 is the B 

concentration at x = 0, Dl is the lattice diffusion coefficient, and t is the annealing duration. 

The lattice diffusion length L, which is given by L = tDl , is also included in Eq. (1). 

(1).)2/erfc(),( 0 tDxCtxC l  

To fit the GB diffusion regions, Eq. (2) was employed using type-B kinetic regimes [69],  

    (2),/),(ln/332.1
3/55/62/1

GB


 xtxCtDDs l  

where s is the segregation factor,  is the grain boundary width, and DGB is the GB 

diffusion coefficient. Fig. 10(b) presents the Arrhenius plots for the obtained Dl and sDGB. 

The diffusion coefficients of impurity atoms in other silicides are also shown for 

comparison [70]. From Fig. 10(b), we see that the diffusion coefficients of B in BaSi2 are 

much smaller than others. The reason for this has yet to be clarified. 

 

4. Optical absorption properties 

Absorption coefficients of BaSi2 were measured on BaSi2 epitaxial layers formed on a 
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transparent silicon-on-insulator (SOI) substrate [17]. The substrate was produced by 

wafer bonding of Si(111) and fused silica wafers at RT, followed by mechanical grinding 

and polishing by chemical mechanical polishing down to about 0.7 μm thickness. After 

that, approximately 100 nm thick BaSi2 was epitaxially grown. This is to ensure both high 

transparency of the substrate and high quality of the BaSi2 films for the optical absorption 

measurements. The transmission spectra were obtained using a JASCO U-best 570 

spectrophotometer. The absorption coefficient of BaSi2 reaches 3 × 104 cm−1 at 1.5 eV as 

shown in Fig. 11(a). This value is almost the same as for the samples formed by vacuum 

evaporation and by RF sputtering [37,49]. Fig. 11(b) shows the (αdhν)1/2 versus hν plot 

for deriving the indirect optical absorption edge. The straight fit line intersects the 

horizontal line at 1.34 eV. Thus, the indirect absorption edge with phonon emission is 

1.34 eV. 

 The complex refractive index of BaSi2 n~  is very important to design the anti-

reflection coating and to correctly predict the optical behavior of real devices. It is given 

by refractive index indexn and extinction coefficient   as inn  index
~ . Their 

quantities were measured on a 150 nm thick MBE-grown BaSi2 epitaxial film on Si(111) 

in the range between 300 nm and 1200 nm by spectrophotometry and by spectroscopic 

ellipsometry [71]. Figure 12 depicts their wavelength dependence. According to ref. 71, 
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the photocurrent density reaches 41.1 mA/cm2 under AM1.5 illumination in a 2 μm thick 

BaSi2 solar cell, suggesting the great potential of BaSi2 for thin-film solar cell applications. 

Real and imaginary parts of the dielectric constant versus photon energy for BaSi2 was 

calculated in ref. 9, where the long-wavelength limit of the real part is about 14, hence 

the refractive index indexn  is deduced to be about 3.7. This value is close to the long-

wavelength limit in Fig. 12. Similar results were obtained for BaSi2 films grown by 

sputtering [49].  

 

5. Minority-carrier properties 

5.1 Minority-carrier lifetime 

The recombination of photogenerated excess carriers is of great importance in controlling 

the solar cell performance. In particular, the bulk minority carrier lifetime τb is a 

fundamental parameter to certify the potential of BaSi2 as an absorber for thin film solar 

cells. Microwave-detected photoconductivity decay (-PCD) has been widely used to 

investigate the recombination process of excess carriers. Hara et al. investigated the 

recombination process of excess carriers in n-BaSi2 thin films on Si(111) with various 

film thicknesses by -PCD using a 5 ns pulse laser with a wavelength of 349 nm [72]. 

The measured decay curve was found to be multiexponential and can be divided mainly 
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into three parts based on the decay rate, as shown in Fig. 13(a). Because of the indirect 

nature of BaSi2, intrinsic radiative recombination is not the determining process. The 

initial rapid decay at higher carrier densities was assigned to Auger recombination. Then, 

over time, the decay curve is controlled by Shockley-Read-Hall (SRH) recombination 

with and without carrier trapping effects. To obtain τb in n-BaSi2, post-growth annealing 

was carried out at 800 °C for 30 s [73]. This annealing process causes a drastic increase 

in excess carrier lifetime and allows the investigation of the recombination process at low 

injection levels. We attribute this increase in the minority-carrier lifetime to an oxidation 

of the sample surface, which was shown with excellent repeatability to increase the 

minority-carrier lifetime as described in section 5.3. It should be noted that the excess 

carrier density should be much lower than the majority carrier (electron) density in n-

BaSi2 (n ~ 5  1015 cm−3). Fig. 13(b) shows the inverse of the apparent lifetime measured 

at a low injection level as a function of the inverse of the film thickness [74]. From this 

curve, τb was determined to be 14 s in n-BaSi2. The corresponding minority carrier 

diffusion length is considered to be much longer than calculated given the absorber 

thickness. In addition, the sum of the surface and interface recombination velocities was 

found to be 8.3 cm/s, which is extremely low and confirms that BaSi2 is promising for 

solar cell applications. 
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5.2 Minority-carrier diffusion length 

Along with the minority-carrier lifetime, minority-carrier diffusion length is a measure 

by which to characterize absorber materials. To achieve higher efficiencies in a solar cell, 

a longer minority-carrier diffusion length is essential [75]. We evaluated those for BaSi2 

on Si(111), L111, and for BaSi2 on Si(001), L001, with the electron-beam-induced current 

(EBIC) technique. Three hundred to four hundred nanometer thick n-BaSi2 epitaxial 

layers were grown by MBE on n-Si(111) (resistivity ρ = 0.1 Ω∙cm) and n-Si(001) (ρ = 0.1 

Ω∙cm). The backside ohmic contact was deposited by vacuum evaporation. Scanning 

electron microscopy (JEOL JSM7600F) was employed for the EBIC measurements. An 

elastic tiny tungsten (W) probe [76] was gently placed on the BaSi2 surface so as not to 

cause surface damage; it forms a Schottky contact with n-BaSi2 on n-Si(001) and 

determined a short minority-carrier diffusion length [19]. Instead of the W probe, a 

Schottky contact with Al wire was used for n-BaSi2 on n-Si(111) [18]. The acceleration 

voltage of the electron beam was set at 5 kV to avoid penetration of the electron beam 

into the Si substrate. Thus, the effect of carriers generated in the Si substrate can be 

neglected.  

Figs. 14(a) and 14(a’) show secondary electron (SE) and EBIC images, 

respectively, of BaSi2 on Si(111), and Figs. 14(b) and 14(b’) show those of BaSi2 on 
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Si(001). In the EBIC method, the carriers generated within a diffusion length of n-type 

BaSi2 are collected by the electric field under the Schottky contact and sensed as a current 

in the external circuit. The brighter regions indicate the higher collection of electron-

beam-induced carriers in BaSi2. Fig. 14(c) shows the plots of EBIC line-scan data along 

the lines AA’ and BB’ in Figs. 14(a’) and 14(b’), respectively. The EBIC profiles show a 

clear exponential dependence on the distance from the metal contacts. The contribution 

of carriers generated within the n-Si substrate to the measured EBIC signals can be 

excluded as described above. In this work, L001 was estimated to be approximately 1.5 

m in BaSi2 on Si(001), assuming that the EBIC profile varies as exp(x/L), where x is 

the distance from the metal edge along the line and L is the diffusion length of holes for 

BaSi2. In contrast, L111 was deduced to be approximately 10 m in BaSi2 on Si(111). We 

performed the same experiments more than 10 times, and similar results were obtained. 

