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Abstract

To overcome the worldwide shortage of deceased-donor organs, the medical com-
munity has developed various modalities of transplantation. For dual-organ transplan-
tation, the shortage is serious as the modality requires two donors for a single patient.
Lung transplantation, a representative example of dual-organ transplantation, is the
only treatment for patients in the final stage of a chronic lung disease. Prior to April
2015, there were only two types of transplantation available: deceased-donor trans-
plants and living-donor transplants. Ergin, Sönmez, and Ünver (2017) have proposed
the idea of exchanging donors exclusively for living-donor lung transplantation. The
new technology, called hybrid transplantation, is now available as evidenced as Dr. Oto
and his team at Okayama University Hospital successfully transplanted a deceased lung
and a lobe of live lung to one patient at the same time. As the modality itself reveals
the importance of simultaneously operating the deceased- and living-donor markets,
we study the market with both deceased- and living-donors. In particular, we point
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out that the hybrid transplantation opens up a new type of donor exchange. We in-
vestigate a mechanism of organizing transplants in terms of efficiency, fairness, and
incentive-compatibility.
Journal of Economic Literature Classification Numbers : C78, D47, D71.

Keywords: Market design; Multi-unit demand matching problem; Hybrid lung trans-
plantation; Japanese mechanism; Priority mechanism.

1 Introduction

To overcome the worldwide shortage of deceased-donor organs, the medical community has
developed various modalities of transplantation. For dual-organ transplantation including
lung transplantation, dual-graft liver transplantation, and simultaneous liver-kidney trans-
plantation, the shortage is serious as the modality requires two donors for a single patient.
This paper studies how to operate these markets when both deceased- and living-donors are
available.

Lung transplantation, a representative example of dual-organ transplantation, is the
only treatment for patients with end-stage lung diseases. As of October 31, 2020, 430
patients were registered on the waiting list for deceased-donor lung transplants in Japan,
while 79 patients received transplants in 2019.1 Deceased-donor transplantation uses one
or two lungs of a deceased donor to replace the diseased lungs of a patient.2 Because
the number of deceased donors is historically low for various reasons, the Japanese medical
community has developed live donor lung transplantation which needs two living donors each
of whom donates one lobe out of five to their intended recipient. These transplants have been
conducted on approximately 10 to 20 patients a year in recent years.3 For the liver case, it is
reported that about 400 dual-graft transplants had been conducted till 2017 in South Korea
(Song et al., 2017). Although they are a substantial source for transplantation, living donors
are conventionally constrained to being relatives of patients.4 Moreover, they are medically

1The cited data are available on the Japan Organ Transplant Network homepage. In particular, the
former is on https://www.jotnw.or.jp/data/, while the latter is on https://www.jotnw.or.jp/data/

offer.php?year=2019. These were retrieved on November 18, 2020.
2We refer to the donor by the male personal pronoun and to the patient by the female personal pronoun.
3See the Factbook by the Japan Society for Transplantation, http://www.asas.or.jp/jst/pdf/

factbook/factbook2019.pdf, accessed on September 15, 2020.
4“Conventionally” means that this practice is not illegal, but it is followed by the medical community as

the ethical guideline published in the Japan Society for Transplantation. A transplant from non-relatives
of a patient needs special permission in hospitals conducting the transplant. The guideline is available on
http://www.asas.or.jp/jst/about/about12.html, accessed on March 5, 2018.
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constrained to being compatible with patients of blood type, tissue type, sizes, etc. These
constraints are difficult to meet as a patient needs two compatible relatives. To overcome
such difficulties, Ergin, Sönmez, and Ünver (2017) recently proposed a novel transplantation
modality of donor exchange — a between-patients exchange of the incompatible donors —
by applying the same idea for kidney exchange (Rapaport, 1986; Roth, Sönmez, and Ünver,
2004, 2005). Due to the multi-unit demand, the application is theoretically non-trivial and
is practically important as Ergin, Sönmez, and Ünver (2017) show the potential increase of
lung transplants from roughly 80 to 260%, depending on the size of the exchange, using the
Japanese data.5

Another innovative transplant, called hybrid transplantation, has been successfully con-
ducted for liver by Dr. Lee and his colleagues in 2000 (Lee et al., 2001) and for the lung by
Dr. Oto and his colleagues in 2015.6 The hybrid transplantation uses one graft of a living
donor and one graft of a deceased donor,7 which is one of a key modality for patients who
could not receive transplants through conventinal modalities.

We incorporate the possibility of hybrid transplantation for donor exchange in lung
transplants, extending the Ergin, Sönmez, and Ünver (2017) model which exclusively takes
up living-donor transplantation for donor exchange. This extension not only practically in-
creases the number of saved patients but it also opens up a new type of theoretical challenge.
Let us discuss its practical importance and then the theoretical challenge.

A patient with only one compatible donor has an obvious benefit from hybrid transplan-
tation. There might also be a situation in which two patients, each with two incompatible
donors, cannot exchange donors for living-donor transplants but can do so under hybrid
transplantation. Hybrid transplantation can enhance a living-donor exchange in the sense
that patients who could not participate in the swapping of donors can have a living-donor
transplant (see Figure 1). Moreover, if we consider only two-way exchange under a living-
donor transplantation, O-blood type patients do not benefit from donor exchange (Lemma
1 in Ergin, Sönmez, and Ünver, 2017). However, with the introduction of hybrid transplan-
tation, such patients can receive transplants (see Figure 1).

Taking into account hybrid transplantation poses several new theoretical challenges. The
model we introduce has one deceased donor and finitely many patients who bring a number of

5The numbers are for 50 patients. See Table II in Ergin, Sönmez, and Ünver (2017).
6See the official news at Okayama University, https://www.okayama-u.ac.jp/eng/news/index_

id4469.html. The web was accessed on January 6, 2019.
7One of the biggest difference between lung and liver transplantation is that the main modality for lung

is the dual-graft transplant while that of liver is the single-graft one.
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Figure 1: Benefits from hybrid transplantation.

Note: In the figure, one lung from the deceased donor, dc, is available, patient 1 of blood type A has a
donor of blood type O, and patient 2 of blood type O has two donors with blood types A and O. The
allocation indicated by the arrows shows that with donor exchange, patient 1 receives the hybrid transplant,
while patient 2 the living donor transplant. Note that without the hybrid transplantation, patient 2 has no
transplant opportunity.

their relatives as (compatible or incompatible) living donors.8 A patient may have multi-unit
demand as she is assigned two living donors for living-donor transplantation, or is assigned
one lung from a deceased donor and one graft from a living donor for hybrid transplantation,
unlike the standard matching model with unit demand. Organs are indivisible goods, a
deceased organ is taken to be a social endowment (common ownership), and living donors
are those owned by patients (private ownership). Thus, a patient, who forms preferences
over the transplantation types, can simultaneously participate in the two “dual” markets
for deceased donors and living donors.9 Thus, a hybrid transplantation treatment naturally
leads to the model with mixed ownership. Our model is the first real-life application of a
matching problem with multi-unit demand and mixed ownership.10 A desirable mechanism
in such a model has not been discussed.

We search for a matching mechanism — a procedure of assigning donors to patients for
transplants based on their medical types and preferences — which should have the desirable
properties of individual rationality, Pareto efficiency, fairness, and the incentive compatibil-
ity of strategy-proofness. We focus on individually rational allocations in which each patient
receives an assignment at least as good as the no-transplant. The Pareto efficiency is the
standard one, requiring that no one could be improved without hurting others. We propose

8The assumption of one deceased donor reflects the situation of countries with relatively few deceased
donors. Such an example is Japan which has at most 97 deceased donors a year from 1997 to 2019. Since the
arrival date of a deceased donor is not controllable, the assumption is appropriate if we operate a mechanism
every day or every time when the pool of patients and donors is updated.

9We use the term “dual-organ markets” for the following two meanings. First, it expresses the multi-unit
demand used by Ergin, Sönmez, and Ünver (2017). Second, patients simultaneously participate in the two
markets for deceased donors and living donors.

10An exception is Roth, Sönmez, and Ünver (2004) for mixed ownership. In their kidney exchange model,
they have living donors and the waiting option of putting patients on higher priority in the waiting list of
patients. The waiting option implicitly expresses the treatment of deceased donors. On the other hand, we
explicitly model the situation in which a patient can have access to and use resources in both the markets
for living donors and those for deceased donors.
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a notion of ⪰-fairness, based on a priority ordering ⪰ over patients, which represents the
priority to receive the organ from the deceased donor. A ⪰-fair allocation is the one without
justified envy, adjusted to our environment from the school choice problem (Balinski and
Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003). Roughly speaking, justified envy means
that some patient can improve with the deceased donor’s organ assigned to a lower-priority
patient. Finally, the strategy-proofness we use is also the standard one where truth-telling
is a weakly dominant strategy of each patient in the induced preference revelation game.

We examine the current Japanese mechanism that is only for assigning deceased lungs.
We show in Proposition 3 that it is neither strategy-proof nor ⪰-fair, though it is indi-
vidually rational and Pareto efficient. Instead, we adapt a priority mechanism considered
in the literature, in particular Roth, Sönmez, and Ünver (2005)’s mechanism for a kidney
exchange. In the priority mechanism, the highest-priority patient selects all of her favorite
individually rational allocations, the second-highest patient selects all of her favorites among
those selected by the highest-priority patient, and so on. Then, we show in Theorem 1 that
in regimes without donor exchange, including the current Japanese one, the priority mech-
anism recovers strategy-proofness and ⪰-fairness, still keeping individual rationality and
Pareto efficiency. However, once we allow for donor exchange, the strategy-proofness will be
violated (Proposition 4) because a lower-priority patient can, by misreporting, narrow down
the higher-priority patient’s allocations by hiding her own donors and then obtain more
preferable deceased transplants. It turns out that such a negative result is from a general
impossibility result (Theorem 2) under any regime with donor exchange: no mechanism
is individually rational, Pareto efficient, ⪰-fair, and strategy-proof. Note that the priority
mechanism satisfies all of the properties except for strategy-proofness. We observe that
misreporting is risky in the priority mechanism in that if the medical types were different,
a misreporting patient would get no-transplant instead of some transplant. With this ob-
servation, we introduce uncertainty over the medical type of the deceased donor as well as
other patients’ medical types and preferences. Then, the priority mechanism is shown to be
robust against manipulation, that is, the truth-telling profile is a Bayesian Nash equilibrium
(Theorem 3).

We introduce the dual-organ markets in Section 2. The model covers dual-donor organ
exchange (Ergin, Sönmez, and Ünver, 2017) for dual-graft liver transplantation, bilateral
living-donor lung transplantation, and simultaneous liver-kidney transplantation, with a
new structure of hybrid transplantation when both deceased and living donors coexist.
Our description in the paper is for lung for simplicity, but the model is applicable to any
other organ by selectively ignoring some parts of the model. In Section 3, we provide and
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investigate several properties of mechanisms. Section 4 discusses our main results regarding
the current Japanese mechanism and the priority mechanism. Finally, Section 5 concludes.
Omitted proofs are given in Appendix.

1.1 Related literature

In the matching problem with unit demand, a model with social endowments is called a
house allocation problem (Hylland and Zeckhauser, 1979); the one with private ownership
is called a housing market (Shapley and Scarf, 1974); the one with mixed ownership is a
house allocation problem with existing tenants (Abdulkadiroğlu and Sönmez, 1999) which
Roth, Sönmez, and Ünver (2004) apply to the donor exchange for kidney transplantation.
In dichotomous preferences, Roth, Sönmez, and Ünver (2005) further investigate a priority
mechanism under private ownership in which higher-priority patients narrow down their
favorite allocations. For the liver market, Ergin, Sönmez, and Ünver (2018) consider the
unit-demand of a patient with the possibility that a donor can choose one of her left and
right lobes. Thus, in this regard, their model is different from the kidney exchange model
as well as ours.

For multi-unit demand, a matching problem with social endowment is studied by, for
example, Klaus and Miyagawa (2001), Pápai (2001) and Budish and Cantillon (2012), while
the one with private endowment is studied by Pápai (2007). Its special case where objects
are exogenously separated by types is a multiple-type market (e.g., Moulin 1995; Konishi,
Quint, and Wako 2001; Anno and Kurino 2016).

The most related paper is Ergin, Sönmez, and Ünver (2017) which is modeled as a
matching problem with multi-unit demand and private endowment. Their model is a special
case of our model when a deceased donor is not compatible with any patients. In this case,
they focus on maximal matching instead of a mechanism. Our priority mechanism can
achieve their maximal matching for a two-way donor exchange, too.

2 Model: Dual-Organ Markets

2.1 Basics

We describe the model for dual-organ markets. Although our description of the model is
best fit for a more complex lung market with multi-unit demand, markets for the kidney
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and liver with single-unit demand can be easily adjusted with a trivial modification.11

There is one deceased donor who donates (one or two grafts of) her organs and finitely
many patients each of whom accompanies living donors. All of the patients and donors
have (medical) types for transplantation which determines which donor can donate to which
patient. All patients have a priority for the organ(s) from a deceased donor which is typically
determined by their waiting time. Formally, a model is a list (N, {DL

i }i∈N , DC , (T,�), θ,⪰)

which satisfies the following conditions:

1. N := {1, . . . , n} is a finite set of patients. We suppose that with enough medical
knowledge each patient has the authority to decide for transplantation.12 We assume
that N contains at least two patients.

2. For each i ∈ N , DL
i is the finite set of patient i’s living donors. With this condition,

patients may have various number of living donors.13 We assume that DL
i ∩DL

j = ∅
for all i, j ∈ N with i ̸= j. That is, no living donor is shared by two patients. Since
the main focus of this paper involves living-donor exchange, we assume that at least
two patients have multiple living donors. Let DL := ∪i∈ND

L
i be the set of all living

donors in the market.

3. DC := {dc} where dc is the deceased (cadaveric) donor.14 We assume that the deceased
donor is not one of the donors registered as a living donor of a patient, i.e., DC∩DL =

∅. We denote D := DL ∪DC .

4. (T,�) is the medical type space defined as the product space of given K kinds of
component medical type spaces {(Tk,�k)}Kk=1. For each k ∈ {1, . . . , K}, Tk is a
finite set of k-th component types equipped with a reflexive binary relation ⊵k where
tk ⊵k t′k means that tk is medically compatible with t′k. For example, a donor with
blood type O can donate to a patient with blood type A, not vice versa. This medical

11Several exceptional cases with dual-graft liver transplants are reported. For example, see Lee et al.
(2001) for hybrid transplant and heterodoxical dual-graft living donor transplant, and Soejima et al. (2008)
for orthodoxical dual-graft living donor transplant. Here, however, we understand the liver market as the
market with single-unit demand, since it is the main modality in that market.

12This is because a patient can be considered to represent a team with her doctor. She does not necessarily
know nor understand her own health status for transplantation, but she makes decision about whether to
take a transplant. On the other hand, a medical doctor knows her health status, but cannot force her to
agree to a transplant.

13Note that this setting generalizes the assumption of Ergin, Sönmez, and Ünver (2017) in which each
patient has exactly two living donors.

14See Footnote 8 for the justification of this assumption of one deceased donor.
We mainly use the adjective “deceased” instead of “cadaveric” for the status of the donor. However, we

use the notation dc to denote the deceased donor to avoid the puzzling notation dd.
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compatibility is written as O ⊵k A and A ̸⊵k O. For each {t, t′} ⊆ T =
∏K

k=1 Tk, a
donor of type t is medically compatible with a patient of type t′ if and only if for each
k ∈ {1, . . . , K}, tk ⊵k t

′
k. This is denoted as t ⊵ t′.

In case a component medical type space is defined by blood types, written as (TB,�B),

TB := {O,A,B,AB}, and

�B := {(O,A), (O,B), (O,AB), (A,AB), (B,AB)} ∪ {(X,X) | X ∈ B}.

We call (TB,�B) the ABO type space. We assume for exposition that the collection
of component type spaces {(Tk,�k)}Kk=1 contains the ABO type space.

5. θ = (θdc , θ1, . . . , θn) represents the medical status of all agents. For brevity but slight
confusion, we call it a type profile.

• θdc := (θdcq, θdcT ) ∈ {1, 2} × T is the medical status, or type, of the deceased
donor where the deceased donor can supply θdcq units of grafts and is of medical
type θdcT .15 Let Θdc := {1, 2} × T denote the set of types of the deceased donor.

• For each i ∈ N , θi = (θi(i), (θi(d))d∈DL
i
) ∈ T {i}∪DL

i is the medical status, or
type, of patient i which indicates her own medical type θi(i) ∈ T and her living
donors’ medical types (θi(d))d∈DL

i
∈ TDL

i . We assume that the set of living
donors of patient i contains at most one donor whose type is compatible with
patient i. That is, for all d, d′ ∈ DL

i , θi(d) � θi(i) and θi(d
′) � θi(i) imply d = d′.

This is because a patient would conduct a living-donor transplant with her own
compatible donors if she had at least two compatible donors.16 In other words,
our model captures the market with patients who cannot have a transplant with
their own donors. Note that this simplification is also employed in Ergin, Sönmez,
and Ünver (2017).

15A unit of donated organ, called a “graft,” is different according to the kind or source of the organ under
consideration. As for the lung, the human body is equipped with a left and right lung, where each of them is
composed of smaller parts called “lobe.” In practice, a deceased donor donates both the left and right lung,
except for the infected side if one exists, where each of them can be transplanted to different patients, while
a living donor cannot donate more than a lobe of her lungs for health reasons. Following the convention,
by a unit of graft donated from the deceased donor, we mean a lung (left lung or right lung), while by a unit
of graft donated from a living donor, we mean a lobe of lung. As for the liver, the human body is equipped
with a liver consisting of a left and right lobe. In practice, a deceased donor donates her whole liver to
one recipient in Japan, while a living donor cannot donate more than a lobe of her liver for health reasons.
Following the convention, by a unit of graft donated from the deceased donor, we mean a whole liver, while
a unit of graft donated from a living donor, we mean a lobe of liver. As for the kidney, the human body is
equipped with two kidneys, and its unit is understood in an obvious way.

16The modality of transplantation will be introduced in the next subsection.
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• Let Θi be the set of types of patient i. Let Θ := Θdc × Θ1 × . . . × Θn be the
set of type profiles. For each i ∈ N , let Θ−i := Θdc ×

∏
j ̸=iΘj. For notational

simplicity, given θ ∈ Θ, let θ(i) denote θi(i) for each i ∈ N , and θ(d) denote θi(d)

for each i ∈ N and each d ∈ DL
i .

6. The symbol ⪰ represents a priority order for patients. Mathematically, it is a complete,
transitive and anti-symmetric binary relation over N .

A dual-organ market is the model above together with a preference profile of patients.
We will introduce the preferences after defining allocations in the next subsection.

2.2 Allocation

To describe the notion of assignments, we first clarify what kinds of transplants are poten-
tially available for each patient i ∈ N under a given type profile θ. A transplant for patient
i is expressed by a pair xi = (xC

i , x
L
i ) where xC

i is the number of grafts from the deceased
donor and xL

i is the set of living donors who contribute the transplant. Given θ ∈ Θ, we
classify available transplants as follows.