Figs. 14(d) and 14(d’) present the plan-view bright-field TEM images of these samples. 

The incident electron beam was almost parallel to the BaSi2[100] zone axis, but it was 

slightly tilted for the GBs to be seen clearly. At a first glance, sharp GBs are present in 

BaSi2 on Si(111), while roundish ones are found in BaSi2 on Si(001); dark spots 

corresponding to defects are located along the GBs. Besides, the grain size of BaSi2 on 

Si(111) is much smaller than that on Si(001), which differs from our predictions that arise 
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from L111 > L001. These results show that L111 is much larger than L001, even though the 

domain size of BaSi2 is much smaller in BaSi2 on Si(111) than in BaSi2 on Si(001). The 

difference in the minority-carrier diffusion length is related to the difference in the 

potential variations across the GBs as described in Section 6.1. On the basis of these 

results, we conclude that a Si(111) surface is more suitable for BaSi2 growth than a 

Si(001) surface from the viewpoint of minority carrier diffusion length, which is 

important in solar cell applications.  

The minority-carrier properties of doped BaSi2 is also important. We employed 

0.5 μm thick B-doped p-BaSi2 epitaxial films on Si(111) for this purpose. Fig. 15 shows 

the p dependence of minority-carrier lifetime measured by μ-PCD and minority-carrier 

diffusion length evaluated by EBIC using the W probe. The acceleration voltage of the 

electron beam was set at 5 kV. The minority-carrier lifetime increases from 0.07 μs to 2 

μs as the p decreases from 3.9 × 1018 cm-3 to 1.4 × 1016 cm-3. The minority-carrier 

diffusion length also increases with decreasing the p, and exceeds 1 μm at p = 1 × 1017 

cm-3. Evaluation of minority-carrier properties in impurity-doped n-BaSi2 is also required.  

 

5.3 Surface passivation 

For device applications, surface passivation is very important for materials like BaSi2, 
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which possess large α, because short-wavelength light is absorbed in the region close to 

the surface. Therefore, a defective surface deteriorates solar cell performance. μ-PCD 

measurements showed that τ reaches approximately 10 μs with excellent repeatability for 

n-BaSi2 by means of capping the BaSi2 surface with the native oxide or a few nanometers 

thick a-Si layer [77]. Note that we did not incorporate hydrogen atoms in the a-Si layers 

because we did not have such equipment. We also need to confirm that such surface 

passivation layers do not deteriorate the carrier transport across the native-oxide/BaSi2 or 

a-Si/BaSi2 interface. Hard X-ray photoelectron spectroscopy (HAXPES) is a powerful 

tool to directly probe the VB DOS of BaSi2 under the capping layers. This is because the 

analysis-depth of HAXPES is much deeper than that of conventional X-ray photoelectron 

spectroscopy and ultraviolet photoelectron spectroscopy. An extremely brilliant X-ray 

provided from a third generation synchrotron source can sufficiently compensate for the 

diminished cross section and has enabled us to perform HAXPES measurements with 

high-energy resolution [78]. There have been several reports utilizing this large probing 

depth on the measurement of VB spectra of buried layers such as CdS/Cu2ZnSnS4 (CZTS), 

and AlOx/Si heterostructures, and Bi2Se3 surface [79-81]. For example, in ref. 78, 

CdS/CZTS heterostructures formed on Mo-coated glass, where the CdS layer thickness 

was varied (0, 5, and 100 nm), was examined by changing the effective inelastic mean 
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free path, which was controlled by the take-off-angle (TOA) of photoelectrons in 

HAXPES. Consequently, they succeeded in measuring the VB spectra of CdS and CZTS, 

separately, and obtained a VB offset (VBO) at the CdS/CZTS interface of 0.0 ± 0.1 eV in 

a real device structure. To examine the VBO, native-oxide/n-BaSi2(600 nm)/Si(111) and 

a-Si(5 nm)/n-BaSi2(730 nm)/Si(111) samples were prepared by MBE.  

 Figs. 16(a) and 16(b) show the bright-field TEM cross sections of the samples 

[82]. We see that a 5 nm thick a-Si layer is uniformly formed on the n-BaSi2 surface as 

expected and that the a-Si/BaSi2 interface has a sharp interface. The fact that the a-Si layer 

thickness is almost the same as the deposited thickness monitored by a quartz crystal 

microbalance system indicates that the oxidation of the a-Si terminates near the surface. 

An approximately 8 nm thick native oxide layer is formed on BaSi2.  

 Fig. 17(a) shows the Ba 3d5/2 core-level spectra of a-Si/BaSi2, taken at TOA = 

15°, 30°, and 90° [82]. Fig. 17(b) is the spectra of Fig. 17(a) normalized to the peak 

located at 780.6 eV. In Fig. 17(b), we see only one peak located at 780.6 eV at TOA = 

30° and 90°. We attribute this peak to the BaSi2 layer. In contrast, the spectrum measured 

at TOA = 15° was well reproduced with a peak-fitting analysis by adding another 

Gaussian curve located at 781.1 eV, which is probably caused by slight oxidation of 

BaSi2, as described below. Fig. 17(c) shows the Ba 3d5/2 core-level spectra of native-
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oxide/BaSi2, taken at TOA = 15°, 30°, and 90°. At TOA = 30° and 90°, each spectrum 

was well reproduced by two Gaussian curves located at 780.6 eV and 781.7 eV. At 

TOA = 15°, however, one Gaussian curve located at 781.7 eV was enough to reconstruct 

the measured spectrum. The peak located at 781.7 eV became stronger as TOA 

decreased. We therefore attribute this peak to the surface native oxide because the 

contribution of this peak appeared dominant in the surface-sensitive measurement (TOA 

= 15°). Hence, it is clear that the a-Si layer suppresses the oxidation of the BaSi2 layer in 

the a-Si/BaSi2 sample. Furthermore, the peak positions did not shift regardless of TOA 

(i.e., analysis depth) in Figs. 17(a) and 17(b), meaning that band bending did not occur or 

it was negligibly small in BaSi2 near the a-Si/BaSi2 interface.  

 Fig. 17(a’) shows the Si 2s core-level spectra for a-Si/BaSi2, taken at TOA = 15°, 

30°, and 90° [82]. Fig. 17(b’) is the spectra of Fig. 17(a’) normalized to the peak located 

around 151 eV. The ratio of the peak intensity around 155 eV to that around 151 eV 

increased as the TOA decreased, indicating that the peak around 155 eV is caused by 

surface oxides. Note that the peak position located around 151 eV was shifted by 

approximately 0.2 eV as TOA was decreased from 90° to 15°. As discussed before, band 

bending did not occur in BaSi2 near the a-Si/BaSi2 interface. Therefore, we attribute this 

peak shift to band bending in the a-Si layer. As seen in Fig. 17(c’), the peak intensities of 
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the oxides became stronger for the native-oxide/BaSi2 sample as TOA decreased; the peak 

located around 151 eV almost disappeared at TOA = 15°. Considering the Si 2s core-

level spectra as well as the Ba 3d5/2 core-level spectra, it is therefore reasonable to assume 

that a-Si suppresses surface oxidation by capping the surface with a-Si [82,83]. 