1. Deceased-donor dual-graft transplantation: Transplanting two grafts from the
deceased donor to a patient. The set of such transplants for patient i is denoted by

X20
i (θ) :=

{(2, ∅)} if θdcq = 2 and θdcT � θ(i),

∅ otherwise.
.

2. Deceased-donor single-graft transplantation: Transplanting a single graft from
the deceased donor to a patient. The set of such transplants for patient i is denoted
by

X10
i (θ) :=

{(1, ∅)} if θdcT � θ(i),

∅ otherwise.

3. Living-donor dual-graft transplantation: Transplanting two grafts from two liv-
ing donors, one for each, to a patient. The set of such transplants for patient i is
denoted by

X02
i (θ) :=

{
(0, xL)

∣∣∣∣∣ i) xL ∈ 2D
L

and |xL| = 2, and
ii) ∀d ∈ xL, θ(d) � θ(i)

}

9



4. Hybrid transplantation: Transplanting two grafts, one from the deceased donor
and another from a living donor, to a patient. The set of such transplants for patient
i is denoted by

X11
i (θ) :=


{
(1, xL)

∣∣∣∣∣ i) xL ∈ 2D
L

and |xL| = 1, and

ii) ∀d ∈ xL, θ(d) � θ(i)

}
if θdcT � θ(i),

∅ otherwise.

This was newly conducted at Okayama University Hospital for lung transplantation.
In particular, let X̃11

i (θ) be the set of hybrid transplants with i’s own donor, i.e.,
X̃11

i (θ) := {(1, xL) ∈ X11
i (θ) | xL ⊆ DL

i }.

5. Null transplantation: The transplant (0, ∅), called the null transplant, means
that patient i will not receive any transplant. The set X00

i (θ) = {(0, ∅)} denotes the
one that contains only the null transplant.17

Then, the set of potentially possible transplants for patient i under θ, Xi(θ), is defined as
follows.18

Xi(θ) := X20
i (θ) ∪X10

i (θ) ∪X11
i (θ) ∪X02

i (θ) ∪X00
i (θ).

We will later describe by preferences which transplant is sufficient or not for saving a patient.
Given a type profile θ ∈ Θ, an allocation, aθ = (aθi )i∈N =

(
(aθCi , aθLi )

)
i∈N

∈
∏

i∈N Xi(θ),

describes a distribution of transplants among patients. In particular, we say that aθi ∈ Xi(θ)

is an assignment of patient i at aθ, or a transplant of patient i at aθ. We impose three
conditions on allocations. The first is a physical constraint: the number of grafts of dc used
at the allocation cannot exceed the number of grafts supplied by dc. That is,

∑
i∈N

aθCi ≤ θdcq. (1)

The second is also a physical constraint: the number of grafts that a living donor can
donate is at most one. Note that for each patient i, aθLi ∈ 2D

L describes who provides a

17Actually, the set X00
i (θ) does not depend on the type profile θ. However, for notational consistency, we

do not use the notation without the reference for the type profile such as X00
i .

18When we interpret our model as a kidney transplant market, the set of potentially possible transplants is
defined as Xi(θ) := X10

i (θ)∪X01
i (θ)∪X00

i (θ) while for the liver market Xi(θ) := X20
i (θ)∪X01

i (θ)∪X00
i (θ),

where X01
i (θ) denotes the set of living-donor transplants by using a single living donor. Note that the

deceased donor in the kidney market can generate two transplants for the market since two kidneys can
be delivered to different recipients, while the deceased donor in the liver market can generate only one
transplant since the left and right lobes from the donor are conventionally transplanted to a single recipient.
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Figure 2: Inflow and outflow are not balanced.

graft to i. Thus, to formalize the second condition, we just need the requirement that a
living donor should not be included in two living-donor assignments at an allocation. That
is,

∀i, j ∈ N with i ̸= j, aθLi ∩ aθLj = ∅. (2)

The last condition is motivated by the allocations described in Figure 2. At the allocation
in the left figure, patient i’s donor di provides a graft to patient j, even though his own
patient i does not receive a transplant. This allocation would fail to achieve the goal of donor
di who participates in the market to relieve patient i. At the allocation in the right figure,
both patients i and j receive transplants. However, their treatments are very different.
Patient i receives a donation from dj in exchange for the donation by donors’ di2 and di3.
This situation might arise when the type of patient i is so rare that she cannot find any
compatible donor except for di1. In this case, if i finally finds dj as her compatible donor,
she and her own donors might be willing to accept dj in exchange for donors di2 and di3.
However, this type of exchange has a flavor of price mechanism which in most countries is
strictly prohibited for the distribution of organs.

In this paper, we will not be involved in a radical interpretation of an allocation that
calls for a drastic change in organ transplant legislation. To construct an allocation system
without controversial concepts, we employ the cautious condition, requiring that each pa-
tient’s benefit from the market in terms of the number of grafts from others’ living donors
should not exceed the contribution of her own living donors to other patients in terms of
the number of grafts. That is,

∀i ∈ N,
∣∣∣aθLi \DL

i

∣∣∣ ≤ ∣∣∣DL
i ∩

(
∪j ̸=i a

θL
j

)∣∣∣. (3)

The left-hand side of the inequality is the number of grafts from other patients’ living donors,
while the right-hand side is the number of i’s own donors who donate to other patients. We
call this condition the balanced condition. Note that the allocations in Figure 2 are
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excluded because patient j violates the condition. Let us emphasize that this condition is
implicitly employed in the Ergin, Sönmez, and Ünver’s (2017) living-donor exchange model.
Thus, our model with deceased and living donors under the balanced condition is a natural
extension of their model. We denote the set of all allocations under θ by A(θ). Moreover,
let A be the set of all potentially possible allocations, i.e., A := ∪θ∈ΘA(θ).

Our notion of allocations describes not only which patients are assigned organs and lobes
from donors, but also which transplants are conducted. This point is technically important.
For example, if the assignment (1, {di}) for patient i just described the former, it would not
be clear whether the actual transplant is single-graft or hybrid. For this reason, we interpret
the assignment aθi of agent i as the conducted transplant, and assume that the transplant
using all of the grafts described in aθi will be conducted.

Remark 1 (Organs not described in an allocation). Based on the above interpretation, we
explain how organs that do not appear in an allocation are treated.

1. At an allocation aθ ∈ A(θ), if
∑

i∈N aθCi < θdcq, then θdcq−
∑

i∈N aθCi units of deceased
grafts are disposed of at allocation aθ.

2. At an allocation aθ ∈ A(θ), if a living donor di ∈ DL
i does not appear in any patient’s

assignment i.e., di ̸∈ aθL1 ∪ . . .∪aθLn , then di does not undergo surgery at the allocation.

As a consequence of conditions imposed on allocations, we have the following simple
pattern of allocations, i.e., the balanced condition holds with equality.

Proposition 1. Under any type profile θ ∈ Θ, every allocation aθ ∈ A(θ) is balanced in the
following sense.

∀i ∈ N,
∣∣∣aθLi \DL

i

∣∣∣ = ∣∣∣DL
i ∩

(
∪j ̸=i a

θL
j

)∣∣∣.
Namely, for each i ∈ N , the number of grafts donated to i from other patients’ living donors
is equal to the number of i’s living donors who donate a graft to other patients.

2.3 Preference

We formulate the preferences of patients. To this end, it is useful to have the notations
R(Z) and P(Z) for any finite set Z: R(Z) is the set of complete and transitive binary
relations on Z, while P(Z) is the set of complete, transitive, and anti-symmetric binary
relations on Z.

We assume that each patient has a preference in the set of transplantation types {20, 10, 11, 02, 00},
where 20, 10, 11, 02, and 00 stand for deceased-donor dual-graft, deceased-donor single-graft,
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Donation of living donors to non-relatives
unacceptable acceptable

Hybrid transpl. unacceptable Regime O Regime E
acceptable Regime H Regime EH

Table 1: Four regimes

hybrid, living-donor dual-graft, and null transplantation, respectively. That is, each patient
i ∈ N has a strict preference Ri ∈ P({20, 10, 11, 02, 00}) over the set of transplantation
types. Note that the formulation of a preference is free from a given type profile θ. Let
R be the set of preferences, i.e., R := P({20, 10, 11, 02, 00}). For each Ri ∈ R, the anti-
symmetric part and symmetric part of Ri are denoted by Pi and Ii, respectively. For
each Ri ∈ R, a transplantation type α is acceptable at Ri if she prefers α to the null
transplantation 00. Let Aci(Ri) be the set of acceptable transplantation types at Ri, i.e.,
Aci(Ri) := {α | α Pi 00}.

Based on a preference Ri ∈ R over transplantation types, we induce a preference over
available transplants under a type profile θ. Namely, given θ ∈ Θ, we assume that a patient
i ∈ N with her preference Ri ∈ R has a preference Ri(θ) ∈ R (Xi(θ)) defined as follows;

∀α, β ∈ {20, 10, 11, 02, 00},∀xi ∈ Xα
i (θ),∀yi ∈ Xβ

i (θ), xi Ri(θ) yi ⇔ α Ri β.

Note that in the induced preference Ri(θ) patients are indifferent between two transplants in
a same-type transplantation. Without any confusion, we abuse the notation Ri to represent
Ri(θ). That is, we write xi Ri yi instead of xi Ri(θ) yi for two transplants xi, yi ∈ Xi(θ)

under a type profile θ.
Given a type profile θ, a transplant xi ∈ Xi(θ) is called acceptable for agent i with her

preference Ri if she prefers s transplant xi to nothing, i.e., xi Pi (0, ∅). Let Aci(Ri; θ) be the
set of acceptable transplants for agent i with Ri under θ.

A preference profile is a list R = (Ri)i∈N ∈ RN consisting of the preferences of all
patients. The set of all preference profiles RN is called the preference domain.

2.4 Regimes: Legal constraints

The feasibility of an allocation is determined not only by medical technologies but also by
social environments. By social environment we mean legal and ethical ones that stipulate
whether a medically possible transplant is socially acceptable and implementable without
much of an administrative and monetary burden. In our paper we examine two types of
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technologies that are constrained by social environments: (i) hybrid transplantation, and
(ii) donation from living donors to non-relative patients. According to how these constraints
are treated, we consider the following 2× 2 kinds of regimes (see Table 1).

2.4.1 Regime O

Regime O is the environment before the introduction of the living-donor exchange and
hybrid transplantation technology.19 Since each patient cannot have a living-donor trans-
plant with her own donors, only deceased-donor (dual-graft or single-graft) transplantation
is possible. Thus, given θ ∈ Θ, an allocation aθ ∈ A(θ) is feasible under regime O if for
each i ∈ N , aθi ∈ X20

i (θ) ∪X10
i (θ) ∪X00

i (θ). Let AO(θ) be the set of feasible allocations at
θ under regime O.

2.4.2 Regime E

Regime E is the environment in which a living-donor exchange is introduced to the original
market. Donor exchanges (Ergin, Sönmez, and Ünver, 2017) are allowed, in addition to
deceased-donor (dual-graft or single-graft) and living-donor transplantation. Thus, given
θ ∈ Θ, an allocation aθ ∈ A(θ) is feasible under regime E if for each i ∈ N , aθi ∈
X20

i (θ) ∪X10
i (θ) ∪X02

i (θ) ∪X00
i (θ). Let AE(θ) be the set of feasible allocations at θ under

regime E.

2.4.3 Regime H

Regime H is the environment where hybrid transplantation technology is introduced to
the original market. The hybrid transplant between a patient and one of her own donors
is allowed, in addition to deceased-donor (dual-graft or single-graft) transplantation. Thus,
given θ ∈ Θ, an allocation aθ ∈ A(θ) is feasible under regime H if for each i ∈ N ,
aθi ∈ X20

i (θ) ∪ X10
i (θ) ∪ X̃11

i (θ) ∪ X00
i (θ). Let AH(θ) be the set of feasible allocations at θ

under regime H.

2.4.4 Regime HE

Regime HE is the environment in which both the living-donor exchange and hybrid trans-
plantation technology is introduced to the original market. All types of (deceased-donor,
living-donor, hybrid) transplantation are possible. Thus, given θ ∈ Θ, every allocation

19Because this is the “original” state of the market, we call the regime “O”.
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Figure 3: Hybrid exchange opens up new patterns of allocation.

aθ ∈ A(θ) is feasible under regime HE. Let AHE(θ) be the set of feasible allocations at θ

under regime HE. The new patterns of exchange that our paper advocates are exchanges
of donors for hybrid transplantation. In the left allocation in Figure 3, both patients i and
j receive a hybrid transplant with the other’s donor. In the middle in Figure 3, patient
i receives a hybrid transplant while j receives a living-donor transplant. This allocation
suggests that the hybrid transplant makes the living-donor transplant possible.20 Theoreti-
cally, the number of living-donor transplants caused by a hybrid transplant can be any large
number. On the right in Figure 3, three living-donor transplants are implemented.

Remark 2. By definition, we have the following relations among the sets of feasible alloca-
tions under various regimes.

AO(θ) ⊆ AE(θ)

⊇ ⊇

AH(θ) ⊆ AHE(θ)

2.5 Dual-organ markets under various regimes

Let us summarize our model. A dual-organ market under regime Y ∈ {O,E,H,HE}
consists of the following components:

1. (N, {DL
i }i∈N , DC , (T,�), θ,⪰) as described in Section 2.1.

2. R = (Ri)i∈N ∈ RN , a preference profile as described in Section 2.3;

3. AY (θ), the set of feasible allocations under regime Y as described in Section 2.4.

20The literature on kidney exchange considers the system that allows patients to exchange their donors
with the right to receive a deceased kidney (Roth, Sönmez, and Ünver, 2004). Note that it contains a
living-donor kidney and deceased-donor kidney exchange. What is new in the middle allocation in Figure 3
is that patient i who receives a hybrid transplant exchanges her living donor with patient j’s living donor.
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We assume that there is a clearinghouse whose goal is to distribute transplants among agents
in a “desirable” manner.21 To do so, it needs to collect the decentralized information on the

• market participants’ type θ = (θi)i∈N and

• preferences of patients R.

Together with the type of the deceased donor, the clearinghouse processes the information
in determining a feasible allocation.22 The procedure is called a mechanism. Formally, a
mechanism under regime Y is a function φ from RN×Θ to ∪θ∈ΘAY (θ) such that for each
(R; θ) ∈ RN×Θ, φ(R; θ) ∈ AY (θ). That is, the clearinghouse has patients report their types
and preferences. Expressing the information by type and preference profile (R; θ) ∈ RN×Θ,
the clearinghouse uses a mechanism φ to determine an allocation φ(R; θ) ∈ AY (θ) that is
feasible under regime Y .

3 Properties of Mechanisms

In a general indivisible goods allocation problem, the desirable properties for a mechanism
to satisfy are individual rationality, efficiency, fairness, and incentive compatibility. We
introduce these properties for our dual-organ market. We fix a regime Y ∈ {O,E,H,HE}
throughout this section.

3.1 Individual rationality

We introduce individual rationality for our model. It is a condition on allocations in which
any patient does not hurt from participating in a market. Formally, we define:

Definition 1. Under regime Y , an allocation aθ ∈ AY (θ) is individually rational at
(R; θ) ∈ RN ×Θ if for each patient i ∈ N , aθi is at least as good as the null transplant at Ri.
We denote by IY (R; θ) the set of all individually rational allocations at (R; θ). Moreover, a
mechanism under regime Y , φ, is individually rational if for each (R; θ) ∈ Θ×RN , the
selected allocation φ(R; θ) ∈ AY (θ) is individually rational at (R; θ).

21In the next section, we will discuss what allocations are desirable.
22We assume that the type information of the deceased donor is known by the clearinghouse whenever a

deceased donor appears. This is natural because it is reported by a medical doctor who is in charge of the
deceased donor. The clearinghouse shares the information with the medical doctors in charge who are out
of our model.
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3.2 Efficiency

We define three notions of efficiency. The first is the standard notion of Pareto efficiency.
Under regime Y , an allocation aθ ∈ AY (θ) is Pareto efficient at (R; θ) ∈ RN ×Θ if there
is no allocation bθ ∈ AY (θ) such that for each i ∈ N , bθi Ri a

θ
i , and for some i ∈ N , bθi Pi a

θ
i .

A mechanism under regime Y , φ, is Pareto efficient if for each (R; θ) ∈ RN × Θ, the
selected allocation φ(R; θ) is Pareto efficient at (R; θ).

We next introduce the notions of non-wastefulness for our dual-organ market. The stan-
dard notion of non-wastefulness is defined for indivisible goods allocation problems under
common ownership and unit demand where no agent initially owns an object and an agent
consumes one object. The non-wastefulness means that “unused” objects cannot be assigned
to benefit some agent without affecting anybody else’s assignment (Balinski and Sönmez,
1999). On the other hand, our dual-organ market has mixed ownership and multi-unit de-
mand. Thus, the unused objects available for a patient are disposed deceased lungs and a
lobe from one of her own donors who did not donate at the original allocation. Thus, each
patient could potentially access to the unused objects in addition to the original assignment
without affecting anybody else’s assignment. Although the set of better opportunities can
be well captured by the set of unused objects under unit demand, the appropriate extension
to our model with multi-unit demand and mixed ownership should include both unused
objects and the original individual assignment. If a patient finds a better transplant within
her potentially “accessible” objects, she might be better off by herself. The accessibility can
be captured by the following notion of induced allocations.

Definition 2 (Induced allocation). Given a type profile θ ∈ Θ and an allocation aθ =(
(aθCi , aθLi )

)
i∈N ∈ A(θ), we define the induced allocation aθ =

(
(aθCi , aθLi )

)
i∈N as follows:

For each i ∈ N ,
(i) aθCi := aθCi +

(
θdcq −

∑
j∈N aθCj

)
, and

(ii) aθLi := aθLi ∪ {d ∈ DL
i

∣∣d ̸∈ ∪j ̸=ia
θL
j }.

In words, patient i’s induced grafts assignment aθCi from the deceased donor is the sum of
the number of grafts from dc she receives at aθ and the number of grafts from dc disposed
at aθ. Patient i’s induced living-donor assignment aθLi denotes the union of her assignment
at aθ and her own donors who do not donate to other patient at aθ. Thus, aθi formalizes
the potentially accessible resources of patient i at aθ without changing the other patients’
assignment. Note that aθi may not be an assignment. Now, we are ready to introduce
non-wastefulness.
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Definition 3. Under regime Y , an allocation aθ ∈ AY (θ) is wasteful at (R; θ) ∈ Θ×RN

if there exist i ∈ N and bi ∈ Xi(θ) such that (i) bi Pi a
θ
i , (ii) (bi; a

θ
−i) ∈ AY (θ), and (iii)

bCi ≤ aθCi and bLi ⊆ aθLi . Under regime Y , an allocation aθ ∈ AY (θ) is non-wasteful at
(R; θ) ∈ Θ×RN if it is not wasteful at (R; θ) ∈ Θ×RN .

The condition says that patient i cannot find (i) a better transplant (ii) which is allowed
under regime Y without affecting others’ assignments, and (iii) which can be constructed
within patient i’s accessible resources at aθ. For example, if aθi = (1, ∅) is a deceased-
donor single-graft transplant, then bi = (1, {di}) can be a hybrid transplant if patient i’s
compatible own donor di does not donate at aθ, i.e., di ∈ aLi .

In addition to being non-wasteful, an allocation is strongly non-wasteful if it maximizes
the number of grafts from the deceased donor used at the allocation within individually
rational allocations. Such an allocation is desirable because it expresses the view that
donated organs should be fully utilized, leading to respect for deceased donors. That is,

Definition 4. Under regime Y , an allocation aθ ∈ AY (θ) is strongly non-wasteful at
(R; θ) ∈ RN ×Θ if aθ is non-wasteful, and∑

i∈N

aθCi = max
bθ∈IY (R;θ)

∑
j∈N

bθCj .

We say that a mechanism under regime Y , φ, is (strongly) non-wasteful if for each
(R; θ) ∈ RN × Θ, the selected allocation φ(R; θ) ∈ AY (θ) is (strongly) non-wasteful at
(R; θ).

Example 1 (Non-wasteful but not strongly non-wasteful allocation). Let (T,�) = (TB,�B).23

Let θ ∈ Θ be such that θdc = (2, A) and θ(1) = θ(2) = A. Suppose also that for each
i ∈ N\{1, 2} and each d ∈ DL, θ(i) = O and θ(d) = AB. Let R ∈ RN be a preference
profile described by the following table.

R1 10 00 · · ·
R2 20 00 · · ·

Thus, patients 1 and 2 can only receive a donation from the deceased donor. Moreover,
patient 1 only finds the single-graft transplant acceptable, and patient 2 only the dual-
graft transplant acceptable. Consider an allocation aθ := ((1, ∅), (0, ∅)) where one graft
is transplanted to patient 1, but the other is disposed so that patient 2 receives the null

23This assumption simplifies the description without any loss of generality as it corresponds to the as-
sumption that all patients and donors have the identical medical type except for the ABO blood type.
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Figure 4: Logical relationship among efficiency concepts

Under regime O or H. Under regime E or HE.

Note: SNW stands for strong non-wastefulness, NW for non-wastefulness, and PE for Pareto efficiency.

transplant.24 Obviously, aθ is non-wasteful. However, one graft is disposed and the two
grafts can be transplanted to patient 2 in another individually rational allocation bθ :=

((0, ∅), (2, ∅)) ∈ IY (R; θ), and thus allocation aθ is not strongly non-wasteful. Note that∑
i∈N aθCi = 1 < 2 =

∑
i∈N bθCi . ♢

The following remark clarifies the logical relationship among our efficiency notions (see
Figure 4). For a proof, see the online appendix.

Remark 3. We have the following three statements. Sentences without a reference for regime
hold under any regime. Let (R; θ) ∈ RN ×Θ.

1. If an allocation is strongly non-wasteful at (R; θ), then it is non-wasteful at (R; θ).
The converse is not true.

2. If an allocation is Pareto efficient at (R; θ), then it is non-wasteful at (R; θ). The
converse is also true only if Y ∈ {O,H}.

3. There is no logical relationship between Pareto efficiency and strong non-wastefulness
under any regime Y ∈ {E,HE}.

3.3 Fairness

In our dual-organ market, we have a priority ⪰ given as one component of the market. The
priority expresses the right of patients receiving grafts from the deceased donor. In this
subsection we introduce the notion of fairness with respect to the priority.

We say that a patient i has a justified envy at an allocation if some lower-priority patient
j is assigned an organ from the deceased donor, and patient i can be made better off with
the deceased donor’s graft while keeping the same welfare except j. A fair allocation has
no patient having such justified envies. More formally,

24The assignments for i ∈ N\{1, 2} are necessarily the null transplant (0, ∅), and they are thus omitted
in the description of the allocations.
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Definition 5. Under regime Y , patient i ∈ N has a justified envy under an allocation
aθ ∈ AY (θ) at (R; θ) ∈ RN ×Θ if there is bθ ∈ IY (R; θ) such that (i) bθi Pi a

θ
i , (ii) bθCi > aθCi

and for each j ∈ N with j ≻ i, bθCj = aθCj and (iii) for each j ∈ N , aθj Pj bθj implies
aθCj > bθCj . Moreover, an allocation aθ ∈ AY (θ) is ⪰-fair at (R; θ) ∈ RN × Θ if no patient
has a justified envy under aθ at (R; θ).

We say that a mechanism under regime Y , φ, is ⪰-fair if for each (R; θ) ∈ RN × Θ, the
selected allocation φ(R; θ) ∈ AY (θ) is ⪰-fair at (R; θ).

The following remark clarifies the logical relationship between ⪰-fairness and axioms
previously introduced. For a proof, see the online appendix.

Remark 4. We have the following two statements. Sentences without a reference for regime
hold under any regime.

1. ⪰-fairness does not imply individual rationality. Under any regime Y ∈ {E,HE},
even the combination of Pareto efficiency and ⪰-fairness does not imply individual
rationality.

2. There is no logical relationship between ⪰-fairness and any one of the three efficiency
notions of non-wastefulness, strong non-wastefulness, and Pareto efficiency.

The following impossibility asserts that strong non-wastefulness is too demanding as an
efficiency notion as long as we employ individual rationality and ⪰-fairness as basic axioms
for a mechanism.

Proposition 2. Under any regime Y ∈ {O,E,H,HE}, there exists (R; θ) ∈ RN ×Θ such
that no allocation is individually rational, strongly non-wasteful, and ⪰-fair at (R; θ).

3.4 Incentive compatibility

We employ strategy-proofness as our incentive compatibility condition. In our model, each
patient has two pieces of private information about herself: type θi and preference Ri. These
information is not treated symmetrically, since the former is verifiable but the latter is not.
Thus, we assume that her reporting type θi is sincerely transmitted without manipulation,
while her reporting preference Ri may not be. In other words, preference reporting is the
only source of strategic manipulation.

Assumption 1 (Sincere reporting about types). Each patient reports her type sincerely.
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Under the above assumption, the following is a standard definition of strategy-proofness.
We discuss the importance of strategy-proofness in section 4.2.2.

Definition 6. A mechanism under regime Y , φ, is strategy-proof if for each (R; θ) ∈
RN ×Θ, each i ∈ N , and each R′

i ∈ R, φi(R; θ) Ri φi(R
′
i, R−i; θ).

4 Main Results

In this section, we first investigate the mechanism currently used in the Japanese lung
market under regime O.25 We show that the Japanese mechanism is individually rational
and Pareto efficient, but it is neither ⪰-fair nor strategy-proof. Then, we propose priority
mechanisms that can be used for any regime, and show its prominence in our dual-organ
market. To define these mechanisms, we use the notation Top(⪰,M) which is the highest-
priority patient among those in the non-empty set M of patients. That is, for each i ∈ M ,
Top(⪰,M) ⪰ i.

4.1 Case study: The Japanese mechanism in the lung market

We describe the Japanese mechanism, denoted as φJ , that works only under regime O.26

To this end, we introduce the following notation. For each (R; θ) ∈ RN ×Θ, let

N(R; θ) := {i ∈ N | (2, ∅) ∈ Aci(Ri; θ) or (1, ∅) ∈ Aci(Ri; θ)}

be the set of all candidates of the deceased-donor transplantation.
The Japanese mechanism first looks at the preference of the highest-priority patient in

N(R; θ) when the deceased donor provides two units of lungs. Let us call the highest-priority
patient i1. If i1 has multi-unit demand, the mechanism gives two units to the patient (Case
1). On the other hand, if i1 has single-unit demand, the mechanism tries to pick another
patient with single-unit demand to allocate one unit for each. If the market has another
patient with single-unit demand, the mechanism selects the highest-priority patient among
them (Case 2). If i1 is the only patient with single-unit demand, the mechanism looks at
the second-most preferred transplant of patients. If there is at least one patient who can
accept a single-graft transplant (as the second-most preferred transplant), the mechanism

25We formalize the mechanism based on the recipient selection rule described in http://www.jotnw.or.

jp/jotnw/law_manual/pdf/rec-lungs.pdf. A formal description of the mechanism is given in the online
appendix.

26For a rigorous description of the Japanese mechanism, see Appendix A in online appendix.
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picks the highest-priority patient among them, giving one unit to her and i1 for each (Case
3). Finally, if i1 is the only patient with single-unit demand even when we consider the first-
and second-most preferred transplant of all patients, then there are two subcases. If i1 can
only accept a single-graft transplant and there is at least one patient who needs a dual-graft
transplant, then the mechanism skips i1, giving two units to the highest-priority patient
among the rest of the patients (Case 3.2.1). Otherwise, i.e., when i1 is the only patient
who is willing to accept a graft from the deceased donor, the mechanism gives one unit
to i1, disposing of one unit (Case 3.2.2). Next we consider the case when only one unit of
lung is donated by the deceased donor. The Japanese mechanism selects the highest-priority
patient among the unit-demand patients (Case 4).27 If there is no unit-demand patient then
the mechanism picks the highest-priority patient who can accept a single-graft transplant
as the second-most preferred transplant (Case 5).

The Japanese mechanism aspires to be a strongly non-wasteful allocation in a situation
where the compatible highest-priority patient has the unit demand after rejecting two units.
In that situation, if (1) there is no lower-priority patient with unit demand, and (2) at least
one lower-priority patient is demanding two units, then the mechanism skips the compatible
highest-priority patient and assigns two grafts to the compatible highest-priority patient who
needs two units to reduce the number of disposed grafts (see Case 3.2.1 in the definition of
the Japanese mechanism).28

However, the attempt to reduce the number of disposed grafts is not fully achieved by
the current mechanism, i.e., there is another situation where it fails to assign grafts in a
strongly non-wasteful manner. Moreover, the anomalistic manner of the mechanism can
be a source of unfairness and strategic manipulation. These points are captured by the
following example.

Example 2 (Flaws of the Japanese mechanism). Suppose that there are two units of de-
ceased grafts available, and also that only patients 1 and 2 have the same type as the
deceased grafts. That is, let θ ∈ Θ be such that θdcq = 2, θ(1) = θ(2) = θdcT , and for each
i ∈ N\{1, 2}, θdcT ̸ � θ(i). Suppose also that patient 1 has a higher priority than patient 2,
i.e., 1 ≻ 2.

Flaw 1 (φJ is not strongly non-wasteful). Let R ∈ RN be a preference profile in Table
2. Then, N(R; θ) = {1, 2} and i1 = 1. Note that the highest-priority patient demands one

27Not necessarily, the highest-priority patient in N(R; θ).
28More precisely, this type of skip is not applied if the deceased donor is not one of the relatives of the

compatible highest-priority patient at Case 3.2.1. Since we assume that DC ∩DL = ∅, this case is omitted
from the description of the Japanese mechanism.
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Table 2: Preferences for Example 2
R1 10 20 00 · · ·
R2 20 00 · · ·

R′
1 10 00 · · ·

unit. Thus, the mechanism tries to pick another patient who can accept a deceased-donor
single-graft transplant. Since 1) patient 1 is the only patient who can accept single-unit
transplantation even when we look at the first- and second-most preferred transplantation
of all patients, and 2) the second-most preferred transplant is a deceased-donor dual-graft
transplant, Case 3.2.2 in the definition is applied. Thus, φJ(R; θ) =

(
(1, ∅), (0, ∅)

)
, disposing

of one unit of lung. However, since
(
(0, ∅), (2, ∅)

)
is individually rational at (R; θ), φJ(R; θ)

is not strongly non-wasteful at (R; θ).

Flaw 2 (φJ is not ⪰-fair nor strategy-proof). Let R′
1 ∈ R be a preference in Table 2.

Let R′ := (R′
1, R2). Then, N(R′; θ) = {1, 2} and i1 = 1. Again, the market does not have

a patient, except for i1, who can accept a deceased-donor single-graft transplant. Thus,
the Japanese mechanism considers the second-most preferred transplantation of patient 1.
Since on this occasion it is a null transplantation, Case 3.2.1 is applied. Thus, φJ(R′; θ) =

((0, ∅), (2, ∅)). Higher-priority patient 1 would be better off from a graft assigned to lower-
priority patient 2 at φJ(R′; θ). Thus, φJ(R′; θ) is not ⪰-fair at (R′; θ).

Now consider the strategic deviation of patient 1 from R′
1 to R1. Then, the allocation

selected at (R1, R2; θ) = (R; θ) is
(
(1, ∅), (0, ∅)

)
(see the calculation at Flaw 1). Thus,

φJ
1 (R1, R2; θ) = (1, ∅) P ′

1 (0, ∅) = φJ
1 (R

′
1, R2; θ), which violates strategy-proofness. ♢

The following proposition summarizes the properties of the Japanese mechanism.

Proposition 3. Under regime O, the Japanese mechanism φJ is (i) individually rational,
(ii) Pareto efficient, (iii) not strongly non-wasteful, (iv) not ⪰-fair, and (v) not strategy-
proof.

4.2 Priority mechanism

We introduce a priority mechanism which extends Roth, Sönmez, and Ünver (2005)’s mech-
anism to our setting. Roughly speaking, in the mechanism agents select their favorite and
individually rational allocations among those selected by higher-priority agents. For its
definition, we need the following notation. Let σ : {1, . . . , n} → N be the bijection that
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represents the priority order. That is, for each i ∈ {1, . . . , n}, σ selects the i-th highest-
priority patient, i.e., σ(1) ≻ σ(2) ≻ · · · ≻ σ(n).

Definition 7 (Priority mechanism). The priority correspondence under regime Y ,
ΦY , is the nonempty-valued correspondence from RN ×Θ to ∪θ∈ΘAY (θ) that selects feasible
allocations in AY (θ) for each (R; θ) ∈ RN ×Θ as follows.
Round 0: ΦY

0 (R; θ) selects all individually rational allocations at (R; θ). That is, ΦY
0 (R; θ) :=

IY (R; θ).

Round k ∈ {1, . . . , n}: ΦY
k (R; θ) selects all allocations that kth-priority patient, σ(k), prefers

the most among those in ΦY
k−1(R; θ). That is, ΦY

k (R; θ) :=
{
aθ ∈ ΦY

k−1(R; θ) | ∀bθ ∈

ΦY
k−1(R; θ), aθσ(k) Rσ(k) b

θ
σ(k)

}
. Let ΦY (R; θ) := ΦY

n (R; θ).
A priority mechanism under regime Y , φP , is a selection from the priority correspon-

dence, i.e., for each (R; θ) ∈ RN ×Θ, φP (R; θ) ∈ ΦY (R; θ).

Example 3 (Priority mechanism). This example describes the procedure of the priority
mechanism (Figure 5). There are three patients, each of whom has exactly two living
donors. For each i ∈ {1, 2, 3}, the types of patient i and her donors are shown in box i in
the figures. We assume that only the blood type accounts for the medical type of agents.
For example, at allocation a, patient 1’s type is shown in the left-hand side of the box,
i.e., θ1(1) = A, while her two donors have the identical type B as shown in the right-hand
side of the same box. Suppose that patient 1 has the highest priority, patient 2 the second,
and patient 3 the third. The preferences of patients are given as follows. R1 : 02, 20, 00,
R2 : 11, 02, 00, R3 : 11, 02, 00.

In the first round, patient 1 chooses her assignment. Since her best is a living-donor dual-
graft transplantation, all feasible allocations in which patient 1 receives a living-donor dual-
graft transplant are selected by the priority correspondence. Such allocations are abundant,
and some of them are given in Figure 5: allocations a, b, and c. Note that all three allocations
are indifferent for patient 1 but not for patients 2 and 3.

In the second round, patient 2 chooses her assignment. Since her best assignment is a
hybrid transplantation, some allocations selected in the first round are rejected. Among
allocations a, b, and c, allocation a is rejected, since it assigns a living-donor dual-graft
transplant to patient 2. On the other hand, allocations b and c remain selected at the
second round, since they assign a living-donor dual-graft transplant to patient 1 and a
hybrid transplant to patient 2. Note that patient 3 is not indifferent between b and c.

In the third round, patient 3 chooses her assignment. Since her best choice is a hybrid
transplantation, some allocations selected in the second round are rejected. Among alloca-
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Figure 5: Allocations a, b and c in Example 3

tions b and c, allocation b is rejected, since it assigns a living-donor dual-graft transplant to
patient 3.

Consequently, the priority correspondence contains allocation c. As shown in this ex-
ample, in each round, the priority mechanism selects the best feasible allocations for the
selecting patient in this round so as not to harm the higher-priority patients.29 ♢

Remark 5. The difference in regimes makes some differences in the nature of priority mech-
anisms. The following items 2 and 3 are basic. For a proof, see the online appendix.

1. Under any regime Y ∈ {O,E,H,HE}, if both φ and φ̃ are priority mechanisms then
they are welfare-equivalent. That is, for each (R; θ) ∈ RN × Θ and each i ∈ N ,
φi(R; θ) Ii φ̃i(R; θ).

2. Under any regime Y ∈ {O,H}, ΦY is single-valued. Thus, a priority mechanism is
unique.

3. Under any regime Y ∈ {E,HE}, ΦY may not be single-valued. Thus, a priority
mechanism may not be unique.

29Rigorously speaking, a variant of c is also selected by the priority correspondence. It is the allocation in
which the donation from patient 3’s second donor is replaced by the one from patient 3’s first donor. Note
that c and its variant are indifferent for all patients.
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4.2.1 Performance of priority mechanism under regimes O and H

Under regimes without donor exchange (regime O or H), the performance of the priority
mechanism is quite good:

Theorem 1. Under any regime Y ∈ {O,H}, the priority mechanism is individually ratio-
nal, Pareto efficient, ⪰-fair, and strategy-proof.

The priority mechanism overcomes the two major flaws of the Japanese mechanism —
the violation of ⪰-fairness and strategy-proofness. Moreover, the prominence is kept even
under the introduction of hybrid transplantation. However, by Proposition 2, strong non-
wastefulness is not overcome. This is viewed as an inevitable cost for a mechanism to be
individually rational and ⪰-fair.

4.2.2 Performance of priority mechanism under regimes E and HE

Under regimes with donor exchange (regime E or HE), each priority mechanism keeps its
good performance for the normative properties.

Proposition 4. Under any regime Y ∈ {E,HE}, each priority mechanism is individually
rational, Pareto efficient, and ⪰-fair. However, it is not strategy-proof.

One of the critical differences between regimes with and without donor exchange lies in
the degree of manipulability of the mechanisms. In particular, under regimes with donor
exchange, a patient can hide her own donors by rejecting hybrid and living-donor transplants
in her preference.30 Recall that we focus on balanced allocations (Proposition 1). Thus, if
a patient pretends that she cannot accept any hybrid and living-donor transplants then no
other patients can use her living donors. This type of strategic behavior is a source for the
manipulation of a mechanism. Consequently, every priority mechanism is manipulable. To
scrutinize the problem evoked by strategic behavior in dual-organ markets, we consider the
following example.

Example 4 (Manipulation of the priority mechanism). There are five patients, patients
1 to 5, who are prioritized as 1 ≻ 2 ≻ 3 ≻ 4 ≻ 5. Patients 1, 2, and 5 have two living
donors, patient 4 has one while patient 3 has nothing. Their medical types and preferences
are illustrated in Figure 6.