 Fig. 18 presents the obtained VB alignment of BaSi2 with respect to the top of 

the VBs of native oxide, EV,oxide and a-Si, EV,a-Si. The result means that the transport of 

holes is not blocked at the a-Si/BaSi2 interface, but is blocked at the native-oxide/BaSi2 

interface instead owing to a large barrier height of about 3.9 eV. To confirm hole transport 

across the interface, we compared the photoresponse spectra of a 500 nm thick n-BaSi2 

layer capped with either a 3 nm thick a-Si or native-oxide layer. Two hundred nanometer 

thick indium tin oxide (ITO) surface electrodes with a diameter of 1 mm and Al rear 

electrodes were fabricated by sputtering. Photoresponse and reflectance (R) spectra were 

evaluated at RT via a lock-in technique using a xenon lamp with a 25 cm focal length 

single monochromator (Bunko Keiki SM-1700A and RU-60N). 

 Figs. 19(a) and 19(b) present the photoresponse and reflectance spectra of these 

samples [84]. The bias voltages were applied so that the photogenerated holes in n-BaSi2 

were transferred to the surface electrode (ITO) across the a-Si/n-BaSi2 or native-oxide/n-

BaSi2 interface. The photoresponsivity of BaSi2 was drastically improved by 
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approximately five times with the a-Si capping layer compared to without the capping 

layer. This is ascribed to the difference in the hole transport properties between the a-Si/n-

BaSi2 and native-oxide/n-BaSi2 interfaces. Note that the reflectance of the two samples is 

almost the same, therefore the number of photogenerated carriers should be almost the 

same. The results presented in Fig. 19 are consistent with the band lineups shown in Fig. 

18, obtained by HAXPES.  

 

6. Properties of grain boundaries 

The minority-carrier diffusion length, a key parameter determining the performance of 

solar cells, was found to be approximately 10 μm in the n-BaSi2 epitaxial film on Si(111) 

by MBE; this was determined via an EBIC measurement, as shown in Fig. 14(c) [18]. 

This value is much larger than the grain size of BaSi2 (~0.2 μm), implying that the GBs 

do not work as defect centers for minority carriers (holes) in n-BaSi2. Kelvin probe force 

microscopy (KFM) is considered one of the most powerful methods for evaluating 

potential variations in the GB characteristics. For polycrystalline Si and compound 

semiconductors, the GBs characteristics have been discussed in detail in terms of GB 

band lineup and barrier height using KFM [85–88]. In this study, we analyzed the 

potential variations and barrier heights around GBs in BaSi2 epitaxial films both on 
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Si(111) and Si(001) substrates using KFM in air.  

Figs. 20(a) and 20(b) show the 5 × 5 m2 AFM topographic and KFM 

electrostatic potential () images, respectively, of n-BaSi2 epitaxial layers on Si(111) by 

MBE; the cross sectional profiles along the white lines in the same areas are also shown 

[23]. The positions of the colored lines correspond to those of the GBs in the cross 

sectional profiles in Figs. 20(a) and 20(b). The electrostatic potentials at the GBs are 

higher than those in the grains. Since the energy band lineup is defined for negatively 

loaded electrons, the potential corresponds to the inverse of the work function divided by 

the elemental charge. This result means that band bending occurs downwards at the GBs, 

as shown in Fig. 20(c). The histogram of the barrier height is shown in Fig. 20(d). The 

barrier height for holes is positive and its absolute value ranges from 10 to 60 meV and 

the average is approximately 30 meV. This value is almost the same as the thermal energy 

of 26 meV at RT (25 °C). The concave band structure at the GBs in the BaSi2 on Si(111) 

are supposed to lead to repulsion of photogenerated holes (minority carriers) from the 

GBs, reducing the charge carrier recombination at the GBs. Therefore the GBs do not 

work as recombination centers for the minority carriers in n-BaSi2. This explains the long 

minority carrier diffusion length, which reaches 10 m even for multi-domain epitaxial 

BaSi2 films on Si(111). 
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Figs. 21(a) and 21(b) show the 5 × 5m2 AFM topographic and KFM 

electrostatic potential images, respectively, measured for n-BaSi2 epitaxial layers by MBE 

on Si(001) [23]. Their cross sectional profiles along the white lines in the same area are 

also shown. In the case of BaSi2 grown on Si(001), one type of variant was dominantly 

grown. We see that the BaSi2 grains extend in the Si[110] direction in Fig. 21(a). 

Therefore, we investigated the electrostatic potentials along the line AA’, parallel to 

Si[110], and also along the line BB’, parallel to Si[1-10] because those GBs are composed 

of different planes. The GBs have a lower electrostatic potential than the inner parts of 

the grains, meaning that band bending occurs upwards at the GBs, as shown in Fig. 21(c). 

The difference in the band bending at the GBs between n-BaSi2/Si(111) and n-

BaSi2/Si(001) is attributed to the difference in the BaSi2 planes, which consist of GBs. 

GBs along line AA’ are composed of BaSi2(001) planes. For GBs along line BB’, we do 

not yet have enough data to currently discuss this. We should note here that impurity 

contaminations can also cause potential variations around GBs. Impurity segregation to 

GBs have been extensively studied in poly crystalline Si [89–91]. Tsurekawa et al. 

confirmed that the GBs in Cu- and Fe-contaminated p-type Si cause a significant increase 

in the barrier height compared to non-contaminated Si [92]. We cannot exclude this 

possibility to explain the potential variations at the GBs of BaSi2 films. There have so far 
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been no reports on the segregation of impurities toward GBs in BaSi2. Thus, detailed 

studies of impurity segregation in BaSi2 will be required in the near future.  

We also investigated the potential distribution of GBs in n-BaSi2 formed by MBE 

on multicrystalline Si (mc-Si) [93]. KFM measurements show that the potentials are not 

significantly disordered in the grown BaSi2, even around the GBs of mc-Si. The potentials 

are higher at the GBs of BaSi2 around Si GBs that are formed by grains with a Si(111) 

face and with faces that deviate slightly from Si(111). Thus, downward band bending 

occurs at these BaSi2 GBs. Minority carriers (holes) undergo a repelling force near the 

GBs, which may suppress recombination, as in the case of n-BaSi2 epitaxial films on a 

single crystal Si(111) substrate. The barrier height for hole transport across the GBs varies 

in the range of 10 to 55 meV. The potentials are also higher at the BaSi2 GBs grown 

around Si GBs composed of grains with Si(001) and Si(111) faces. The barrier height for 

hole transport ranges from 5 to 55 meV. These results indicate that BaSi2 GBs formed on 

(111)-dominant Si surfaces do not have a negative influence on the minority-carrier 

properties, and thus BaSi2 formed on underlayers, such as (111)-oriented Si or Ge and on 

(111)-oriented mc-Si, can be used as a solar cell active layer. We also discussed the 

potential variation across the GBs in impurity-doped n-type or p-type BaSi2 epitaxial 

films [94].  
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 In ref. 95, the atomic arrangements around the GBs in an n-BaSi2 epitaxial film 

on Si(111) by MBE were observed by TEM, and the most stable atomic configuration 

was determined by first-principles calculations based on DFT to provide four possible 

interface models. Each model is consistent with TEM observations and is distinguished 

by the relationship between the Si tetrahedron arrays in the two domains adjacent across 

the interface. One of the four interface models whose relationship between first-

neighboring Si tetrahedra across the interface was the same as that in the bulk was 

particularly stable, and showed no significant differences in the partial DOSs and band 

gap between the bulk and GB regions. We now know the positions of Ba and Si atoms in 

the most stable interface structure, hence, the results should be applicable to further 

studies such as the effects of impurities around GBs upon the electronic properties of 

BaSi2. 

 

7. BaSi2/Si hererojunction solar cells 

A pn homojunction diode is the most straightforward structure of a solar cell. In ref. 96, 

the spectral response of BaSi2 p+n abrupt homojunction diodes is discussed using 

experimentally obtained absorption coefficients, minority-carrier diffusion lengths, and 

minority-carrier lifetimes, where η > 25% is expected for 2 μm thick BaSi2 homojunction 
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solar cells under ideal conditions. Here, however, we choose to begin with a p-BaSi2/n-

Si heterojunction structure [65]. Fig. 22(a) shows the expected band alignment of a p-

BaSi2/n-Si junction diode when p is 2.2 × 1018 cm−3 for p-BaSi2 and n is 2.0 × 1015 cm−3 

for n-Si. Hence, the depletion region stretches into the n-Si region. The electron affinities 

of BaSi2 and Si are BaSi2q  = 3.2 eV [97] and Siq  = 4.05 eV, respectively, and their 

bandgaps are Eg,BaSi2 = 1.3 eV and Eg,Si = 1.1 eV. There is a conduction band offset ΔEC = 

4.05 − 3.2   0.9 eV and a valence band offset ΔEV = (4.05 + 1.1) − (3.2 + 1.3)   0.7 

eV at the heterointerface. The band offsets ΔEC and ΔEV in Fig. 22(a) promote the 

separation of photogenerated electrons and holes in p-BaSi2, as well as those in n-Si, 

which is how it operates as a solar cell. Therefore, we anticipate that BaSi2 will be useful 

as a hole selective contact for c-Si solar cells.  

On an n-Si(111) substrate, we formed B-doped p-BaSi2 epitaxial layers with 

various layer thicknesses 
2BaSi-pd ranging from 10 nm to 50 nm by MBE, followed by a 

34 nm thick a-Si capping layer. We set p in the p-BaSi2 sample to 2 × 1018 cm−3. Finally, 

1 mm diameter and 70 nm thick ITO electrodes were sputtered on the front surface, and 

Al electrodes were deposited on the backside of the n-Si substrate. The a-Si capping layer 

is necessary to prevent surface oxidation of the p-BaSi2 and to ensure efficient hole 

transport to the ITO [82]. The a-Si layer thickness was determined to suppress the light 
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absorption in the a-Si layer [98]. Fig. 22(b) shows a bright-field cross-sectional TEM 

image for 
2BaSi-pd  = 20 nm. Both the a-Si/BaSi2 and BaSi2/n-Si interfaces are very 

smooth and there are no B precipitations observed in the BaSi2 layer. 

Fig. 23(a) shows current–density versus voltage (J–V) curves under AM1.5 illumination 

[99]. All the samples performed as solar cells. This result clearly demonstrates that the p-

BaSi2/n-Si heterointerface does not hinder the transport of photogenerated electrons in p-

BaSi2 to the n-Si side, and photogenerated holes in n-Si migrate to the p-BaSi2 side as 

expected in Fig. 22(a). The short-circuit current density JSC reaches a maximum of 36.2 

mA/cm2, and the open-circuit voltage VOC increases with 
2BaSi-pd  and reaches a 

maximum of 0.47 V at 
2BaSi-pd  = 20 nm. Fig. 23(b) shows spectra for the internal 

quantum efficiency (IQE), external quantum efficiency (EQE), and reflectance (R) at 

2BaSipd  = 20 nm. The EQE is resolved into the contribution of BaSi2, EQE(BaSi2), and 

that of Si, EQE(Si), using absorption coefficients of BaSi2. The EQE(BaSi2) is much 

smaller than the EQE(Si), hence, we can say that the p-BaSi2 does not function as an 

absorber layer but a window layer in the present device.  

 For detailed discussions, parameters including the conversion efficiency η and 

fill factor (FF) are summarized in Fig. 24. η reaches a maximum of 9.9%, the highest 

value ever reported for semiconducting silicides [84]. JSC increases until 
2BaSi-pd  
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reaches 20 nm, and then decreases with 
2BaSi-pd . This means that the transport of 

photogenerated electrons in the p-BaSi2 to the n-Si was disturbed when 
2BaSi-pd becomes 

large. VOC almost saturates at 
2BaSi-pd  = 20 nm and above, while JSC decreases. This 

result suggests that the reverse-bias saturation current density J0 decreases with 
2BaSi-pd , 

because in an ideal case, VOC is given by: 
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In the present device, p was set to a relatively large value of 2 × 1018 cm−3. So it becomes 

difficult for the photogenerated minority carriers (electrons) in p-BaSi2 to diffuse to the 

n-Si side before recombination for large 
2BaSi-pd . This might be the reason why the JSC 

decreases as 
2BaSi-pd  exceeds 20 nm. 

 Regarding the stability of these solar cells, the η was measured for as many 

electrodes as possible in an area of 1 × 1 cm2 on the p-BaSi2(20 nm)/n-Si solar cells, 

capped with a 2 nm or 3 nm thick a-Si. p was set to approximately 2 × 1018 cm−3. Solar 

cell samples were stored with other samples in a simple desiccator with a reduced-

pressure atmosphere (~76 Torr) for various durations up to 226 days since their first 

fabrication in January of 2016. Every time we measured η of the solar cells, we let air 

into the desiccator and took the samples out. Other than that, the desiccator was frequently 

exposed to air to put in or take out other samples in a day. The η was plotted against time 
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in Fig. 25 [100], demonstrating that the η does not degrade. During such a long storage 

period, O are considered to incorporate into the BaSi2 layers. First-principles calculation 

reveal that the O atoms are supposed to be positioned at the interstitial sites called the 4c 

sites rather than substitutional sites, differently from Group 13 or 15 elements, and do not 

create localized states within the band gap [101]. This is perhaps one of the reasons why 

O, which may interact strongly with BaSi2, seems to have no detrimental effect on the 

performance of solar cells.  

 Note that we will be able to convert the present p-BaSi2/n-Si heterojunction 

structure into a BaSi2 pn homojunction diode by forming an n-BaSi2 layer on a lightly-

doped relatively thick p-BaSi2 absorber-layer grown on a Si substrate with small ρ, and 

further to a BaSi2-pn/Si-pn tandem structure. Replacing half the Ba(1) sites with isoelectric 

Sr expands the band gap of BaSi2 by 0.1 eV [102–105]. A broadening of the band gap by 

substituting Ba with Sr [106] and by substituting Si with C is theoretically expected [107]. 

It is safe to state that there is still plenty of room for improvement in η as well as in BaSi2 

device structures.  

 

8. Summary 

In this article, we review the potential application of BaSi2 as a solar cell material, from 
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the fundamental properties of BaSi2 to the latest results on BaSi2 solar cells in which η 

approaches 10%. BaSi2 has a high absorption coefficient comparable to CIGS, a long 

minority-carrier lifetime, and a band gap close to 1.4 eV. Further, BaSi2, composed of 

safe, stable, and earth-abundant elements, is compatible with crystalline silicon solar cells 

because BaSi2 can be grown epitaxially on Si(001) and Si(111) surfaces. One of the 

striking features of this material is that both its high absorption coefficient and large 

minority-carrier lifetime can be used. This arises from the energy band structure of BaSi2. 

Present commercialized solar cell materials like Si, CdTe, and CIGS do not possess these 

material properties. BaSi2 thus has the potential to be the market leader in the future. 