30Note that hiding donors has no positive effect for that patient under the regimes without donor exchange.
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Figure 6: Allocations a and b in Example 4

Under true preferences (R2;R−2), patients 1,3,4, and 5 have just one acceptable surgery
type, while patient 2 prefers a deceased-donor dual-graft transplant to a living-donor dual-
graft transplant. This market has individually rational allocations in which patient 1 receives
a living-donor dual-graft transplant, for example, allocation a, the priority mechanism selects
one of them. Now we claim that patient 2 must receive a living-donor dual-graft transplant in
the selected allocation. To show this, suppose to the contrary that patient 2 does not. Since
we assume the balanced condition, the living donors of patient 2 are not used for the selected
allocation. Thus, patient 1 receives A-type living donors from patients 4 and 5. Thus, by
the balanced condition, patient 5 must receive a living-donor dual-graft transplant under the
selected allocation. However, this is impossible because no available A-type living donors
remain in the market. Therefore, we have proved that patients 1 and 2 receive living-donor
dual-graft transplants at the selected allocation. At this point, it is obvious that patients
3,4, and 5 are assigned their most preferred transplants at the selected allocation. Thus,
the priority mechanism selects allocation a (or, its welfare equivalent variant) in the left
figure.31

Now suppose that patient 2 deviates from R2 to R′
2. At R′

2, patient 2 hides the fact that
she can accept a living-donor dual-graft transplant. This is a kind of “truncated strategy”
well known in two-sided matching models (Roth and Sotomayor, 1990). Note that for
patient 1 to get a living-donor dual-graft transplant, the living donors of patient 2 are

31Since we assume that patients are indifferent to identical surgery-type transplants, the welfare-equivalent
variant of a can be easily obtained by changing some of the patient-donor combinations at a.
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critical. Consequently, since the hiding strategy of patient 2 narrows down the opportunity
for patient 1, she cannot help but choose the null transplant in the first round of the priority
mechanism. This enables patient 2 to get a more preferred transplant, i.e., the deceased-
donor dual-graft transplant. ♢

In practice, it might be realistic to operate the mechanism by letting patients register
their preferences once within a certain fixed period, such as three or six months. Since the
priority order is mainly based on waiting time, it should be noted that even the patient
with the highest-priority in our model must have experienced low-priority positions before.
Although the dual-organ market in this paper is defined as a static model, the switch from R2

to R′
2 in Example 4 can be interpreted as the free-riding behavior of patient 2. By hiding her

living-donors, not only does she prevent the transplants of other four patients, but she also
eliminates the opportunity of having her living donors contribute to the market, although
she positions herself with the potential possibility for a living-donor transplantation through
the previous interaction with higher-priority patients when she was a lower-priority patient.
This point enhances the importance of incentive property for a mechanism in the dual-organ
market.

A natural question arising from Proposition 4 is: Is there a mechanism satisfying all
axioms listed in the proposition? The answer is negative.

Theorem 2. Under any regime Y ∈ {E,HE}, no mechanism is individually rational,
Pareto efficient, ⪰-fair, and strategy-proof.

Since no mechanism satisfies all axioms listed in Theorem 2, we have to give up at least
one of the axioms to design a plausible mechanism under a regime with donor exchange.
Since Proposition 4 says that under regimes with donor exchange, each priority mecha-
nism satisfies three of our four basic axioms, priority mechanisms attain one of the best
we can choose. Moreover, we will see a positive aspect of priority mechanisms which are
robust against strategic manipulation under incomplete information, although they are not
strategy-proof under complete information.

4.3 Preference revelation game with incomplete information under

a priority mechanism

The successful manipulation of the priority mechanism in Example 4 heavily depends on
the complete information setup. In practice, the type of deceased donors is uncertain, and
the types of other patients and living donors are usually not open to the public. Thus, the
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Figure 7: Allocations a and c in Example 5

manipulation of the mechanism pertains to the risk of missing a transplant opportunity. To
see this point, let us consider the previous example under modification.

Example 5 (Manipulation of the priority mechanism is risky). Consider Example 4 where
patient 2 of blood type B gets the deceased donor of the same blood type by manipulating
the priority mechanism with the truncation strategy. Here, for simplicity, we focus on the
submarket with patients 1 and 2. Let us consider a slightly modified case in which the blood
type of the deceased donor is type A instead of type B. Note that patient 2’s truncation
strategy, in this case, ends up with no transplants for both patients (Figure 7). In other
words, she cannot receive a living-donor dual-graft transplant plus a deceased-donor dual-
graft transplant because the truncation strategy narrows down not only the opportunity
for the higher-priority patient but also the one for herself. In this sense, the manipulation
strategy is risky.

Summing up, without accurate information about resources, i.e., types of deceased-
donor and other patients’ living donors, the manipulation behavior may be harmful to the
manipulator, too. In that sense, the truncation strategy is a “double-edge sword” for the
manipulator.32 ♢

Motivated by the above example, we introduce incomplete information into our model.
We assume that each patient can observe only her own medical type and preference, not the
others’. That is, she knows her own preference and type (Ri, θi), but does not know other
patients’ (R−i; θ−i), including the deceased donor’s.33 Formally, we consider a preference
revelation game G = (N,DC , {DL

i }i∈N , (T,�),Θdc , {R × Θi}i∈N , {u∗
i }i∈N , Y, φP , {pi}i∈N),

where

32In Lemma 1 of the Appendix, we show that all successful manipulation strategies of the priority mech-
anism are necessarily double-edge in the sense that they always narrow down the possible assignment for
the manipulator.

33This setup is suitable for Japan, because patients simply register for the Japan Organ Transplant
Network without any communication with other patients.
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1. The symbols N,DC , {DL
i }i∈N , (T,�),Θdc are the same as in the complete information

model: Each of them represents the set of patients, the set of deceased donors, the
collection of the set of living donors, the type space for the medical status of patients
and donors, and the type space of the deceased donor, respectively.

2. For each i ∈ N , R × Θi denotes patient i’s action set. It also represents patient i’s
“type space” in the standard Bayesian game terminology.

3. For each i ∈ N , u∗
i : {20, 10, 11, 02, 00} ×

(
R× Θi

)
→ R is a state-dependent utility

function. For each (Ri, θi) ∈ R × Θi, u∗
i (· |Ri, θi) represents Ri. Without any confu-

sion, given θ ∈ Θ, for each xθ
i ∈ Xi(θ), u∗

i (x
θ
i |Ri, θi) denotes the value of u∗

i (· |Ri, θi)

for the transplantation type to which xθ
i belongs. Note that the above setup does not

exclude the state-independent utility case.

4. A priority mechanism φP under regime Y is fixed.

5. For each i ∈ N , pi : RN × Θ → [0, 1] is a probability distribution that repre-
sents patient i’s prior belief. We assume that pi has full support, i.e., for each
(R; θ) ∈ RN × Θ, pi(R; θ) > 0. Note that we do not place the common prior as-
sumption. For each (Ri, θi) ∈ R × Θi, the posterior belief is denoted by pi(· |Ri, θi),
i.e., it is the function from RN\{i} × Θ−i to [0, 1] defined as pi(R−i; θ−i |Ri, θi) :=

pi(Ri,R−i;θi,θ−i)∑
(R′

−i
;θ′−i

)∈RN\{i}×Θ−i
pi(Ri,R′

−i;θi,θ
′
−i)

.

Now we make an assumption about the players’ utility functions that reflects the huge gap
in utilities between acceptable transplants and unacceptable ones. To describe it, for each
i ∈ N and each (Ri, θi) ∈ R×Θi, we introduce the following two notations:

• UD(u∗
i ;Ri, θi) :=

 max
α∈Aci(Ri)

u∗
i (α |Ri, θi)− min

α∈Aci(Ri)
u∗
i (α |Ri, θi) if Aci(Ri) ̸= ∅,

0 if Aci(Ri) = ∅.

• pi(Ri, θi) := min
(R−i;θ−i)∈RN\{i}×Θ−i

pi(R−i; θ−i |Ri, θi).

In words, UD(u∗
i ;Ri, θi) denotes the utility difference between the best acceptable transplan-

tation and the worst acceptable one which in turn shows the maximal gain from the quality
improvement when a patient gets an acceptable transplant instead of another. Given patient
i’s own type (Ri, θi) ∈ R×Θi, the most unlikely event occurs with probability pi(Ri, θi) in
patient i’s perspective. Note that pi(Ri, θi) > 0, since we assume that pi has full support.
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Assumption 2 (Huge utility gap between acceptable and unacceptable transplants). Even
at the most unlikely event, the expected utility loss from the worst acceptable transplant to
the best unacceptable one is so huge that a patient cannot recover it even if she gets an
additional utility UD(u∗

i ;Ri, θi) in every other event. Formally, for each i ∈ N and each
(Ri, θi) ∈ R×Θi with at least one acceptable transplantation type at Ri, we have the following
inequality:

p
i
(Ri, θi)

(
min

α∈Aci(Ri)
u∗i (α |Ri, θi)− u∗i (00 |Ri, θi)

)
> (1− p

i
(Ri, θi))

( ∣∣∣RN\{i} ×Θ−i

∣∣∣− 1
)
UD(u∗i ;Ri, θi).

Since an assignment in our model represents a transplant, an unacceptable transplant
can be interpreted as the death of the patient. Thus, it is natural that there is a huge utility
gap between acceptable and unacceptable transplants.

For each player i ∈ N , a strategy is a function si : R × Θi → R × Θi such that for
each (Ri, θi) ∈ R × Θi, the submitted type is a sincere one, i.e., the second coordinate of
si(Ri, θi) is θi. Recall that the medical condition of a patient and her donors θi is verifiable
by medical doctors (see Assumption 1).34 Let Si be the set of patient i’s strategies. The
identity mapping s∗i ∈ Si is called the truth-telling strategy.

Before introducing the equilibrium concept of the game G, we use the following sim-
plifying notation. For each (R; θ) = (R1, . . . , Rn; θdc , θ1, . . . , θn) ∈ RN × Θ, we sometimes
denote it as (θdc ; (R1, θ1), . . . , (Rn, θn)). Moreover, when we focus on a patient i, we denote
it as (θdc ; (Ri, θi); (Rj, θj)j ̸=i). A strategy profile s = (s1, . . . , sn) ∈

∏
i∈N Si is a Bayesian

Nash equilibrium in G if for each i ∈ N , each (Ri, θi) ∈ R×Θi, and each R′
i ∈ R,∑

(R−i;θ−i)∈RN\{i}×Θ−i

pi(R−i; θ−i |Ri, θi)u
∗
i

(
φP
i (θdc ; si(Ri, θi);

(
sj(Rj, θj)

)
j ̸=i

)
∣∣∣Ri, θi

)

≥
∑

(R−i;θ−i)∈RN\{i}×Θ−i

pi(R−i; θ−i |Ri, θi)u
∗
i

(
φP
i (θdc ; (R

′
i, θi);

(
sj(Rj, θj)

)
j ̸=i

)
∣∣∣Ri, θi

)
.

The main result of this subsection shows that each priority mechanism is robust against
strategic manipulation even under regimes with living-donor exchange under incomplete
information.35 To show that positive result, we need some specifications and simplifications
that decently approximate the real world. We make the following three assumptions.

34Each patient knows that other patients submit own medical type honestly. However, she does not know
which types are realized.

35Ehlers and Massó (2007, 2015) introduce incomplete information to the many-to-one matching problems
to characterize the Bayesian Nash equilibrium profiles under the stable mechanism. Our problem is different
from theirs in 1) the uncertainty in our model is wider in the sense that the other players’ and deceased
donor’s medical types are included, and 2) patients’ do not necessarily have unit demand.
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Assumption 3 (The number of component type spaces are two). The collection of compo-
nent type spaces {(Tk,�k)}Kk=1 is simplified to the one with the length two, i.e., K = 2, such
that (T1,�1) is the blood type space (TB,�B); (T2,�2) is the other factor space that needs
coincidence, i.e., for all t2, t′2 ∈ T2, t2 �2 t

′
2 ⇔ t2 = t′2; T2 contains at least four elements.

We denote it as T2 = {I, II, III, IV, . . .}.

This assumption seems too specific, but can reasonably accommodate the current prac-
tice. For example, consider the simplest space TB × T2 = TB × {l, s} × {c1, c2} where the
component space {l, s} of T2 expresses the sizes of grafts, large (l) or small (s); moreover,
the component space {c1, c2} of T2 does the types of leucocyte. There are many types of leu-
cocyte which are an important compatibility condition for lung transplantation. However,
these types cannot be classified with a clear formula.36 For this reason, the cross-match test
is used and there would be at least two types which are incompatible with each other.37

What is common within a T2 space is that it needs a coincidence of types for a donor and a
recipient. With these two component spaces of T2, it is reasonable to assume at least four
elements in T2. Hence, our example space satisfies Assumption 3. Note that T2 can be any
larger cardinality as long as it contains four elements.

Assumption 4 (On the number of living donors of each patient). The following three
conditions hold.38

1. Each patient has at most two living donors, i.e., for each i ∈ N , |DL
i | ≤ 2.

2. At least four patients have multiple living donors, i.e., there exist distinct i, j, k, ℓ ∈ N

such that for each m ∈ {i, j, k, ℓ}, |DL
m| = 2.

3. The highest-priority patient σ(1) has multiple living donors, i.e., |DL
σ(1)| ≥ 2.

36We would like to thank Prof. Takahiro Oto for numerous useful comments from his expertise.
37Although the red blood cell has four types of A, B, O, AB, leucocyte also has many types. The human

leucocyte is first classified into three types of A, B, DR, and then each of A, B, DR is classified into dozens
of antigen types. Moreover, there are unknown types, i.e., the antigens have not yet been exhausted. It
is known that every human being has two of the HLA (human leucocyte antigen)s. Thus, for example,
when each of A, B, DR types are assumed to contain 20 antigens, human HLA types are

(
60
2

)
= 1770. The

extreme diversity and the existence of unknown types make it hard to specify which type is compatible with
the given type. For this reason, in practice, the cross-match test is carried out to experiment whether the
patient’s and donor’s blood have the immunological rejection in HLA type. In our example, for simplicity,
the HLA type is described by the two types. Note that our general setup, especially the fact that T2 can
be large as long as it contains four types, allows more complex type spaces.

38A special case of the model satisfying this assumption is a market formed by four or more patients with
exactly two living donors for each (Ergin, Sönmez, and Ünver, 2017).
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The first condition is weak compared with the corresponding one in Ergin, Sönmez, and
Ünver (2017) that requires each patient to have exactly two living donors. The second
condition is also weak because hundreds of patients are in line for deceased donors in the
Japanese lung market. The last condition seems strong but is actually weak, because our
notion of donors include potential donors who are incompatible and usually do not show
up in hospitals. Theoretically speaking, this assumption is for simplification. That is, to
maintain our main result of Theorem 3, we can drop Assumption 4 when there are at
least four patients and each of them faces further uncertainty over the number of the other
patients’ living donors.

Assumption 5 (Type space restriction). For each i ∈ N , we redefine the type space Θi to
slightly restrict a feasible type profile.39

Θi :=

{
θi ∈ T {i}∪DL

i

∣∣∣∣∣ i) ∀d, d′ ∈ DL
i , θi(d) � θi(i) and θi(d

′) � θi(i) ⇒ d = d′,

ii) ∀d ∈ DL
i , θi(d) ̸= θi(i)

}
.

The new definition of the type space excludes that a patient has a living donor who is not
only compatible with the own patient but also has the identical type with the patient. Let
us emphasize that the new definition does not necessarily exclude a compatible living donor.
It only excludes the complete coincidence between the type of a patient and her own donor.
Since T2 can be any large set, the restriction of the type space leaves almost no loss of
generality.40

We are now ready to state our main result of this subsection which asserts that each
priority mechanism is robust against strategic behavior under incomplete information even
when the living-donor exchange is allowed.

Theorem 3. The truth-telling strategy profile s∗ = (s∗1, . . . , s
∗
n) ∈

∏
i∈N Si is a Bayesian

Nash equilibrium in G.

Theorem 3 shows that priority mechanisms satisfy a version of the ordinal Bayesian
incentive compatibility discussed in D’Aspremont and Peleg (1988) and Majumdar and Sen
(2004). Note that we adopt Assumption 1 that ensures the truth-telling about patients’
medical type throughout this paper, and Assumption 2 that might be a plausible restriction
along with the problem pertaining to patients’ death throughout this section. Thus, the
appropriately adjusted version of the ordinal Bayesian incentive compatibility with respect

39The role of Assumption 5 is critical only when Y = HE. Theorem 3 can be proved without it if
Y ∈ {O,E,H}.

40For example, a cross-match type space based on individual tissue type can be large.
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to the given prior belief {pi}i∈N is the following: given a regime Y ∈ {O,E,H,HE}, a
mechanism φ is ordinally Bayesian incentive-compatible with respect to {pi}i∈N if
for each i ∈ N , each (Ri, θi) ∈ R×Θi, each R′

i ∈ R, and each ui(·; θi) : {20, 10, 11, 02, 00} →
R satisfying Assumption 2,∑

(R−i;θ−i)∈RN\{i}×Θ−i

pi(R−i; θ−i |Ri, θi)ui

(
φi(θdc ; (Ri, θi); (Rj, θj)j ̸=i)

∣∣∣Ri, θi

)

≥
∑

(R−i;θ−i)∈RN\{i}×Θ−i

pi(R−i; θ−i |Ri, θi)ui

(
φi(θdc ; (R

′
i, θi); (Rj, θj)j ̸=i)

∣∣∣Ri, θi

)
.

Now we are ready to restate the incentive-compatible nature of priority mechanisms.

Corollary 1. Under any regime Y ∈ {O,E,H,HE}, any priority mechanisms are ordinally
Bayesian incentive-compatible.

5 Conclusion

We introduce a dual-organ market where patients are in the two markets for deceased donors
and living donors. We investigated the properties of the priority mechanism. Without donor
exchange, the priority mechanism is shown to be individually rational, Pareto efficient,
fair, and strategy-proof. However, once we allow for donor exchange, we lose its strategy-
proofness. Because patients’ manipulation is risky, we show that the priority mechanism
is robust against any manipulation by showing that the truth-telling strategy profile is a
Bayesian Nash equilibrium under the uncertainty over other patients’ type and preference,
i.e., priority mechanisms are ordinally Bayesian incentive-compatible.

For countries with many deceased donors, it will be more appropriate to consider a static
model with multiple deceased donors or a dynamic model developed by Ünver (2010) for a
kidney exchange. We believe that our model of a static model with a single deceased donor
is important in the light of the current status of many countries, including Japan, and is
also a benchmark for extended models.

A Appendix : The Japanese mechanism in lung market

In this appendix, we provide a formal description of the Japanese mechanism introduced in
Subsection 4.1. To describe the Japanese mechanism formally, we need some notations. For
each (R; θ) ∈ RN ×Θ,
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• N20(R; θ) = {i ∈ N(R; θ) | 20 Pi 00 Pi 10} is the set of all patients who think the
only the dual-graft transplant as acceptable;

• N21(R; θ) = {i ∈ N(R; θ) | 20 Pi 10 Pi 00} is the set of all patients who prefer the
dual-graft transplant to single-graft ones with no unacceptable surgery types;

• N10(R; θ) = {i ∈ N(R; θ) | 10 Pi 00 Pi 20} is the set of all patients who think the
only single-graft transplant as acceptable;

• N12(R; θ) = {i ∈ N(R; θ) | 10 Pi 20 Pi 00} is the set of all patients who prefer the
single-graft transplant to dual-graft ones with no unacceptable surgery types.

Note that the sets N20(R; θ), N21(R; θ), N10(R; θ), and N12(R; θ) are disjoint.

Definition 8 (Japanese mechanism). Under the regime O, the Japanese mechanism,
φJ , selects an allocation for each (R; θ) ∈ RN ×Θ as follows.

First, we consider the case with θdcq = 2. If N(R; θ) = ∅, then let φJ(R; θ) =(
(0, ∅), · · · , (0, ∅)

)
. Otherwise, let i1 := Top(⪰;N(R; θ)).

Case 1: i1 ∈ N20(R; θ) ∪N21(R; θ).
For each i ∈ N ,

φJ
i (R; θ) =

(2, ∅) if i = i1,

(0, ∅) if i ̸= i1.

Case 2: i1 ∈ N10(R; θ) ∪N12(R; θ) and
(
N10(R; θ) ∪N12(R; θ)

)
\{i1} ̸= ∅.

Let i2 := Top(⪰;
(
N10(R; θ) ∪N12(R; θ)

)
\{i1}). For each i ∈ N ,

φJ
i (R; θ) =

(1, ∅) if i = i1 or i = i2,

(0, ∅) if i ∈ N\{i1, i2}.
Case 3: N10(R; θ) ∪N12(R; θ) = {i1}.

Case 3.1: N21(R; θ) ̸= ∅.
Let i3 := Top(⪰;N21(R; θ)). For each i ∈ N ,

φJ
i (R; θ) =

(1, ∅) if i = i1 or i = i3,

(0, ∅) if i ∈ N\{i1, i3}.
Case 3.2: N21(R; θ) = ∅.

Case 3.2.1: i1 ∈ N10(R; θ) and N20(R; θ) ̸= ∅.
Let i4 := Top(⪰;N20(R; θ)). For each i ∈ N ,

φJ
i (R; θ) =

(2, ∅) if i = i4,

(0, ∅) if i ̸= i4.
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Case 3.2.2: i1 ∈ N12(R; θ) or N20(R; θ) = ∅.
For each i ∈ N ,

φJ
i (R; θ) =

(1, ∅) if i = i1,

(0, ∅) if i ̸= i1.

Next, we consider the case with θdcq = 1. If N21(R; θ)∪N12(R; θ)∪N10(R; θ) = ∅, then
let φJ(R; θ) =

(
(0, ∅), · · · , (0, ∅)

)
. Otherwise,

Case 4: N12(R; θ) ∪N10(R; θ) ̸= ∅.
Let i5 := Top(⪰;N12(R; θ) ∪N10(R; θ)). For each i ∈ N ,

φJ
i (R; θ) =

(1, ∅) if i = i5,

(0, ∅) if i ̸= i5.

Case 5: N12(R; θ) ∪N10(R; θ) = ∅.
Let i6 := Top(⪰;

(
N21(R; θ)). For each i ∈ N ,

φJ
i (R; θ) =

(1, ∅) if i = i6,

(0, ∅) if i ̸= i6.

B Appendix: Proofs

In this appendix, we provide the omitted proofs in the main text.

Proof of Proposition 1. Let aθ ∈ A(θ) be arbitrary. First, we show two claims.

Claim 1.
∪
i∈N

(
aθLi \DL

i

)
=
∪
i∈N

[
DL

i ∩

(∪
j ̸=i

aθLj

)]
.

To show that the left hand side of the equality is a subset of the right hand side, let
d ∈ ∪i∈N

(
aθLi \DL

i

)
. Then there is i ∈ N such that d ∈ aθLi \DL

i . Since d ∈ DL = ∪j∈ND
L
j

and d ̸∈ DL
i , there is j0 ∈ N\{i} such that d ∈ DL

j0
. Moreover, d ∈ aθLi ⊆ ∪j ̸=j0a

θL
j . Thus

d ∈ DL
j0
∩
(
∪j ̸=j0a

θL
j

)
.

To show the converse, let d ∈ ∪i∈N
[
DL

i ∩
(
∪j ̸=ia

θL
j

)]
. Then there is i ∈ N such that

d ∈ DL
i ∩

(
∪j ̸=ia

θL
j

)
. Thus, there is j0 ∈ N\{i} such that d ∈ aθLj0 . Since DL

i ∩ DL
j0

= ∅,
d ∈ DL

i implies d ̸∈ DL
j0

. Thus d ∈ aθLj0 \D
L
j0

. 2
Claim 2. Both

∪
i∈N

(
aθLi \DL

i

)
and

∪
i∈N

[
DL

i ∩

(∪
j ̸=i

aθLj

)]
are a direct union.

Let i, i′ ∈ N be distinct. If d ∈
(
aθLi \DL

i

)
∩
(
aθLi′ \DL

i′

)
, then d ∈ aθLi ∩ aθLi′ . This violates

the second condition of an allocation (2). Thus ∪i∈N
(
aθLi \DL

i

)
is direct a union.
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If d ∈
[
DL

i ∩
(∪

j ̸=i a
θL
j

)]
∩
[
DL

i′ ∩
(∪

j ̸=i′ a
θL
j

)]
, then d ∈ DL

i ∩ DL
i′ , a contradiction.

Thus, ∪i∈N
[
DL

i ∩
(
∪j ̸=ia

θL
j

)]
is also a direct union. 2

Now we turn back to the proof of Proposition 1. We have

∑
i∈N

∣∣∣aθLi \DL
i

∣∣∣ = ∣∣∣∣∣∪
i∈N

(
aθLi \DL

i

)∣∣∣∣∣ =
∣∣∣∣∣∪
i∈N

[
DL

i ∩

(∪
j ̸=i

aθLj

)]∣∣∣∣∣ =∑
i∈N

∣∣∣∣∣DL
i ∩

(∪
j ̸=i

aθLj

)∣∣∣∣∣ . (∗)

Note that the first and the third equalities follow from Claim 2, while the second one follows
from Claim 1. On the other hand, the balanced condition requires

∀i ∈ N,
∣∣∣aθLi \DL

i

∣∣∣ ≤ ∣∣∣DL
i ∩

(
∪j ̸=i a

θL
j

)∣∣∣.
For the equality (∗) to be true, the balanced condition must hold with equality for each
i ∈ N .

To show Remark 3, we need the following lemma.

Lemma 1. Under any regime Y ∈ {O,H}, non-wastefulness implies individual rationality.

Proof. Let (R; θ) ∈ RN ×Θ. We show the contrapositive. Suppose that aθ ∈ AY (θ) is not
individually rational at (R; θ). Then we have a patient i ∈ N such that (0, ∅) Pi a

θ
i . Since

Y ∈ {O,H}, no patient j ∈ N\{i} uses a graft from a living donor in DL
i at aθ. That

is, for each j ∈ N\{i}, aθLj ∩ DL
i = ∅. Thus, letting bθi := (0, ∅), we have (i) bθi Pi a

θ
i , (ii)

(bθi ; a
θ
−i) ∈ AY (θ) and (iii) bθCi = 0 < aθCi and bθLi = ∅ ⊆ aθLi . This means that aθ is wasteful

at (R; θ).

Proof of Remark 3. (Item 1) The first part is trivial. The second one is already shown
in Example 1.
(Item 2) Since the first part is trivial, we only show the second part. Let Y ∈ {O,H} and
(R; θ) ∈ RN × Θ. Suppose that aθ ∈ AY (θ) is non-wasteful at (R; θ). Let bθ ∈ AY (θ) be
such that for each i ∈ N , bθi Ri a

θ
i . It is sufficient to show that there is no i ∈ N such

that bθi Pi a
θ
i . We consider four cases separately according to the distribution of grafts from

dc. Note that aθ is individually rational at (R; θ) by Lemma 1. Consequently, bθ is also
individually rational at (R; θ).
Case 1: ∃i ∈ N s.t. aθi ∈ X20

i (θ). Note that no patient, except for patient i, receives
a non-null transplant at aθ, since all grafts from dc are used by i and the regime under
consideration is Y ∈ {O,H}. Thus, at the induced allocation, aθi = (2, DL

i ). If patient i’s
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assignment bθi is not (2, ∅), i.e., bθi ∈ X10
i (θ)∪ X̃11

i (θ)∪X00
i (θ), then bθi Pi a

θ
i , bθCi ≤ aθCi , and

bθLi ⊆ aθLi . This violates the non-wastefulness of aθ at (R; θ). Thus bθi = (2, ∅). Note that
as bθCi = 2 and Y ∈ {O,H}, no patient, except for patient i, receives a non-null transplant
at bθ. Thus bθ = aθ.
Case 2:

∑
i∈N aθCi = 2 and ̸ ∃i ∈ N s.t. aθi ∈ X20

i (θ). Then there exist i, j ∈ N such
that i ̸= j and aθCi = aθCj = 1. Note that no patient, except for patients i and j, receives
a non-null transplant at aθ, since all grafts from dc are used by i and j, and the regime
under consideration is Y ∈ {O,H}. Thus, at the induced allocation, aθi = (1, DL

i ) and
aθj = (1, DL

j ).
If bθi = (2, ∅), then bθCj = 0. Since Y ∈ {O,H}, bθj = (0, ∅). However, this violates the

fact that bθj Rj a
θ
j Pj (0, ∅), as bθj Rj a

θ
j , aθj (̸= (0, ∅)) is individually rational at (R; θ). Thus

bθi ̸= (2, ∅). Thus, as Y ∈ {O,H}, bθi ∈ X10
i (θ) ∪ X̃11

i (θ) ∪ X00
i (θ). Note that bθCi ≤ aθCi

and bθLi ⊆ aθLi . Therefore, bθi Pi a
θ
i is impossible as it violates the non-wastefulness of aθ

at (R; θ). Thus bθi Ii a
θ
i . Since Y ∈ {O,H}, bθi = aθi . By the identical argument, we have

bθj = aθj . Note that, as Y ∈ {O,H}, no patient, except for patients i and j, receives a
non-null transplant at bθ. Thus bθ = aθ.
Case 3:

∑
i∈N aθCi = 1. We treat two cases separately according to the number of available

grafts from dc.
Case 3.1: θdcq = 1. We can show that bθ = aθ by the same argument as the proof for Case
1.
Case 3.2: θdcq = 2. Let i ∈ N be the patient such that aθCi = 1. Note that, since Y ∈ {O,H},
no patient, except for patient i, receives a non-null transplant at aθ. Note also that one
graft from dc is disposed at aθ. Thus, the induced allocation is as follows: For each j ∈ N ,

aθj =

(2, DL
j ) if j = i,

(1, DL
j ) if j ̸= i.

Note that, since Y ∈ {O,H}, bθi satisfies that bθCi ≤ aθCi and bθLi ⊆ aθLi . Therefore, bθi Pi a
θ
i

is impossible as it violates the non-wastefulness of aθ at (R; θ). Thus bθi Ii aθi . Since
Y ∈ {O,H}, bθi = aθi . Thus bθCi = 1.

Since patient i uses one graft from dc at bθ, for each j ∈ N\{i}, bθCj ≤ 1. Thus
bθj ∈ X10

j (θ) ∪ X̃11
j (θ) ∪ X00

j (θ). Note that bθj satisfies that bθCj ≤ aθCj and bθLj ⊆ aθLj , since
Y ∈ {O,H}. Therefore, bθj Pj aθj is impossible as it violates the non-wastefulness of aθ at
(R; θ). Thus bθj Ij a

θ
j . Since Y ∈ {O,H}, bθj = aθj = (0, ∅). Summing up with aθi = bθi , we

obtain bθ = aθ.
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Case 4:
∑

i∈N aθCi = 0. Note that no patient receives a non-null transplant at aθ, since
Y ∈ {O,H}. Note also that all grafts from dc are disposed at aθ. Thus the induced allocation
is: for each i ∈ N , aθi = (θdcq, D

L
i ). If patient i’s assignment bθi is in X20

i (θ)∪X10
i (θ)∪X̃11

i (θ)∪
X00

i (θ) and bθi Pi a
θ
i , then aθ is wasteful at (R; θ). Thus, bθi ̸∈ X20

i (θ)∪X10
i (θ)∪X̃11

i (θ)∪X00
i (θ)

or aθi Ri b
θ
i . Note that since Y ∈ {O,H}, bθi ̸∈ X20

i (θ)∪X10
i (θ)∪X̃11

i (θ)∪X00
i (θ) is impossible.

Thus aθi Ri b
θ
i . Because we assume that bθi Ri a

θ
i , this implies aθi Ii b

θ
i . Since Y ∈ {O,H},

bθi = aθi . Thus bθ = aθ.

As bθ = aθ for all of the four cases, no patient prefers bθ to aθ. This completes the proof
of Item 2.

(Item 3) We show the statement by two examples. First, we show that Pareto efficiency
does not imply strong non-wastefulness. Obviously, allocation aθ described in Example 1 is
Pareto efficient, while it is strongly wasteful. Next, we show that strong non-wastefulness
does not imply Pareto efficiency under any regime Y ∈ {E,HE}. Let (T,�) = (TB,�B).
Assume, without loss of generality, that patients 1 and 2 have multiple living donors. Let
d11, d12 ∈ DL

1 and d21, d22 ∈ DL
2 . Let θ ∈ Θ be such that θdcT = AB, θ(1) = θ(d21) =

θ(d22) = A and θ(2) = θ(d11) = θ(d12) = B. Suppose that for each i ∈ N\{1, 2} and each
d ∈ DL\{d11, d12, d21, d22}, θ(i) = O and θ(d) = AB. Let R ∈ RN be such that

R1 02 00 · · ·
R2 02 00 · · ·

Consider the allocation aθ := ((0, ∅), (0, ∅)). The allocation is trivially non-wasteful at
(R; θ). Note that no feasible allocation uses a graft from dc at all, since the deceased donor
is not compatible with any patients. Thus aθ is strongly non-wasteful at (R; θ). On the
other hand, since it is Pareto dominated by allocation ((0, {d21, d22}), (0, {d11, d12})), aθ is
not Pareto efficient at (R; θ).

Proof of Remark 4. (First half of Item 1: ⪰-fairness ̸⇒ individual rationality) We prove
it by an example. Let (T,�) = (TB,�B). Let i be the highest-priority patient. Let θ ∈ Θ

be such that θdc = (2, A) and θ(i) = A. Let R ∈ RN be such that Ri · · · 00 20 · · · .
An allocation where i receives (2, ∅) is trivially ⪰-fair because the highest-priority patient
receives all grafts from dc. However, (2, ∅) is not acceptable for patient i, i.e., the allocation
is not in IY (R; θ).

(The latter half of Item 1: Pareto efficiency and ⪰-fairness ̸⇒ individual rationality) We
prove it by an example. Let (T,�) = (TB,�B). Assume, without loss of generality, that
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patients 1 and 2 have multiple living donors. Let d11, d12 ∈ DL
1 and d21, d22 ∈ DL

2 . Let
θ ∈ Θ be such that θdcT = AB, θ(1) = θ(d21) = θ(d22) = A and θ(2) = θ(d11) = θ(d12) = B.
Suppose that for each i ∈ N\{1, 2} and each d ∈ DL\{d11, d12, d21, d22}, θ(i) = O and
θ(d) = AB. Let R ∈ RN be such that

R1 02 00 · · ·
R2 00 02 · · ·

Consider allocation aθ := ((0, {d21, d22}), (0, {d11, d12})) ∈ AY (θ). Note that aθ is not
individually rational at (R; θ) because aθ2 is not acceptable for patient 2.

We claim that aθ is Pareto efficient and ⪰-fair at (R; θ). Since no patient is compat-
ible with the grafts from dc, aθ is trivially ⪰-fair at (R; θ). Next we show the Pareto
efficiency. Suppose that bθ ∈ AY (θ) is such that bθ1 R1 aθ1 and bθ2 R2 aθ2. Note that
X02

1 = {(0, {d21, d22})}. Thus, since the living-donor dual-graft transplantation, 02, is the
top choice at R1, bθ1 = aθ1. By Proposition 1, patient 2 receives two grafts from other patients’
living-donors because her own donors (d21 and d22) donate two grafts to other patient in
total. Thus bθ2 = (0, {d11, d12}). Thus bθ = aθ. This completes the proof of Pareto efficiency.

(Item 2) We show it by an example. Let (T,�) = (TB,�B). Assume, without loss of
generality, that 1 ≻ 2. Let θ ∈ Θ be such that θdc = (2, A) and θ(1) = θ(2) = A. Suppose
that for each i ∈ N\{1, 2} and each d ∈ DL, θ(i) = O and θ(d) = AB. Let R ∈ RN be such
that

R1 10 20 00 · · ·
R2 20 00 · · ·

First, consider allocation aθ := ((0, ∅), (2, ∅)) ∈ AY (θ). This allocation is non-wasteful,
strongly non-wasteful, and Pareto efficient at (R; θ), because the two grafts from dc go to
patient 2 whose top choice is (2, ∅) and the market has no living donor compatible with a
patient. However, aθ is not ⪰-fair at (R; θ), because patient 1 can be better off by using a
graft from dc assigned to lower-priority patient (patient 2). Thus, neither non-wastefulness,
strong non-wastefulness, nor Pareto efficiency implies ⪰-fairness.

Next, consider allocation bθ := ((2, ∅), (0, ∅)). Since the highest-priority patient 1 uses
all grafts from dc, bθ is trivially ⪰-fair at (R; θ). However, bθ is wasteful at (R; θ), because
patient 1 can be better off by disposing of one graft from dc without affecting patient
2’s assignment. Formally, letting cθ1 := (1, ∅), (i) cθ1 P1 bθ1, (ii) (cθ1, b

θ
2) ∈ AY (θ) and (iii)

cθC1 = 1 ≤ b
θC

1 and cθL1 = ∅ ⊆ b
θL

1 . This means that bθ is wasteful at (R; θ). Thanks to
Remark 3, bθ is not strongly non-wasteful at (R; θ), and not Pareto efficient at (R; θ). Thus
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⪰-fairness does not imply any one of non-wastefulness, strong non-wastefulness and Pareto
efficiency.

Proof of Proposition 2. We prove it by an example. We use the same example as in
Example 1. Assume, without loss of generality, that the priority is given as 1 ≻ 2. Obviously,
IY (R; θ) consists of just three allocations: aθ :=

(
(1, ∅), (0, ∅)

)
, bθ :=

(
(0, ∅), (2, ∅)

)
, and

cθ :=
(
(0, ∅), (0, ∅)

)
. Allocation aθ is ⪰-fair, but is not strongly non-wasteful, since the two

grafts from dc can be used at allocation bθ. Next, allocation bθ is strongly non-wasteful,
but is not ⪰-fair, since agent 1 can be better off by using one graft from dc assigned to
agent 2 who is of lower priority than agent 1. Finally, allocation cθ is wasteful, since one of
the agents 1 and 2 can be better off by using the grafts from dc that are disposed of at cθ.
Thus, no individually rational allocation satisfies ⪰-fairness and strong non-wastefulness at
(R; θ).