Towards this goal, our top priority is to achieve the solar cell operation of a BaSi2 

homojunction diode. There is no obvious barrier to it at the moment. However, we have 

only limited information on the following material properties that may affect the solar 

cell performance: (1) bulk defects such as dislocations and their influence on minority-

carrier properties and transport properties of carriers, (2) surface passivation by 

conventional hydrogenated a-Si layers in place of not-hydrogenerated ones used thus far, 

(3) minority-carrier properties of impurity-doped BaSi2, especially, impurity-doped n-

BaSi2, and (4) scattering mechanisms that limit the mobility of carriers. Development of 

low-temperature gas-phase growth technique is also desired. We therefore hope that many 
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researchers will be interested in using this material.  

 

Acknowledgements 

The author acknowledges Dr. K. O. Hara of the University of Yamanashi, Dr. T. 

Sekiguchi of the National Institute for Materials Science (NIMS), Dr. K. Watanabe of 

Osaka University, and Dr. C. T. Trinh of Helmholz Zentrum Berlin for their help, 

discussions, and encouragements to pursue this work. Special thanks are to Dr. K. Toko, 

Dr. W. Du, Dr. M. Ajmal Khan, and present and past students of the University of 

Tsukuba and Nagoya University for their experiments and fruitful discussions. HAXPES 

measurements were conducted at Synchrotron X-ray station of BL15XU, at SPring-8, 

with the help of Professor A. Kimura of Hiroshima University and Dr. S. Ueda of NIMS, 

under the program of “Nanotechnology platform” (Proposal Nos. 2014A4902, 

2015A4907, and 2015B4906) of the Ministry of Education, Culture, Sports, Science and 

Technology (MEXT), Japan. This work was financially supported in part by the Core 

Research for Evolutionary Science and Technology (CREST) of the Japan Science and 

Technology Agency (JST) and by a Grant-in-Aid for Scientific Research (A) (No. 

15H02237) from the JSPS.  

 



41 

 

  



42 

 

[1] ITRPV Seventh Edition 2016 Version 2, http://www.itrpv.net/Reports/ 

[2] NEDO News Release, http://www.nedo.go.jp/english/news/AA5en_100109.html 

[3] W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 519 (1961). 

[4] H. K. Janzon, H. Schafer, and A. Weiss, Z. Anorg. Allg. Chem. 372, 87 (1970). 

[5] J. Evers, G. Oehlinger, and A. Weiss, Angew. Chem. Int. Ed. Engl. 16, 659 (1977). 

[6] M. Imai and T. Hirano, Phys. Rev. B 58, 11922 (1998). 

[7] Y. Imai, A. Watanabe, and M. Mukaida, J. Alloy and Comp. 358, 257 (2003). 

[8] L. I. Ivanenko, V. L. Shaposhnikov, A. B. Filonov, A. V. Krivosheeva, V. E. Borisenko, 

D. B. Migas, K. Miglio, G. Behr, and J. Schumann, Thin Solid Films 461, 141 (2004).  

[9] D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, Phys. Status Solidi 

B 244, 2611 (2007). 

[10] M. Kumar, N. Umezawa, and M. Imai, Appl. Phys. Express 7, 071203 (2014). 

[11] M. Kumar, N. Umezawa, and M. Imai, J. Appl. Phys. 115, 203718 (2014). 

[12] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 

[13] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). 

[14] J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). 

[15] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). 

[16] K. Morita, Y. Inomata, and T. Suemasu, Thin Solid Films 508, 363 (2006). 

http://www.itrpv.net/Reports/


43 

 

[17] K. Toh, T. Saito, and T. Suemasu, Jpn. J. Appl. Phys. 50, 068001 (2011). 

[18] M. Baba, K. Toh, K. Toko, N. Saito, N. Yoshizawa, K. Jiptner, T. Sakiguchi, K. O. 

Hara, N. Usami, and T. Suemasu, J. Cryst. Growth 348, 75 (2012). 

[19] M. Baba, K. Watanabe, K. O. Hara, K. Toko, T. Sekiguchi, N. Usami, and T. 

Suemasu, Jpn. J. Appl. Phys. 53, 078004 (2014). 

[20] K. O. Hara, N. Usami, K. Toh, M. Baba, T. Toko, and T. Suemasu, J. Appl. Phys. 

112, 083108 (2012). 

[21] K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. 

Suemasu, Appl. Phys. Express 6, 112302 (2013). 

[22] R. Takabe, K. O. Hara, M. Baba, W. Du, N. Shimada, K. Toko, N. Usami, and T. 

Suemasu, J. Appl. Phys. 115, 193510 (2014). 

[23] M. Baba, S. Tsurekawa, K. Watanabe, W. Du, K. Toko, K. O. Hara, N. Usami, T. 

Sekiguchi, and T. Suemasu, Appl. Phys. Lett. 103, 142113 (2013). 

[24] R. A. Mackee, F. J. Walker, J. R. Conner, and R. Raj, Appl. Phys. Lett. 63, 2818 

(1993). 

[25] H. H. Weitering, Sur. Sci. 355, L271 (1996). 

[26] Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys. 43, 4155 

(2004). 



44 

 

[27] Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys. 43, L478 

(2004). 

[28] K. Toh, K. O. Hara, N. Usami, N. Saito, N. Yoshizawa, K. Toko, and T. Suemasu, J. 

Cryst. Growth 345, 16 (2012). 

[29] R. Takabe, K. Nakamura, M. Baba, W. Du, M. Ajmal Khan, K. Toko, M. Sasase, N. 

Usami, and T. Sueamsu, Jpn. J. Appl. Phys. 53, 04ER04 (2014).  

[30] T. Suemasu, M. Sasase, Y. Ichikawa, M. Kobayashi, and D. Tsukada, J. Cryst. 

Growth 310, 1250 (2008).  

[31] K. Toh, K. O. Hara, N. Usami, N. Saito, N. Yoshizawa, K. Toko, and T. Suemasu, 

Jpn. J. Appl. Phys. 51, 095501 (2012). 

[32] K. O. Hara, N. Usami, K. Toh, K. Toko, and T. Suemasu, Jpn. J. Appl. Phys. 51, 

10NB06 (2012). 

[33] M. Baba, K. Nakamura, W. Du, M. Ajmal Khan, S. Koike, K. Toko, N. Usami, N. 

Saito, N. Yoshizawa, and T. Sueamsu, Jpn. J. Appl. Phys. 51, 098003 (2012). 

[34] Y. Nakagawa, K. O. Hara, T. Suemasu, and N. Usami, Jpn. J. Appl. Phys. 54, 08KC03 

(2015). 

[35] M. Somer, Z. Allg. Chem. 626, 2478 (2000). 

[36] N. Murakoso, H. Yamaguchi, M. Iinuma, T. Suemasu, and Y. Terai, Asia-Pacific 



45 

 

Conference on Semiconducting Silicides and Related Materials, 17-P31, Fukuoka, Japan, 

July 17, 2016. 

[37] K. O. Hara, Y. Nakagawa, T. Suemasu, and N. Usami, Jpn. J. Appl. Phys. 54, 07JE02 

(2015). 

[38] Y. Nakagawa, K. O. Hara, T. Suemasu, and N. Usami, Energy Procedia 141, 23 

(2016). 

[39] K. O. Hara, J. Yamanaka, K. Arimoto, K. Nakagawa, T. Suemasu, and N. Usami, 

Thin Solid Films 595, 68 (2015). 

[40] M. Imai, Jpn. J. Appl. Phys. 50, 101801 (2011). 

[41] T. Suhara, K. O. Hara, Y. Nakagawa, T. Suemasu, and N. Usami, Spring Meeting of 

the Japan Society of Applied Physics, 14a-A25-9, Hiratsuka, Japan, March 14, 2015. 

[42] C. T. Trinh, Y. Nakagawa, K. O. Hara, R. Takabe, T. Suemasu, and N. Usami, Asia-

Pacific Conference on Semiconducting Silicides and Related Materials, 17-PM-V-4, 

Fukuoka, Japan, July 17, 2016. 

[43] Y. Nakagawa, C. T. Trinh, K. O. Hara, Y. Kurokawa, T. Suemasu, and N. Usami, 

Asia-Pacific Conference on Semiconducting Silicides and Related Materials, 17-PM-V-

5, Fukuoka, Japan, July 17, 2016.  

[44] M. M. Alkaisi and M. J. Thompson, Solar Cells 1, 91 (1979). 



46 

 

[45] T. D. Moustakas and R. Friedman, Appl. Phys. Lett. 40 , 515 (1982). 

[46] J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, Sol. Energy Mater. and 

Sol. Cells 75, 155 (2003). 

[47] Z. Yang, Z. Hao, Q. Xiea, Physics Procedia 11, 118 (2011). 

[48] T. Yoneyama, A. Okada, M. Suzuno, T. Shibutami, K. Matsumaru, N. Saito, N. 

Yoshizawa, K. Toko, and T. Suemasu, Thin Solid Films 534, 116 (2013).  

[49] N. A. A. Latiff, T. Yoneyama, T. Shibutami, K. Matsumaru, K. Toko, and T. Suemasu, 

Phys. Status Solidi C 10, 1759 (2013). 

[50] W. Du, M. Baba, K. Toko, K. O. Hara, K. Watanabe, T. Sekiguchi, N. Usami, and T. 

Suemasu, J. Appl. Phys. 115, 223701 (2014). 

[51] K. O. Hara, J. Yamanaka, K. Arimoto, K. Nakagawa, T. Suemasu, and N. Usami, 

Thin Solid Films 595, 68 (2015). 

[52] K. O. Hara, Cham Thi Trinh, K. Arimoto, J. Yamanaka, K. Nakagawa, Y. Kurokawa, 

T. Suemasu, and N. Usami, J. Appl. Phys. 120, 045103 (2016). 

[53] M. Kumar, N. Umezawa, and M. Imai, Spring Meeting of the Japan Society of 

Applied Physic, 21a-S223-2, Tokyo, Japan, March 21, 2016. 

[54] M. Kobayashi, Y. Matsumoto, Y. Ichikawa, D. Tsukada, and T. Suemasu, Appl. 

Phys. Express 1, 051403 (2008). 



47 

 

[55] Y. Imai and A. Watanabe, Intermetallics 15, 1291 (2007). 

[56] S. M. Kauzlarich, Chemistry, Structure, and Bonding of Zintl Phases and Ions, 1st 

ed. (Wiley-VCH, 1996). 

[57] M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. 

Kimura, and T. Suemasu, J. Appl. Phys. 114, 123702 (2013). 

[58] K. O. Hara, N. Usami, Y. Hoshi, Y. Shiraki, M. Suzuno, K. Toko, and T. Suemasu, 

Jpn. J. Appl. Phys. 50, 121202 (2011). 

[59] K. O. Hara, Y. Hoshi, N. Usami, Y. Shiraki, K. Nakamura, K. Toko, and T. Suemasu, 

Thin Solid Films 534, 470 (2013). 

[60] K. O. Hara, Y. Hoshi, N. Usami, Y. Shiraki, K. Nakamura, K. Toko, T. Suemasu, 

Thin Solid Films 557, 90 (2014). 

[61] K. O. Hara, N. Usami, M. Baba, K. Toko, T. Suemasu, Thin Solid Films 567, 105 

(2014). 

[62] M. Ajmal Khan, T. Saito, K. Nakamura, M. Baba, W. Du, K. Toh, K. Toko, and T. 

Suemasu, Thin Solid Films 522 , 95 (2012). 

[63] M. Ajmal Khan, K. O. Hara, W. Du, M. Baba, K. Nakamura, M. Suzuno, K. Toko, 

N. Usami, and T. Suemasu, Appl. Phys. Lett. 102, 112107 (2013). 

[64] M. Ajmal Khan, K. Nakamura, W. Du, K. Toko, N. Usami, and T. Suemasu, Appl. 



48 

 

Phys. Lett. 104, 252104 (2014). 

[65] D. Tsukahara, S. Yachi, H. Takeuchi, R. Takabe, W. Du, M. Baba, Y. Li, K. Toko, N. 

Usami, and T. Suemasu, Appl. Phys. Lett. 108, 152101 (2016). 

[66] M. Takeishi, Y. Matsumoto, R. Sasaki, T. Saito, and T. Suemasu, Physics Procedia 

11, 27 (2011). 

[67] R. Takabe, M. Baba, K. Nakamura, W. Du, M. A. Khan, S. Koike, K. Toko, K. O. 

Hara, N. Usami, and T. Suemasu, Phys. Status Solidi C 10, 1753 (2013). 

[68] K. Nakamura, M. Baba, M. Ajmal Khan, W. Du, M. Sasase, K. O. Hara, N. Usami, 

K. Toko, and T. Suemasu, J. Appl. Phys. 113, 053511 (2013). 

[69] A. D. Le Claire, Br. J. Appl. Phys. 14, 351 (1963). 

[70] N. Zhang, K. Nakamura, M. Baba, K. Toko, and T. Suemasu, Jpn. J. Appl. Phys. 53, 

04ER02 (2014). 

[71] R. Vismara, O. Isabella, and M. Zeman, Proc. of SPIE 9898, 98980J (2016).  

[72] K. O. Hara, N. Usami, K. Toh, M. Baba, K. Toko, and T. Suemasu, J. Appl. Phys. 

112, 083108 (2012). 

[73] K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, 

Phys. Stat. Solidi C 10, 1677 (2013). 

[74] K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, 



49 

 

Appl. Phys. Express 6, 112302 (2013). 

[75] T. Daud, K. M. Koliwad, and F. G. Allen, Appl. Phys. Lett. 33, 1009 (1978). 

[76] K. Watanabe, T. Nokuo, J. Chen, and T. Sekiguchi, Microscopy 63, 161 (2014). 

[77] R. Takabe, K. O. Hara, M. Baba, W. Du, N. Shimada, K. Toko, N. Usami, and T. 

Suemasu, J. Appl. Phys. 115, 193510 (2014). 

[78] S. Ueda, Y. Katsuya, M. Tanaka, H. Yoshikawa, Y. Yamashita, S. Ishimaru, Y. 

Matsushita, and K. Kobayashi, AIP Conf. Proc. 1234, 403 (2010). 

[79] S. Tajima, K. Kataoka, N. Takahashi, Y. Kimoto, T. Fukano, M. Hasegawa, and H. 

Hazama, Appl. Phys. Lett. 103, 243906 (2013). 

[80] N. Ikeno, Y. Yamashita, H. Oji, S. Miki, K. Arafune, H. Yoshida, S. Satoh, I. 

Hirosawa, T. Chikyow, and A. Ogura, Jpn. J. Appl. Phys. 54, 08KD19 (2015). 

[81] C. E. ViolBarbosa, C. Shekhar, B. Yan, S. Ouardi, E. Ikenaga, G. H. Fecher, and C. 