Proof of Proposition 3. Item (i) is trivial. Items (iii) to (v) are shown in Example 2.
So it remains to show (ii). Since Pareto efficiency is equivalent to non-wastefulness under
regime O by Remark 3, we show that φJ is non-wasteful. Note that under regime O, non-
wastefulness only requires that no patient be better off by using a disposed graft from dc.
This is straightforward.

Proof of Remark 5. (Item 1) Trivial.

(Item 2) Let Y ∈ {O,H}. We show that for each (R; θ) ∈ RN ×Θ, ΦY (R; θ) is a singleton.
Let aθ, bθ ∈ ΦY (R; θ). By Item 1, for each i ∈ N, aθi Ii b

θ
i . Note that regimes O and H allow

only transplants in X20
i (θ), X10

i (θ), X̃11
i (θ), and X00

i (θ). Thus, aθi Ii bθi implies aθi = bθi . Thus
aθ = bθ.

(Item 3) Let Y ∈ {E,HE}. We show that for some (R; θ) ∈ RN × Θ, ΦY (R; θ) contains
at least two allocations. Let (T,�) = (TB,�B). Assume, without loss of generality, that
patients 1 and 2 have multiple living donors. Let d11, d12 ∈ DL

1 and d21, d22 ∈ DL
2 . Let θ ∈ Θ

be such that θdcT = AB, θ(1) = θ(d21) = A, θ(2) = θ(d11) = B and θ(d12) = θ(d22) = O.
Suppose that for each i ∈ N\{1, 2} and each d ∈ DL\{d11, d12, d21, d22}, θ(i) = O and
θ(d) = AB. Let R ∈ RN be such that

R1 02 00 · · ·
R2 02 00 · · ·
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Note that the only compatible donors for patients in N\{1, 2} are d12 and d22. Thus, if a
patient i ∈ N\{1, 2} receives a non-null transplant at an allocation, it must be (0, {d12, d22}).
However, in that case, patients 1 and 2 also receive a non-null transplant with receiving at
least one graft from other patient’s living donor (Proposition 1). Because there are not
enough compatible donors for patients 1 and 2 to receive a non-null transplant without d12
and d22, every feasible allocation assigns the null transplant (0, ∅) to patients in N\{1, 2}.

For any priority order ⪰, ΦY (R; θ) contains all allocations where patients 1 and 2 receive
living-donor transplants. Note that both ((0, {d12, d21}), (0, {d11, d22})) and

(
(0, DL

2 ), (0, D
L
1 )
)

are in ΦY (R; θ).

Note that in the following proof, there is no specification of regime except for strategy-
proofness.

Proof of Theorem 1. We assume, without loss of generality, that 1 ≻ 2 ≻ . . . ≻ n.
(Individual rationality) Trivial.

(Pareto efficiency) Let (R; θ) ∈ RN ×Θ. Suppose to the contrary that there is an allocation
aθ ∈ AY (θ) such that for each i ∈ N , aθi Ri φ

P
i (R; θ) and for some i ∈ N , aθi Pi φ

P
i (R; θ).

Note that aθ ∈ IY (R; θ) = ΦY
0 (R; θ), since aθ Pareto-dominates an individually rational

allocation φP (R; θ). Let i ∈ N be the highest-priority patient among those who prefer aθ

to φP (R; θ). Note that this implies that for each j ∈ N with j ≻ i, aθj Ij φP
j (R; θ). Thus

aθ ∈ ΦY
i−1(R; θ). Since aθi Pi φ

P
i (R; θ), φP (R; θ) ̸∈ ΦY

i (R; θ) ⊇ ΦY (R; θ), a contradiction.

(⪰-fairness) Let (R; θ) ∈ RN × Θ. Let aθ := φP (R; θ). Suppose to the contrary that there
is an allocation bθ ∈ IY (R; θ) such that for some i ∈ N , (i) bθi Pi a

θ
i , (ii) bθCi > aθCi and for

each j ∈ N with j ≻ i, bθCj = aθCj and (iii) for each j ∈ N , aθj Pj b
θ
j implies aθCj > bθCj .

If for each j ∈ N with j ≻ i, bθj Rj a
θ
j , then allocation aθ is excluded from the priority

correspondence at some step, the latest step i, of the algorithm. That is, there is j ∈
{1, . . . , i} such that aθ ̸∈ ΦY

j (R; θ) ⊇ ΦY (R; θ), a contradiction. Thus there is j ∈ N with
j ≻ i such that aθj Pj b

θ
j . By Item (iii), aθCj > bθCj . This contradicts the second part of Item

(ii).

(Strategy-proofness) Let Y ∈ {O,H}. Suppose to the contrary that there are (R; θ) ∈
RN ×Θ, i ∈ N and R′

i ∈ R such that φP
i (R

′
i, R−i; θ) Pi φ

P
i (R; θ). For notational simplicity,

let R′ := (R′
i, R−i).

Since regime Y does not allow for donor exchange, any preference misreporting cannot
affect the individual assignment of higher-priority patients in the priority mechanism. That
is, for each j ∈ N with j ≻ i, φP

j (R; θ) Ij φP
j (R

′; θ). Thus, since indifferent individual
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assignments are identical in regime Y , for each j ∈ N with j ≻ i, φP
j (R; θ) = φP

j (R
′; θ). Note

that φP (R′; θ) is individually rational at (R; θ) because φP
i (R

′; θ) Pi φ
P
i (R; θ) Ri (0, ∅) and

R′
−i = R−i. Thus φP (R′; θ) ∈ IY (R; θ) = ΦY

0 (R; θ). Thus we obtain φP (R′; θ) ∈ ΦY
i−1(R; θ).

Hence φP (R; θ) ̸∈ ΦY
i (R; θ) ⊇ ΦY (R; θ), a contradiction.

Proof of Proposition 4. The proof of individual rationality, Pareto efficiency, and ⪰-
fairness is identical with that of Theorem 1. Non-strategy-proofness is by Example 4.

Proof of Theorem 2. Suppose to the contrary that a mechanism under Y ∈ {E,HE}, φ,
satisfies all axioms stated in Theorem 2. Let (T,�) = (TB,�B). Assume, without loss of
generality, that patients 1 and 2 have multiple living donors and that 1 ≻ 2. Let d11, d12 ∈
DL

1 and d21, d22 ∈ DL
2 . Let θ ∈ Θ be such that θdc = (2, O), θ(1) = θ(d21) = θ(d22) = A

and θ(2) = θ(d11) = θ(d12) = B. Let R1, R
′
1, R2, R

′
2 ∈ R be preferences of patients 1 and 2

described by the following table.

R1 02 10 00 · · ·
R′

1 02 20 10 00 · · ·
R2 10 02 00 · · ·
R′

2 10 00 · · ·

Let R−{1,2} ∈ RN\{1,2} be a preference profile such that each patient j ∈ N\{1, 2} has
(0, ∅) as the most preferred in Rj. Note that each patient in N\{1, 2} receives (0, ∅), no
matter when patients 1 and 2 submit any preference because φ is individually rational.
In the subsequent part of the proof, we omit their assignments in the description of an
allocation. First, we show the following claim.

Claim. φ(R1, R2, R−{1,2}; θ) = ((1, ∅), (1, ∅)).
Suppose to the contrary that φ(R1, R2, R−{1,2}; θ) ̸= ((1, ∅), (1, ∅)). Note that the

only individually rational and Pareto efficient allocations at (R1, R2, R−{1,2}; θ) are aθ :=

((0, {d21, d22}), (0, {d11, d12})) and bθ := ((1, ∅), (1, ∅)). Thus, by the contradiction hypothe-
sis, φ(R1, R2, R−{1,2}; θ) = aθ. On the other hand, bθ is the only individually rational and
Pareto efficient allocation at (R1, R

′
2, R−{1,2}; θ). Thus φ(R1, R

′
2, R−{1,2}; θ) = bθ. Therefore,

φ2(R1, R
′
2, R−{1,2}; θ) P2 φ2(R1, R2, R−{1,2}; θ), a violation of strategy-proofness of φ. This

completes the proof of Claim.

Next, we consider patient 1’s assignment at φ(R′
1, R2, R−{1,2}; θ). Note that since φ is in-

dividually rational, φ1(R
′
1, R2, R−{1,2}; θ) is one of the following assignments: (0, ∅), (1, ∅), (2, ∅), (0, {d21, d22}).

We separately derive a contradiction for each case.

43



Case 1: φ1(R
′
1, R2, R−{1,2}; θ) = (0, ∅). Then φ1(R1, R2, R−{1,2}; θ) = (1, ∅) P ′

1 (0, ∅) =

φ1(R
′
1, R2, R−{1,2}; θ), a violation of strategy-proofness of φ.

Case 2: φ1(R
′
1, R2, R−{1,2}; θ) = (1, ∅). Since φ(R′

1, R2, R−{1,2}; θ) is Pareto efficient at
(R′

1, R2, R−{1,2}; θ), the assignment of patient 2 is φ2(R
′
1, R2, R−{1,2}; θ) = (1, ∅), i.e., φ(R′

1, R2, R−{1,2}; θ) =

bθ. However, bθ is not ⪰-fair at (R′
1, R2, R−{1,2}; θ), because cθ := ((2, ∅), (0, ∅)) ∈ IY (R′

1, R2, R−{1,2}; θ).
This violates the ⪰-fairness of φ.
Case 3: φ1(R

′
1, R2, R−{1,2}; θ) = (2, ∅). Note that no patient in N\{2} uses patient 2’s

living donor. By Proposition 1, patient 2’s assignment does not use any graft from other’s
living donor. Moreover, patient 2 cannot use a graft from dc, since all grafts from dc are
assigned to patient 1. Thus the assignment of patient 2 is φ2(R

′
1, R2, R−{1,2}; θ) = (0, ∅),

i.e., φ(R′
1, R2, R−{1,2}; θ) = cθ. However, cθ is Pareto dominated by aθ at (R′

1, R2, R−{1,2}; θ).
This violates Pareto efficiency of φ.
Case 4: φ1(R

′
1, R2, R−{1,2}; θ) = (0, {d21, d22}). We have φ1(R

′
1, R2, R−{1,2}; θ) = (0, {d21, d22}) P1

(1, ∅) = φ1(R1, R2, R−{1,2}; θ), a violation of strategy-proofness of φ.

Since the above four cases exhaust all possibilities of φ1(R
′
1, R2, R−{1,2}; θ), we conclude

that φ(R′
1, R2, R−{1,2}; θ) is not well-defined, a contradiction.

To prove Theorem 3, we need two lemmas. Lemma 2 says that if a patient can suc-
cessfully manipulate a priority mechanism, then the assignment under the true preference
necessarily contains a graft from other patient’s living donor. Consequently, the transplant
is an acceptable one at the true preference. Moreover, at the false preference, the assignment
under the true preference is evaluated as unacceptable. That is, successful manipulation
forces the patient to pretend that she cannot accept a transplantation type which is actually
an acceptable one.

Lemma 2. Under any regime Y ∈ {E,HE}, for each (R; θ) ∈ RN × Θ, each i ∈ N , and
each R′

i ∈ R, if φP
i (R

′
i, R−i; θ) Pi φ

P
i (Ri, R−i; θ), then

(i) φP
i (Ri, R−i; θ) ∈

(
X11

i (θ)\X̃11
i (θ)

)
∪X02

i (θ). Consequently, φP
i (Ri, R−i; θ) ̸= (0, ∅).

(ii) φP
i (R

′
i, R−i; θ) P

′
i (0, ∅) P ′

i φ
P
i (Ri, R−i; θ).

Proof. Let (R; θ) ∈ RN × Θ, i ∈ N and R′
i ∈ R. Suppose φP

i (R
′
i, R−i; θ) Pi φ

P
i (Ri, R−i; θ).

For notational simplicity, let bθ := φP (R′
i, R−i; θ) and aθ := φP (Ri, R−i; θ). Assume, without

loss of generality, that 1 ≻ 2 ≻ . . . ≻ n.

Proof of Item (i). Suppose to the contrary that aθi ̸∈
(
X11

i (θ)\X̃11
i (θ)

)
∪X02

i (θ). Namely,
aθi is a deceased-donor dual-graft, deceased-donor single-graft, hybrid with own donor, or
null transplant. We claim

∀j ∈ N with j ≻ i, bθj Ij a
θ
j . (4)
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To show (4), suppose to the contrary that at least one patient j ∈ N with j ≻ i is not
indifferent between bθj and aθj , i.e., bθj Pj a

θ
j or aθj Pj b

θ
j . We derive a contradiction for each

case separately. Without loss of generality, suppose that j is the highest-priority patient
who has such a preference.
Case 1: aθj Pj b

θ
j . Let cθ be such that

cθk =

(0, ∅) if k = i,

aθk if k ̸= i.

Note that cθ ∈ AY (θ), since aθi does not use other’s donor. Moreover, cθ ∈ IY (R′
i, R−i; θ),

since the only difference between (Ri, R−i; θ) and (R′
i, R−i; θ) is patient i’s preference. Thus

cθ ∈ ΦY
0 (R

′
i, R−i; θ). By the definition of j, for each k < j, cθk = aθk Ik bθk. Thus cθ ∈

ΦY
j−1(R

′
i, R−i; θ). Since aθj Pj bθj , bθ ̸∈ ΦY

j (R
′
i, R−i; θ) ⊇ ΦY (R′

i, R−i; θ). However, bθ =

φP (R′
i, R−i; θ) ∈ ΦY (R′

i, R−i; θ), a contradiction.
Case 2: bθj Pj aθj . Since bθ ∈ IY (R′

i, R−i; θ) and bθi Pi aθi Ri (0, ∅), bθ ∈ IY (Ri, R−i; θ).
Thus bθ ∈ ΦY

0 (Ri, R−i; θ). By the definition of j, for each k < j, aθk Ik bθk. Thus bθ ∈
ΦY

j−1(Ri, R−i; θ). Thus, aθ ̸∈ ΦY
j (Ri, R−i; θ) ⊇ ΦY (Ri, R−i; θ). However, aθ = φP (Ri, R−i; θ) ∈

ΦY (Ri, R−i; θ), a contradiction.
Summing up Cases 1 and 2, we get (4).
Now we complete the proof of Item (i). Note that as we have seen in Case 2, bθ ∈

IY (Ri, R−i; θ). Thus, by (4), bθ ∈ ΦY
i−1(Ri, R−i; θ). Since bθi Pi a

θ
i , aθ ̸∈ ΦY

i (Ri, R−i; θ) ⊇
ΦY (Ri, R−i; θ). However, aθ = φP (Ri, R−i; θ) ∈ ΦY (Ri, R−i; θ), a contradiction. □
Proof of Item (ii): We show the first part of Item (ii). Since φP is individually rational, it
is obvious that bθi = φP

i (R
′
i, R−i; θ) R

′
i (0, ∅). If bθi = (0, ∅), then (0, ∅) Pi a

θ
i = φP

i (Ri, R−i; θ),
a violation to individual rationality of φP . Thus we obtain bθi P

′
i (0, ∅).

Next, we show the second part of Item (ii), i.e., (0, ∅) P ′
i aθi . Suppose to the contrary

that aθi R′
i (0, ∅). Then, both aθ and bθ are individually rational at both (Ri, R−i; θ) and

(R′
i, R−i; θ), since the only difference between (Ri, R−i; θ) and (R′

i, R−i; θ) is patient i’s
preference. We consider the following two cases separately, and derive a contradiction for
each.
Case 1: ∀j ∈ N with j ≻ i, aθj Ij bθj . By bθ ∈ IY (Ri, R−i; θ) and the assumption for
Case 1, bθ ∈ ΦY

i−1(Ri, R−i; θ). Since bθi Pi a
θ
i , aθ ̸∈ ΦY

i (Ri, R−i; θ) ⊇ ΦY (Ri, R−i; θ). Thus,
aθ = φP (Ri, R−i; θ) ̸∈ ΦY (Ri, R−i; θ), a contradiction.
Case 2: Let j ∈ N be the highest-priority patient with j ≻ i and not aθj Ij b

θ
j .

Case 2.1: aθj Pj bθj . By aθ ∈ IY (R′
i, R−i; θ) and the assumption for Case 2.1, aθ ∈
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ΦY
j−1(R

′
i, R−i; θ). Since aθj Pj bθj , bθ ̸∈ ΦY

j (R
′
i, R−i; θ) ⊇ ΦY (R′

i, R−i; θ). Thus, bθ =

φP (R′
i, R−i; θ) ̸∈ ΦY (R′

i, R−i; θ), a contradiction.
Case 2.2: bθj Pj aθj . By bθ ∈ IY (Ri, R−i; θ) and the assumption for Case 2.2, bθ ∈
ΦY

j−1(Ri, R−i; θ). Since bθj Pj aθj , aθ ̸∈ ΦY
j (Ri, R−i; θ) ⊇ ΦY (Ri, R−i; θ). Thus, aθ =

φP (Ri, R−i; θ) ̸∈ ΦY (Ri, R−i; θ), a contradiction.

Lemma 3 says that a patient i has a profitable deviation only if she has a donor di with a
special medical type: a graft with patient i’s medical type is not compatible with a patient
with di’s medical type. To see why this is true, let us take a look at Figure 8. Let i be a
patient who has donors with identical type except for the blood type. In that figure, x, y,
and z represent the blood types of patient i, 1st donor of i, and 2nd donor of i, respectively.
Suppose that patient i has a profitable deviation. That is, she has a false preference with
which she can get a more preferable transplant to the one with the true preference. In figure
8, the solid arrows represent the flow of living donors at the allocation under patient i’s true
preference. Let us call the allocation a. By Lemma 2, patient i gets a hybrid transplant
with other’s donor or living-donor dual-graft transplant at a. In either case, she uses a graft
from other patient’s living donor, say dk. By Proposition 1, one of the patient i’s donors
donates to a patient, say j.

We claim that group i’s contribution at a must be critical to maintain the welfare level
of other patients. If x�1 z holds, then the donor dk can donate to patient j directly, because
the blood type compatibility relation �1 = �B is transitive. This means that the patients in
N\{i} can attain the welfare level of a without the contribution of group i. Consequently,
even if patient i reports a preference which states that ai is unacceptable, other patients can
keep consuming transplants indifferent with a−i. Thus patient i’s deviation has no effect on
the priority mechanism. This contradicts that patient i has a profitable deviation. Thus, x
cannot be blood-type-compatible with z, i.e., x ̸ �1 z.

Lemma 3. Let Y ∈ {E,HE}, (R; θ) ∈ RN ×Θ and i ∈ N . Suppose that for each d ∈ DL
i ,

θ(d) is identical with θ(i) except for the blood type, i.e., θ2(d) = θ2(i). Then,

[
∃R′

i ∈ R s.t. φP
i (R

′
i, R−i; θ) Pi φ

P
i (Ri, R−i; θ)

]
⇒
[
∃d ∈ DL

i s.t. θ1(i) ̸ �1 θ1(d)
]
.

Proof. Assume, without loss of generality, 1 ≻ 2 ≻ . . . ≻ n. Suppose to the contrary that

∀d ∈ DL
i , θ1(i) �1 θ1(d). (5)

Fix patient i’s profitable deviation R′
i ∈ R. For notational simplicity, let bθ := φP (R′

i, R−i; θ)
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Figure 8: Patient with a profitable deviation necessarily plays a critical role in the donor
exchange.

and aθ := φP (R; θ). The proof consists of three steps.

Step 1: Defining new allocations b′θ and a′θ. We define b′θ and a′θ in AY (θ) based on bθ

and aθ. Since the way to generate a′θ from aθ is the same as the one for b′θ from bθ, we
only describe the construction of b′θ in detail. The definition of b′θ varies according to the
number of other patient’s living donors in bθLi . Each case below corresponds to the case
where the number is 0, 1 and 2, respectively.
Case 1: bθi ∈ X20

i (θ) ∪X10
i (θ) ∪ X̃11

i (θ) ∪X00
i (θ). For each m ∈ N ,

b′θm :=

(0, ∅) if m = i,

bθm if m ̸= i.

Obviously, b′θ ∈ AY (θ).
Case 2: bθi ∈ X11

i (θ)\X̃11
i (θ) or

[
bθi ∈ X02

i (θ) and bθLi ∩DL
i ̸= ∅

]
. Let di ∈ DL

i be i’s donor
who donates to other patient, say k ∈ N\{i}, at bθ, i.e., di ∈ bθLk . Let dℓ ∈ DL

ℓ be other
patient’s donor who donates to i at bθ, i.e., ℓ ̸= i and dℓ ∈ bθLi . For each m ∈ N ,

b′θm :=


(0, ∅) if m = i,

(bθCk , (bθLk \{di}) ∪ {dℓ}) if m = k,

bθm if m ̸∈ {i, k}.

We claim that b′θ ∈ AY (θ). To show this, it is sufficient to prove that dℓ is compatible with
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k, i.e., θ(dℓ) � θ(k). First, we show

θ2(dℓ) �2 θ2(i) (∵ dℓ ∈ bθLi )

�2 θ2(di) (∵ Assumption of Lemma 3)
�2 θ2(k). (∵ di ∈ bθLk )

Since the binary relation �2 is the equality “=”, it is transitive. Thus θ2(dℓ) �2 θ2(k).
Similarly,

θ1(dℓ) �1 θ1(i) (∵ dℓ ∈ bθLi )

�1 θ1(di) (∵ The contradiction hypothesis (5))
�1 θ1(k). (∵ di ∈ bθLk )

Since the binary relation �1 is transitive, θ1(dℓ) �1 θ1(k). In sum, θ(dℓ) � θ(k). Thus
b′θ ∈ AY (θ).
Case 3: bθi ∈ X02

i (θ) and bθLi ∩DL
i = ∅. Let di1, di2 ∈ DL

i be i’s donor who donate to other
patient(s), say k, ℓ ∈ N\{i}, at bθ, i.e., di1 ∈ bθLk and di2 ∈ bθLℓ . Let dp, dq ∈ DL\DL

i be
other patient’s donors who donate to i at bθ, i.e., bθLi = {dp, dq}. If k = ℓ, then let b′θ be
such that for each m ∈ N ,

b′θm :=


(0, ∅) if m = i,

(0, {dp, dq}) if m = k,

bθm if m ̸∈ {i, k}.

If k ̸= ℓ, then let b′θ be such that for each m ∈ N ,

b′θm :=



(0, ∅) if m = i,

(bθCk , (bθLk \{di1}) ∪ {dp}) if m = k,

(bθCℓ , (bθLℓ \{di2}) ∪ {dq}) if m = ℓ,

bθm if m ̸∈ {i, k, ℓ}.

In either case, the proof for b′θ ∈ AY (θ) is the same as the one given in Case 2. Thus we
omit it.

In the same manner, we define a′θ based on aθ.41 Note that every patient, except for i,
receives the same transplantation type at b′θ and bθ in each case. This is true at a′θ and aθ.

41By Lemma 2, aθi is a hybrid transplant with other’s donor or a living-donor dual-graft transplant. Thus
Case 1 is redundant to define a′θ.
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Thus we have
∀k ∈ N\{i}, b′θk Ik b

θ
k and a′θk Ik a

θ
k. (6)

Step 2: We show that for each j ∈ N with j ≻ i, bθj Ij aθj . Suppose to the contrary that for
some j ∈ N with j ≻ i, bθj Pj aθj or aθj Pj bθj . Let j be the highest-priority patient among
the patients who are not indifferent between bθ and aθ.

First, suppose bθj Pj aθj . Note that b′θ ∈ IY (R; θ) by b′θi = (0, ∅) and (6). Thus b′θ ∈
ΦY

0 (R; θ). By the definition of j and (6), for each k ∈ N with k ≻ j, aθk Ik bθk Ik b′θk . Thus
b′θ ∈ ΦY

j−1(R; θ). By (6), b′θj Ij bθj Pj aθj . Thus we conclude aθ ̸∈ ΦY
j (R; θ) ⊇ ΦY (R; θ),

contradicting aθ = φP (R; θ) ∈ ΦY (R; θ).
Next, suppose that aθj Pj bθj . Note that a′θ ∈ IY (R′

i, R−i; θ) by a′θi = (0, ∅) and (6).
Thus a′θ ∈ ΦY

0 (R
′
i, R−i; θ). By the definition of j and (6), for each k ∈ N with k ≻ j,

bθk Ik aθk Ik a′θk . Thus a′θ ∈ ΦY
j−1(R

′
i, R−i; θ). By (6), a′θj Ij aθj Pj bθj . Thus we conclude

bθ ̸∈ ΦY
j (R

′
i, R−i; θ) ⊇ ΦY (R′

i, R−i; θ). This contradicts bθ = φP (R′
i, R−i; θ) ∈ ΦY (R′

i, R−i; θ).
In either case, we obtain a contradiction. This completes the proof of Step 2.

Step 3: We complete the proof. Since bθ satisfies that bθi Pi aθi Ri (0, ∅) and bθk =

φP
k (R

′
i, R−i; θ) Rk (0, ∅) for all k ∈ N\{i}, we have bθ ∈ IY (R; θ) = ΦY

0 (R; θ). Thus,
by Step 2, bθ ∈ ΦY

i−1(R; θ). Since bθi Pi a
θ
i , we conclude aθ ̸∈ ΦY

i (R; θ) ⊇ ΦY (R; θ). This
contradicts aθ = φP (R; θ) ∈ ΦY (R; θ).

Proof of Theorem 3. Without loss of generality, assume that 1 ≻ 2 ≻ . . . ≻ n. Suppose
to the contrary that for some i ∈ N , (R∗

i , θ
∗
i ) ∈ R×Θi, and Ri ∈ R,∑

(R−i;θ−i)∈RN\{i}×Θ−i

pi(R−i; θ−i |R∗
i , θ

∗
i )u

∗
i

(
φP
i (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i)

∣∣∣R∗
i , θ

∗
i

)
<

∑
(R−i;θ−i)∈RN\{i}×Θ−i

pi(R−i; θ−i |R∗
i , θ

∗
i )u

∗
i

(
φP
i (θdc ; (Ri, θ

∗
i ); (Rj, θj)j ̸=i)

∣∣∣R∗
i , θ

∗
i

)
.

(7)

A direct consequence of the hypothesis (7) is that at least one (R′
−i; θ

′
−i) ∈ RN\{i} × Θ−i,

we have

u∗
i

(
φP
i (θ

′
dc ; (R

∗
i , θ

∗
i ); (R

′
j, θ

′
j)j ̸=i)

∣∣∣R∗
i , θ

∗
i

)
< u∗

i

(
φP
i (θ

′
dc ; (Ri, θ

∗
i ); (R

′
j, θ

′
j)j ̸=i)

∣∣∣R∗
i , θ

∗
i

)
(8)

Thus, patient i is not the highest-priority patient, i.e., i ̸= 1. Since φP
i (θ

′
dc
; (R∗

i , θ
∗
i ); (R

′
j, θ

′
j)j ̸=i)

is at least as good as (0, ∅) at R∗
i , patient i’s true preference R∗

i has at least one acceptable
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transplantation type, i.e., Aci(R∗
i ) ̸= ∅. Thus we can apply Assumption 2 to patient i. More-

over, by Lemma 2, φP
i (θ

′
dc
; (R∗

i , θ
∗
i ); (R

′
j, θ

′
j)j ̸=i) ∈

(
X11

i (θ∗i , θ
′
−i)\X̃11

i (θ∗i , θ
′
−i)
)
∪X02

i (θ∗i , θ
′
−i)

and (0, ∅) Pi φP
i (θ

′
dc
; (R∗

i , θ
∗
i ); (R

′
j, θ

′
j)j ̸=i). Consequently, at least one of the following two

statements holds:

02 is acceptable at R∗
i , but not acceptable at Ri. (9)

11 is acceptable at R∗
i , but not acceptable at Ri. (10)

In the subsequent part of the proof, we show

∃(R−i; θ−i) ∈ RN\{i} ×Θ−i s.t.

 φP
i (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i) ∈ Aci(R

∗
i )

and
φP
i (θdc ; (Ri, θ

∗
i ); (Rj, θj)j ̸=i) = (0, ∅)

 . (11)

Note that (11) contradicts inequality (7) because Assumption 2 states that even if misreport-
ing Ri is successful for every (R̃−i; θ̃−i) ∈

(
RN\{i} ×Θ−i

)
\{(R−i; θ−i)}, i.e., φP

i (Ri, R̃−i; θ
∗
i , θ̃−i) P

∗
i

φP
i (R

∗
i , R̃−i; θ

∗
i , θ̃−i), the expected utility gain from misreporting is canceled out by the fail-

ure of misreporting at (R−i; θ−i) (See statement (11)).
In the following, we construct (R−i; θ−i) ∈ RN\{i} × Θ−i to show (11) for each case

separately. For notational simplicity, we will use the following notation in every case.

a := φP (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) and b := φP (θdc ; (Ri, θ

∗
i ); (Rj, θj)j ̸=i).

That is, a denotes the allocation under i’s truth-telling at (R−i; θ−i) constructed in the
case under consideration, and b does the allocation under i’s misreporting at (R−i; θ−i)

constructed in the case under consideration.
By Assumption 4, let j, k ∈ N\{1, i} be distinct patients who have two living donors.

Let DL
1 = {d11, d12}, DL

j = {dj1, dj2}, and DL
k = {dk1, dk2}.

Case 1: Patient i has two living donors, i.e., |DL
i | = 2. Let DL

i = {di1, di2}.
Case 1.1: (9) holds.
Case 1.1.1: | {θ∗i2(i), θ∗i2(di1), θ∗i2(di2)} | = 3. Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) =

(y, II), θ∗i (di2) = (z, III), where x, y, z ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:
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Figure 9: Allocations a and b in Case 1.1.1.

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (AB, IV )

) 
θ1(1) = (AB, II)

θ1(d11) = (O, II)

θ1(d12) = (O, I)


θj(j) = (AB, III)

θj(dj1) = (O, III)

θj(dj2) = (O, I)

{
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.42

R1 02 00 · · ·
Rj 02 00 · · ·

Claim 1.1.1a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am =



(0, {di1, d11}) if m = 1,

(0, {d12, dj2}) if m = i,

(0, {di2, dj1}) if m = j,

(0, ∅) if m ∈ N\{1, i, j}.

Proof. Since the above allocation is the only individually rational and Pareto efficient
allocation at (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), φP selects it. □

Claim 1.1.1b: For the above (R−i; θ−i) ∈ RN\{i} × Θ−i, allocation b is, for each m ∈ N ,
bm = (0, ∅).
Proof. Since 02 is unacceptable at Ri, patients 1 and j cannot receive living-donor dual-
graft transplants. Moreover the grafts from the deceased donor are not compatible with any
patient. □
Case 1.1.2: | {θ∗i2(i), θ∗i2(di1), θ∗i2(di2)} | = 2.

42The preferences of patients in N\{1, i, j} are omitted because they are free. In the later cases, the
omitted preferences are free, too.
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Figure 10: Allocations a and b in Case 1.1.2.1.

Case 1.1.2.1: θ∗i2(di1) ̸= θ∗i2(di2). Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) =

(y, I), θ∗i (di2) = (z, II), where x, y, z ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (AB, III)

) 
θ1(1) = (AB, I)

θ1(d11) = (O, II)

θ1(d12) = (O, I)


θj(j) = (AB, II)

θj(dj1) = (O, I)

θj(dj2) = (O, I)

{
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 00 · · ·
Rj 02 00 · · ·

Claim 1.1.2.1a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am ∈

X02
m (θ∗i , θ−i) if m ∈ {1, i, j},

X00
m (θ∗i , θ−i) if m ∈ N\{1, i, j}.

Proof. Since the above allocation is the only individually rational and Pareto efficient
allocation at (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), φP selects it. 2

Claim 1.1.2.1b: For the above (R−i; θ−i) ∈ RN\{i} × Θ−i, allocation b is, for each m ∈ N ,
bm = (0, ∅).
Proof. Since 02 is unacceptable at Ri, bi cannot be 02. Moreover the grafts from the
deceased donor are not compatible with patient i. Thus bi = (0, ∅). This implies that di2

does not donate to any patient (Proposition 1). Thus, bj = (0, ∅), since 02 is the only
acceptable transplantation type for patient j. This implies that dj1 and dj2 do not donate
to any patient. Thus b1 = (0, ∅). 2
Case 1.1.2.2: θ∗i2(di1) = θ∗i2(di2). Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) =

(y, II), θ∗i (di2) = (z, II), where x, y, z ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:
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Figure 11: Allocations a and b in Case 1.1.2.2.

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (AB, IIV )

) 
θ1(1) = (AB, II)

θ1(d11) = (O, III)

θ1(d12) = (O, III)


θj(j) = (AB, III)

θj(dj1) = (O, I)

θj(dj2) = (O, I)

{
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 00 · · ·
Rj 02 00 · · ·

Claim 1.1.2.2a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am =



(0, DL
i ) if m = 1,

(0, DL
j ) if m = i,

(0, DL
1 ) if m = j,

(0, ∅) if m ∈ N\{1, i, j}.

Proof. Since the above allocation is the only individually rational and Pareto efficient
allocation at (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), φP selects it. 2

Claim 1.1.2.2b: For the above (R−i; θ−i) ∈ RN\{i} × Θ−i, allocation b is, for each m ∈ N ,
bm = (0, ∅).
Proof. Since 02 is unacceptable at Ri, bi cannot be 02. Moreover the grafts from the
deceased donor are not compatible with patient i. Thus, bi = (0, ∅). This implies that di1

and di2 do not donate to any patient (Proposition 1). Thus b1 = (0, ∅) since 02 is the only
acceptable transplantation type for patient 1. This implies that d11 and d12 do not donate
to any patient. Thus bj = (0, ∅). 2
Case 1.1.3: | {θ∗i2(i), θ∗i2(di1), θ∗i2(di2)} | = 1. Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) =

(y, I), θ∗i (di2) = (z, I), where x, y, z ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:
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Figure 12: Allocations a and b in Case 1.1.3.

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (AB, III)

) 
θ1(1) = (AB, I)

θ1(d11) = (O, II)

θ1(d12) = (O, II)


θj(j) = (AB, II)

θj(dj1) = (O, I)

θj(dj2) = (O, I)

{
θm(m) = (O, III)

θm(d) = (AB, III)

• The definition of R−i.

R1 02 00 · · ·
Rj 02 00 · · ·

Claim 1.1.3a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am ∈

X02
m (θ∗i , θ−i) if m ∈ {1, i, j},

X00
m (θ∗i , θ−i) if m ∈ N\{1, i, j}.

Proof. Since the above allocation is the only individually rational and Pareto efficient
allocation at (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), φP selects it. 2

Claim 1.1.3b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =


(0, DL

j ) if m = 1,

(0, DL
1 ) if m = j,

(0, ∅) if m ∈ N\{1, j}.

Proof. Since 02 is unacceptable at Ri, bi cannot be 02. Moreover the grafts from the
deceased donor are not compatible with patient i. Thus bi = (0, ∅). The only individually
rational and Pareto efficient allocation at (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), φP selects it. 2

Case 1.2: (10) holds.
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Case 1.2.1: | {θ∗i2(i), θ∗i2(di1), θ∗i2(di2)} | = 3. Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) =

(y, II), θ∗i (di2) = (z, III), where x, y, z ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:

• The definition of θ−i: For m ∈ N \ {1, i, j} and d ∈ DL
m,

{
θdc =

(
2, (O, I)

) 
θ1(1) = (AB, I)

θ1(d11) = (O, I)

θ1(d12) = (O, II)


θj(j) = (AB, II)

θj(dj1) = (O, I)

θj(dj2) = (O, I)

{
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 20 00 · · ·
Rj 02 00 · · ·

Claim 1.2.1a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am ∈


X02

m (θ∗i , θ−i) if m ∈ {1, j},

X11
m (θ∗i , θ−i) if m = i,

X00
m (θ∗i , θ−i) if m ∈ N\{1, i, j}.

Proof. Since the allocation in the left hand side of Figure 13 is in IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) =

ΦY
0 (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), a1 ∈ X02

1 (θ∗i , θ−i). Since a1 is 02, d12 donates to a patient
(Proposition 1). Since only patient j can receive d12’s donation, d12 ∈ aLj . Since the only
acceptable transplantation type for j is 02, aj ∈ X02

j (θ∗i , θ−i). Since a1 and aj is 02, d11,
dj1 and dj2 donate to a patient respectively (Proposition 1). Since two of them donate to
patient 1, the remaining one donates to patient i. Since no other living donor is compatible
with patient i, ai ∈ X11

i (θ∗i , θ−i). 2
Claim 1.2.1b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =

(2, ∅) if m = 1,

(0, ∅) if m ∈ N\{1}.

Proof. In a similar manner to Claim 1.2.1a, we can show that b1 is 02 only if bi is 11.
However, since 11 is unacceptable at Ri, b1 is not 02. Thus b1 = (2, ∅). Thus each patient
in N\{1} cannot use a graft from dc. Thus bm is not 20, 10 or 11 for each m ∈ N\{1}.
Since patient j cannot find two compatible living donors in DL\DL

1 , bj ̸∈ X02
j (θ∗i , θ−i).

Thus bj = (0, ∅). Since patient m ∈ N\{1, j} cannot find two compatible living donors in
DL\(DL

1 ∪DL
j ), bm ̸∈ X02

m (θ∗i , θ−i). Thus bm = (0, ∅). 2
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Figure 13: Allocations a and b in Case 1.2.1.

Case 1.2.2: | {θ∗i2(i), θ∗i2(di1), θ∗i2(di2)} | = 2.
Case 1.2.2.1: θ∗i2(di1) ̸= θ∗i2(di2). Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) =

(y, I), θ∗i (di2) = (z, II), where x, y, z ∈ B. We consider the following three cases separately.
Case 1.2.2.1.1: y ̸ �1 x. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (O, I)

) 
θ1(1) = (x, I)

θ1(d11) = (O, II)

θ1(d12) = (O, III)


θj(j) = (AB, II)

θj(dj1) = (O, I)

θj(dj2) = (O, III)


θk(k) = (AB, III)

θk(dk1) = (O, I)

θk(dk2) = (O, I){
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 20 00 · · ·
Rj 02 00 · · ·
Rk 02 00 · · ·

Claim 1.2.2.1.1a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am ∈


X02

m (θ∗i , θ−i) if m ∈ {1, j, k},

X11
m (θ∗i , θ−i) if m = i,

X00
m (θ∗i , θ−i) if m ∈ N\{1, i, j, k}.