Felser, Phys. Rev. B 88, 195128 (2013). 

[82] R. Takabe, H. Takeuchi, W. Du, K. Ito, K. Toko, S. Ueda, A. Kimura, and T. Suemasu, 

J. Appl. Phys. 119, 165304 (2016). 

[83] R. Takabe, W. Du, K. Ito, H. Takeuchi, K. Toko, S. Ueda, A. Kimura, and T. Suemasu, 

J. Appl. Phys. 119, 025306 (2016). 

[84] S. Yachi, R. Takabe, H. Takeuchi, K. Toko, and T. Suemasu, Appl. Phys. Lett. 109, 



50 

 

072103 (2016).  

[85] Z. Zhang, X. Tang, O. Kiowski, M. Hetterich, U. Lemmer, M. Powalla, and H. 

Hölscher, Appl. Phys. Lett., 100, 203903 (2012). 

[86] I. Visoly-Fisher, S. R. Cohen, and D. Cahen, Appl. Phys. Lett. 82, 556 (2003). 

[87] S. Tsurekawa, K. Kido, and T. Watanabe, Phil. Mag. Lett. 85, 41 (2005). 

[88] S. Honda, T. Mates, B. Rezek, A. Fejfar, and J. Kočka, J. Non. Cryst. Solids 354, 

2310 (2008). 

[89] A. Broniatowski, Philos. Mag. B 66, 767 (1992). 

[90] R. Rizk and G. Nouet, Interface Sci. 4, 303 (1997). 

[91] J. Chen, T. Sekiguchi, R. Xie, P. Ahmet, T. Chikyo, D. Yang, S. Ito, and F. Yin, 

Scripta Mater., 52, 1211 (2005). 

[92] S. Tsurekawa, H. Takahashi, Y. Nishibe, and T. Watanabe, Phil. Mag. 93, 1413 

(2013). 

[93] M. Baba, K. O. Hara, D. Tsukahara, K. Toko, N. Usami, T. Sekiguchi, and T. 

Suemasu, J. Appl. Phys. 116 , 235301 (2014). 

[94] D. Tsukahara, M. Baba, S. Honda, Y. Imai, K. O. Hara, N. Usami, K. Toko, J. H. 

Werner, and T. Sueamsu, J. Appl. Phys. 116 , 123709 (2014). 

[95] M. Baba, M. Kohyama, and T. Suemasu, J. Appl. Phys. 120, 085311 (2016). 



51 

 

[96] T. Suemasu, Jpn. J. Appl. Phys. 54, 07JA01 (2015). 

[97] T. Suemasu, K. Morita, M. Kobayashi, M. Saida, and M. Sasaki, Jpn. J. Appl. Phys. 

45, L519 (2006). 

[98] R. Takabe, S. Yachi, W. Du, D. Tsukahara, H. Takeuchi, K. Toko, and T. Suemasu, 

AIP Advances 6, 085107 (2016). 

[99] S. Yachi, R. Takabe, K. Toko, and T. Sueamasu, Asia-Pacific Conference on 

Semiconducting Silicides and Related Materials, 17-P8, Fukuoka, Japan, July 17, 2016.  

[100] R. Takabe, S. Yachi, K. Toko, and T. Suemasu, Fall Meeting of the Japan Society 

of Applied Physics, 15p-B3-10, Niigata, Japan, September 15, 2016. 

[101] Y. Imai, M. Sohma, and T. Suemasu, Jpn. J. Appl. Phys. 54, 07JE03 (2015). 

[102] Y. Inomata, T. Suemasu, T. Izawa, and F. Hasegawa, Jpn. J. Appl. Phys. 43, L771 

(2004). 

[103] K. Morita, M. Kobayashi, and T. Suemasu, Jpn. J. Appl. Phys. 45, L390 (2006). 

[104] T. Suemasu, K. Morita, M. Kobayashi, and Y. Ichikawa, Phys. Procedia 23, 53 

(2012).  

[105] M. Imai, A. Sato, T. Aoyagi, T. Kimura, and Y. Mori, Intermetallics 18, 548 (2010). 

[106] Y. Imai and A. Watanabe, Thin Solid Films 515, 8219 (2007). 

[107] Y. Imai and A. Watanabe, Intermetallics 18, 1432 (2010). 



52 

 

Table 1. Calculated electronic energies for impurity-doped BaSi2.  

 

  Compound                                       Total energy (eV) 

Ba8Si16 + B  Ba7B
(1)Si16  + Ba                       132.758 (130.8461.912) 

Ba8Si16 + B  Ba8B
(3)Si15  + Si                        138.209 (132.7925.417) 

Ba8Si16 + B  Ba8Si16B                                 138.999 

Ba8Si16 + Al  Ba7Al(1)Si16  + Ba                     130.609 (128.6971.912) 

Ba8Si16 + Al  Ba8Al(3)Si15  + Si                      136.494 (131.0775.417) 

Ba8Si16 + Al  Ba8Si16Al                             135.698 

Ba8Si16 + In  Ba7In
(1)Si16  + Ba                  130.420 (128.5081.912) 

Ba8Si16 + In  Ba8In
(3)Si15  + Si           135.586 (130.1695.417) 

Ba8Si16 + In  Ba8Si16In                    133.857 

Ba8Si16 + Ga  Ba7Ga(1)Si16  + Ba               130.457 (128.5451.912) 

Ba8Si16 + Ga  Ba8Ga(3)Si15  + Si           136.199 (130.7825.417) 

Ba8Si16 + Ga  Ba8Si16Ga                            135.533 

Ba8Si16 + N  Ba7N
(1)Si16  + Ba                       134.100 (132.1881.912) 

Ba8Si16 + N  Ba8N
(3)Si15  + Si           141.279 (135.8625.417) 

Ba8Si16 + N  Ba8Si16N                               141.932 
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Ba8Si16 + P  Ba7P
(1)Si16  + Ba                      132.603 (130.6911.912) 

Ba8Si16 + P  Ba8P
(3)Si15  + Si           139.472 (134.0505.417) 

Ba8Si16 + P  Ba8Si16P                    135.698 

Ba8Si16 + As  Ba7As(1)Si16  + Ba                     132.025 (130.1131.912) 

Ba8Si16 + As  Ba8As(3)Si15  + Si           138.577 (133.1605.417) 

Ba8Si16 + As  Ba8Si16As                             137.433 

Ba8Si16 + Sb  Ba7Sb(1)Si16   + Ba                     131.301 (129.3891.912) 

Ba8Si16 + Sb  Ba8Sb(3)Si15   + Si                     137.690 (132.2735.417) 

Ba8Si16 + Sb  Ba8Si16Sb                                135.861 

Ba8Si16 + O  Ba7O
(1)Si16   + Ba                    134.378 (132.4661.912) 

Ba8Si16 + O  Ba8O
(3)Si15   + Si                    140.857 (135.4405.417) 

Ba8Si16 + O Ba8Si16O                                 141.494 
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Table 2. Experimental results of impurity-doped BaSi2. The carrier concentrations in this 

table are the highest values ever reported.  

 

 

                        Group 13                 Group 15 

             B (p ~ 1020 cm-3)[58,63-65]          N (under investigation) 

 

             Al (p ~ 4×1017 cm-3) [66]           As (n ~ 2×1017cm-3) [61] 

 

             Ga (n-type) [62]                  P (n ~ 1018 cm-3) [59,60,67] 

 

             In (p ~ 5×1017 cm-3) [54]            Sb (n ~ 1020 cm-3) [54] 
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Fig. 1 Crystal structure of BaSi2. There are two crystallographically-inequivalent sites for 

Ba (Ba(1) and Ba(2)) and three inequivalent sites for Si (Si(3), Si(4), and Si(5)) in the BaSi2 

unit cell.  

 

Fig. 2 (a) Partial DOS and (b) band structure of BaSi2. 

 

Fig. 3 Schematic of a two-step growth technique using RDE and MBE for BaSi2.  

 

Fig. 4 (a) RHEED pattern, (b) θ-2θ XRD pattern, (b) pole-figure XRD pattern using 

asymmetric (301) and (203) diffractions, (d) EBSD crystal orientation map, and (e) 

schematic of epitaxial variants for a-axis-oriented BaSi2 epitaxial film on Si(111)[31]. 

Panels (a’)–(e’) are equivalent to the above panels, but for an a-axis-oriented BaSi2 

epitaxial film on Si(001). 

 

Fig. 5 Possible chemical reactions during the deposition process of BaSi2 on Si by 

vacuum evaporation of BaSi2 granules. 
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Fig. 6 Raman spectra for films on Si(111) deposited at various temperatures by vacuum 

evaporation of BaSi2 granules [34]. 

 

Fig. 7 θ-2θ XRD patterns for BaSi2 films grown on SiO2 at 500, 550, and 600 °C by RF 

sputtering [49]. 

 

Fig. 8 Temperature dependence of electron mobility in intrinsically doped n-BaSi2 

grown by MBE. The n is 5 × 1015 cm-3 at 300 K. Broken lines are a guide to eyes.  

 

Fig. 9 Total DOSs of (a) Ba8Si15B
(3), (b) Ba8Si16B, (c) Ba8Si15Al(3), (d) Ba8Si15In

(3), (e) 

Ba8Si15Ga(3), (f) Ba8Si16O, (g) Ba8Si15N
(3), (h) Ba8Si15P

(3), (i) Ba8Si15As(3), and (j) 

Ba8Si15Sb(3) [94]. 

  

Fig. 10 (a) Measured and simulated SIMS profiles of B for a BaSi2 sample capped with a 

180 nm thick B layer that was annealed at 800 °C for 1 h [68]. (b) Arrhenius plots for the 

lattice diffusion coefficient lD  and the product of the segregation factor and DB 

diffusion coefficient sDGB of Sb, As, B and other atoms [70].  
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Fig. 11 (a) Absorption spectrum and (b) (αdhν)1/2 versus hν plot for BaSi2 epitaxial 

layers on transparent Si(111) [17]. 

 

Fig. 12 Wavelength dependence of refractive index indexn and extinction coefficient  of 

BaSi2 measured on a 150 nm thick BaSi2 epitaxial layer on Si(111) by MBE. Reprinted 

with permission from [71] R. Vismara, O. Isabella, and M. Zeman, “Organometallic 

Halide Perovskite / Barium Di-Silicide Thin-Film Double-Junction Solar Cells,” Proc. of 

SPIE 9898, 98980J (2016). 

 

Fig. 13 (a) Photoconductivity decay curves of a BaSi2 film with laser intensities of (A) 

1.3 × 105, (B) 1.3 × 104, (C) 1.1 × 103, and (D) 1.1 × 102 [72]. (b) Dependence of the 

inverse of the carrier lifetime on the inverse of BaSi2 layer thickness [74].  

 

Fig. 14 Panel (a) shows SE and panel (a’) EBIC images around the Al/n-BaSi2 Schottky 

junction on Si(111). Panels (b) and (b’) show the same measurements around the Pt/n-

BaSi2 Schottky junction on Si(001). (c) Experimental and simulated (solid lines) EBIC 

line-scan profiles along the dotted lines from points A to A’ in panel (a’) and B to B’ in 

panel (b’) [19]. Plan-view TEM images of BaSi2 on (d) Si(111) and (d’) Si(001).  
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Fig. 15 Dependence of minority-carrier lifetime and minority-carrier diffusion length on 

p. 

 

Fig. 16 TEM cross sections of (a) a-Si/BaSi2 and (b) native-oxide/BaSi2 [82].  

 

Fig. 17 Ba 3d5/2 core-level HAXPES spectra for (a) a-Si(5 nm)/BaSi2(730 nm), (b) 

normalized spectra of (a), and (c) oxide(ca. 8 nm)/BaSi2(600 nm) taken at TOA = 15°, 

30°, and 90°. The spectrum measured at TOA = 15º in (b) and the spectra measured at 

TOA = 30° and 90° in (c) can be fitted by the sum of two Gaussian curves (dashed lines). 

Si 2s core-level HAXPES spectra for (a’) a-Si(5 nm)/BaSi2(730 nm), (b’) normalized 

spectra of (a’), and (c’) oxide(ca. 8 nm)/BaSi2(600 nm) taken at TOA = 15° , 30° , and 

90° . The spectra measured at TOA = 30° and 90° in panel (c’) can be reconstructed by 

the sum of two Gaussian curves (dashed lines) [82]. 

 

Fig. 18 Valence-band alignment between native-oxide, BaSi2, and a-Si.  

 

Fig. 19 Photoresponse and reflectance spectra of samples (a) without and (b) with a 3 nm 
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thick a-Si capping layer [84]. The bias voltages were applied so that the photogenerated 

minority carriers (holes) in n-BaSi2 were transferred to the surface electrode (ITO) across 

the a-Si/n-BaSi2 or native-oxide/n-BaSi2 interface [84]. 

 

Fig. 20 AFM topographic and (b) KFM electrostatic potential images with their cross 

sections along the white lines for undoped n-BaSi2 on Si(111). The observed area is 5 × 

5 μm2. (c) Band lineup around GBs for BaSi2, and (d) histogram of barrier height at GBs 

[23].  

 

Fig. 21 (a) AFM topographic and (b) KFM electrostatic potential images with their cross 

sections along the white lines AA’, parallel to Si[110], and BB’, parallel to Si[1-10], for 

undoped n-BaSi2 on Si(001). (c) Band lineup around GBs for BaSi2, and (d) histograms 

of barrier height at GBs along Si[110] and along Si[1-10] [23]. 

 

Fig. 22 (a) Expected band alignment at the p-BaSi2/n-Si heterojunction. Owing to the 

difference in the carrier concentration between the p-BaSi2 (p = 2.2 × 1018cm−3) and n-Si 

(n = 2 × 1015cm−3), the depletion region stretches into the n-Si region. (b) TEM cross 

section of the a-Si(4 nm)/p-BaSi2(20 nm)/n-Si heterojunction [65].  
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Fig. 23 (a) J-V curves under AM1.5 illumination. p-BaSi2 layer thickness was varied 

as10, 15, 20, 30, and 50 nm [99]. (b) EQE, IQE, and R spectra of the p-BaSi2(20 nm)/n-

Si heterojunction solar cell. The contributions of BaSi2 and Si are also denoted by 

EQE(BaSi2) and EQE(Si), respectively. 

 

Fig. 24 Dependence of solar cell parameters such as η, VOC, JSC, and FF on p-BaSi2 layer 

thickness. p was set to approximately 2 × 1018 cm−3 [99]. 

 

Fig. 25 Time evolution of η of p-BaSi2(20 nm)/n-Si solar cells, capped with a 2 nm or 3 

nm thick a-Si [100]. p was set to approximately 2 × 1018 cm−3. 
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