Proof. Since the allocation in the left hand side of Figure 14 is in IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) =

ΦY
0 (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), a1 ∈ X02

1 (θ∗i , θ−i). Since a1 is 02, d11 and d12 donate to a pa-
tient respectively (Proposition 1). Since only patients j and k can receive d11’s and d12’s
donation respectively, d11 ∈ aLj and d12 ∈ aLk . Since the only acceptable transplantation
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Figure 14: Allocations a and b in Case 1.2.2.1.1.

type for j and k is 02, aj ∈ X02
j (θ∗i , θ−i) and ak ∈ X02

k (θ∗i , θ−i). Thus aLj = {d11, di2} and
aLk = {d12, dj2}. Since aj and ak are 02, dj1, dk1 and dk2 donate to a patient respectively
(Proposition 1). Since two of them donate to patient 1, the remaining one donates to pa-
tient i (Recall that y ̸ �1 x). Since no other living donor is compatible with patient i,
ai ∈ X11

i (θ∗i , θ−i). 2
Claim 1.2.2.1.1b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =

(2, ∅) if m = 1,

(0, ∅) if m ∈ N\{1}.

Proof. In a similar manner to Claim 1.2.2.1.1a, we can show that b1 is 02 only if bi is 11.
However, since 11 is unacceptable at Ri, b1 is not 02. Thus b1 = (2, ∅). Thus each patient
in N\{1} cannot use a graft from dc. Thus bm is not 20, 10 or 11 for each m ∈ N\{1}.
Since patient k cannot find two compatible living donors in DL\DL

1 , bk ̸∈ X02
k (θ∗i , θ−i).

Thus bk = (0, ∅). Since patient m ∈ N\{1, k} cannot find two compatible living donors in
DL\(DL

1 ∪DL
k ), bm ̸∈ X02

m (θ∗i , θ−i). Thus bm = (0, ∅). 2
Case 1.2.2.1.2: y = x. Note that y = x implies that θ∗i (i) = (x, I) = (y, I) = θ∗i (di1).
Thus, by Assumption 5, this case is excluded.
Case 1.2.2.1.3: y �1 x and y ̸= x. Note that y �1 x and y ̸= x imply that the combination
of x and y is one of the following five: (O,A), (O,B), (O,AB), (A,AB), (B,AB). Note also
that each of them satisfies x ̸ �1 y. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:
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• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (O, I)

) 
θ1(1) = (y, I)

θ1(d11) = (O, III)

θ1(d12) = (O, III)


θj(j) = (AB, III)

θj(dj1) = (x, I)

θj(dj2) = (y, I)

{
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 20 00 · · ·
Rj 02 00 · · ·

Claim 1.2.2.1.3a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am =



(0, {di1, dj2}) if m = 1,

(1, {dj1}) if m = i,

(0, {d11, d12}) if m = j,

(0, ∅) if m ∈ N\{1, i, j}.

Proof. Since the above allocation is in IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) = ΦY

0 (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i),

a1 ∈ X02
1 (θ∗i , θ−i). Since only di1 and dj2 are compatible with patient 1, a1 = (0, {di1, dj2})

(Recall that x ̸ �1 y). Since a1 is 02, d11 and d12 donate to a patient respectively (Propo-
sition 1). Since only patients j can receive d11’s and d12’s donation, aj = (0, {d11, d12}).
Since aj is 02, dj1 donates to a patient (Proposition 1). Since patient 1 cannot receive dj1’s
donation, it goes to i, i.e., dj1 ∈ aLi . Since no other living donor is compatible with patient
i, ai = (1, {dj1}). 2
Claim 1.2.2.1.3b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =

(2, ∅) if m = 1,

(0, ∅) if m ∈ N\{1}.

Proof. In a similar manner to Claim 1.2.2.1.3a, we can show that b1 is 02 only if bi is 11.
However, since 11 is unacceptable at Ri, b1 is not 02. Thus b1 = (2, ∅). Thus each patient
in N\{1} cannot use a graft from dc. Thus bm is not 20, 10 or 11 for each m ∈ N\{1}.
Since patient j cannot find two compatible living donors in DL\DL

1 , bj ̸∈ X02
j (θ∗i , θ−i).

Thus bj = (0, ∅). Since patient m ∈ N\{1, j} cannot find two compatible living donors in
DL\(DL

1 ∪DL
j ), bm ̸∈ X02

m (θ∗i , θ−i). Thus bm = (0, ∅). 2
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Figure 15: Allocations a and b in Case 1.2.2.1.3.

Case 1.2.2.2: θ∗i2(di1) = θ∗i2(di2). Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) =

(y, II), θ∗i (di2) = (z, II), where x, y, z ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (O, I)

) 
θ1(1) = (AB, I)

θ1(d11) = (O, I)

θ1(d12) = (O, III)


θj(j) = (AB, II)

θj(dj1) = (O, I)

θj(dj2) = (O, III)


θk(k) = (AB, III)

θk(dk1) = (O, II)

θk(dk2) = (O, I){
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 20 00 · · ·
Rj 02 00 · · ·
Rk 02 00 · · ·

Claim 1.2.2.2a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am ∈


X02

m (θ∗i , θ−i) if m ∈ {1, j, k}

X11
m (θ∗i , θ−i) if m = i

X00
m (θ∗i , θ−i) if m ∈ N\{1, i, j, k}.

Proof. Since the allocation in the left hand side of Figure 16 is in IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) =

ΦY
0 (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), a1 ∈ X02

1 (θ∗i , θ−i). Since a1 is 02, d12 donates to a patient
(Proposition 1). Since only patients k can receive d12’s donation, d12 ∈ aLk . Since the
only acceptable transplantation type for patient k is 02, ak ∈ X02

k (θ∗i , θ−i). Thus aLk =

{d12, dj2}. Since dj2 donates to patient k, patient j receives an acceptable transplant, i.e.
aj ∈ X02

j (θ∗i , θ−i). Thus aLj consists of dk1 and one of di1 and di2 (Note that if aLj = DL
i ,
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Figure 16: Allocations a and b in Case 1.2.2.2.

then dk1 cannot donate to any patient). Since a1, aj and ak are 02, d11, dj1 and dk2 donate
to a patient respectively (Proposition 1). Since two of them donate to patient 1, the re-
maining one donates to patient i, i.e., ai uses a living donor. Since no other living donor is
compatible with patient i, ai ∈ X11

i (θ∗i , θ−i). 2
Claim 1.2.2.2b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =

(2, ∅) if m = 1,

(0, ∅) if m ∈ N\{1}.

Proof. In a similar manner to Claim 1.2.2.2a, we can show that b1 is 02 only if bi is 11.
However, since 11 is unacceptable at Ri, b1 is not 02. Thus b1 = (2, ∅). Thus each patient
in N\{1} cannot use a graft from dc. Thus bm is not 20, 10 or 11 for each m ∈ N\{1}.
Since patient k cannot find two compatible living donors in DL\DL

1 , bk ̸∈ X02
k (θ∗i , θ−i). Thus

bk = (0, ∅). Since patient j cannot find two compatible living donors in DL\(DL
1 ∪DL

k ), bj ̸∈
X02

j (θ∗i , θ−i). Thus bj = (0, ∅). Since patient m ∈ N\{1, j, k} cannot find two compatible
living donors in DL\(DL

1 ∪DL
j ∪DL

k ), bm ̸∈ X02
m (θ∗i , θ−i). Thus bm = (0, ∅). 2

Case 1.2.3: | {θ∗i2(i), θ∗i2(di1), θ∗i2(di2)} | = 1. Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) =

(y, I), θ∗i (di2) = (z, I), where x, y, z ∈ B. By the definition of Θi, at least one of di1 and di2

is not compatible with patient i, i.e., y ̸ �1 x or z ̸ �1 x. Without loss of generality, assume
that y ̸ �1 x. Thus x ̸= AB. By Lemma 3, x ̸ �1 y or x ̸ �1 z. Thus x ̸= O. Summing
up, we have x ∈ {A,B}. Without loss of generality, we assume x = A till the end of Case
1.2.3.43

Note that since y ̸ �1 x, y ∈ {B,AB}. Moreover, we have the following two claims that

43The same argument works for the case with x = B by replacing A with B and B with A in the proof
given here.
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narrow down the combination of x, y and z.
Claim 1.2.3: The combination of x, y and z, written as (x, y, z), is one of the following five:
(i) (A,B,O), (ii) (A,B,B), (iii) (A,B,AB), (iv) (A,AB,O), and (v) (A,AB,B).
Proof. First, we show that y = B or z ∈ {O,B} by contradiction. Suppose to the contrary
that y ̸= B and z ̸∈ {O,B}. Since y ∈ {B,AB}, y = AB. Since z ∈ B\{O,B} = {A,AB},
we have x = A �1 AB = y and x = A �1 z, contradicting Lemma 3.

Now we complete the proof of Claim 1.2.3. Note that x = A and y ∈ {B,AB}. First
consider the case with y = B. Since z = A is impossible by Assumption 5, we have (i),
(ii), and (iii). Next consider the case with y = AB. By the fact shown in the previous
paragraph, we have z ∈ {O,B}. Thus we have (iv) and (v). 2

We omit the proof for the case (v) because it is same as the one for case (iii). Let us
consider the following two cases of 1.2.3.1 and 1.2.3.2 separately.
Case 1.2.3.1: (x, y, z) is (i)(A,B,O) or (iv)(A,AB,O). Define (R−i; θ−i) ∈ RN\{i} × Θ−i

as follows:

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
1, (O, I)

) 
θ1(1) = (AB, II)

θ1(d11) = (O, II)

θ1(d12) = (O, I)


θj(j) = (O, I)

θj(dj1) = (A, I)

θj(dj2) = (O, II)

{
θm(m) = (O, III)

θm(d) = (AB, III)

• The definition of R−i.

R1 02 00 · · ·
Rj 02 11 00 · · ·

Claim 1.2.3.1a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am =



(0, {d11, dj2}) if m = 1,

(1, {dj1}) if m = i,

(0, {d12, di2}) if m = j,

(0, ∅) if m ∈ N\{1, i, j}.

Proof. Since the allocation in the left hand side of Figure 17 is in IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) =

ΦY
0 (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), a1 ∈ X02

1 (θ∗i , θ−i). Since only d11 and dj2 are compatible with
patient 1, a1 = (0, {d11, dj2}). Note that this implies that aLj contains at least one living
donor, i.e., aj is 11 or 02.
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Figure 17: Allocations a and b in Case 1.2.3.1.

Since θdcq = 1, ai cannot be 20. Moreover, ai cannot be 10 since it implies that aj is
not 11 (∵ patient j cannot use the graft from dc) and not 02 (∵ patient j cannot receive
a donation from di2 by Proposition 1). Moreover, ai cannot be 02 since it implies that di1

who has no compatible patient donates to a patient. Moreover, ai cannot be 00 (∵ Since 11

is acceptable at R∗
i , the allocation described in the left hand side of Figure 17 excludes the

allocations that assign (0, ∅) to patient i). Summing up, ai ∈ X11
i (θ∗i , θ−i). The allocation

described in the left hand side of Figure 17 enable patient j to receive 02 under the condition
that a1 ∈ X02

1 (θ∗i , θ−i) and ai ∈ X11
i (θ∗i , θ−i). Thus aj is 02. Thus aj = (0, {d12, di2}) (∵

Only d12 and di2 are compatible living donors with patient j). Thus ai = (1, {dj1}). 2
Claim 1.2.3.1b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =


(0, {d11, dj2}) if m = 1,

(1, {d12}) if m = j,

(0, ∅) if m ∈ N\{1, j}.

Proof. In a similar manner to Claim 1.2.3.1a, we can show that b1 = (0, {d11, dj2}). Note
that this implies that bLj contains at least one living donor, i.e., bj is 11 or 02.

In a similar manner to Claim 1.2.3.1a, we can show that bi is not 20, 10 or 02. Moreover,
since 11 is unacceptable at Ri, bi is not 11. Thus bi = (0, ∅). Since patient j cannot find
compatible living donors in DL\DL

1 , bj is not 02. Thus bj is 11 since the allocation described
in the right hand side of Figure 17 is available. Since it is the only allocation that assigns
02 to patient 1 and 11 to patient j, we are done. 2
Case 1.2.3.2: (x, y, z) is (ii)(A,B,B) or (iii)(A,B,AB). Define (R−i; θ−i) ∈ RN\{i}×Θ−i

as follows:
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• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
1, (O, I)

) 
θ1(1) = (AB, II)

θ1(d11) = (O, II)

θ1(d12) = (B, I)


θj(j) = (B, I)

θj(dj1) = (A, I)

θj(dj2) = (O, II)

{
θm(m) = (O, III)

θm(d) = (AB, III)

• The definition of R−i.

R1 02 00 · · ·
Rj 02 11 00 · · ·

Claim 1.2.3.2a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am =



(0, {d11, dj2}) if m = 1,

(1, {dj1}) if m = i,

(0, {d12, di1}) if m = j and (iii) holds,

(0, {d12, di1}) or (0, {d12, di2}) if m = j and (ii) holds,

(0, ∅) if m ∈ N\{1, i, j}.

Proof. Since the allocation in the left hand side of Figure 18 is in IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) =

ΦY
0 (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), a1 ∈ X02

1 (θ∗i , θ−i). Since only d11 and dj2 are compatible with
patient 1, a1 = (0, {d11, dj2}). Note that this implies that aLj contains at least one living
donor, i.e., aj is 11 or 02.

Since θdcq = 1, ai cannot be 20. Moreover, ai cannot be 10 since it implies that aj is
not 11 (∵ patient j cannot use the graft from dc) and not 02 (∵ patient j cannot receive
a donation from a patient in DL

i by Proposition 1). Moreover, ai cannot be 02 since it
implies that both di1 and di2 donate to a patient respectively. Note that d12 also donates
to a patient since a1 is 02. However, since the economy can receive donation from at most
two of di1, di2 and d12, one of di1 and di2 cannot donate any patient. Thus ai is not 02.
Moreover, ai cannot be 00 (∵ Since 11 is acceptable at R∗

i , the allocation described in the
left hand side of Figure 18 excludes the allocations that assign (0, ∅) to patient i). In sum,
ai ∈ X11

i (θ∗i , θ−i). The allocation described in the left hand side of Figure 18 enable patient
j to receive 02 under the condition that a1 ∈ X02

1 (θ∗i , θ−i) and ai ∈ X11
i (θ∗i , θ−i). Thus aj is

02. Thus aLj consists of d12 and a donor in DL
i (∵ Donors in DL

j are not compatible with
patient j). Thus ai = (1, {dj1}). 2
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Figure 18: Allocations a and b in Case 1.2.3.2.

Claim 1.2.3.2b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =


(0, {d11, dj2}) if m = 1,

(1, {d12}) if m = j,

(0, ∅) if m ∈ N\{1, j}.

Proof. In a similar manner to Claim 1.2.3.2a, we can show that b1 = (0, {d11, dj2}). Note
that this implies that bLj contains at least one living donor, i.e., bj is 11 or 02.

In a similar manner to Claim 1.2.3.2a, we can show that bi is not 20, 10 or 02. Moreover,
since 11 is unacceptable at Ri, bi is not 11. Thus bi = (0, ∅). Since patient j cannot find
compatible living donors in DL\DL

1 , bj is not 02. Thus bj is 11 since the allocation described
in the right hand side of Figure 18 is available. Since it is the only allocation that assigns
02 to patient 1 and 11 to patient j, we are done. 2
Case 2: Patient i has one living donors, i.e., |DL

i | = 1. Let DL
i = {di}. Note that, by

Proposition 1, patient i never receives a living-donor dual-graft transplant at any profile in
RN ×Θ. Thus, (10) holds.
Case 2.1: | {θ∗i2(i), θ∗i2(di)} | = 2. Without loss of generality, let θ∗i (i) = (x, I) and θ∗i (di) =

(y, II), where x, y ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (O, I)

) 
θ1(1) = (AB, I)

θ1(d11) = (O, I)

θ1(d12) = (O, III)


θj(j) = (AB, II)

θj(dj1) = (O, I)

θj(dj2) = (O, III)


θk(k) = (AB, III)

θk(dk1) = (O, II)

θk(dk2) = (O, I){
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.
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R1 02 20 00 · · ·
Rj 02 00 · · ·
Rk 02 00 · · ·

Claim 2.1a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am ∈


X02

m (θ∗i , θ−i) if m ∈ {1, j, k},

X11
m (θ∗i , θ−i) if m = i,

X00
m (θ∗i , θ−i) if m ∈ N\{1, i, j, k}.

Proof. Since the allocation in the left hand side of Figure 19 is in IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) =

ΦY
0 (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), a1 ∈ X02

1 (θ∗i , θ−i). Since a1 is 02, d12 donates to a patient
(Proposition 1). Since only patients k can receive d12’s donation, d12 ∈ aLk . Since the
only acceptable transplantation type for patient k is 02, ak ∈ X02

k (θ∗i , θ−i). Thus aLk =

{d12, dj2}. Since dj2 donates to patient k, patient j receives an acceptable transplant, i.e.
aj ∈ X02

j (θ∗i , θ−i). Thus aLj = {di, dk1} (∵ Only di and dk1 are compatible with patient j).
Thus patient i receives a donation from a living donor, i.e., ai ∈ X11

i (θ∗i , θ−i). 2
Claim 2.1b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =

(2, ∅) if m = 1,

(0, ∅) if m ∈ N\{1}.

Proof. In a similar manner to Case 2.1a, we can show that b1 is 02 only if bi is 11. Since 11

is unacceptable at Ri, b1 is not 02. Thus b1 = (2, ∅). Since b1 does not use a living donor,
d11 and d12 do not donate to any patient. Since patient k cannot find two compatible living
donors in DL\DL

1 , bk is not 02. Thus bk = (0, ∅). Since bk does not use a living donor, dk1
and dk2 do not donate to any patient. Since patient j cannot find two compatible living
donors in DL\(DL

1 ∪DL
k ), bj is not 02. Thus bj = (0, ∅). Since patient i cannot use a graft

from dc, bi is not 20, 10 or 11. 2
Case 2.2: | {θ∗i2(i), θ∗i2(di)} | = 1. Without loss of generality, let θ∗i (i) = (x, I) and θ∗i (di) =

(y, I), where x, y ∈ B. Note that x ̸ �1 y by Lemma 3. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as
follows:
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Figure 19: Allocations a and b in Case 2.1.

• The definition of θ−i: For m ∈ N \ {1, i, j} and d ∈ DL
m,

{
θdc =

(
2, (O, I)

) 
θ1(1) = (y, I)

θ1(d11) = (x, I)

θ1(d12) = (O, II)

{
θm(m) = (O, III)

θm(d) = (AB, III)

• The definition of R−i.

R1 11 20 00 · · ·

Claim 2.2a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am =


(1, {di}) if m = 1,

(1, {d11}) if m = i,

(0, ∅) if m ∈ N\{1, i}.

Proof. Since the above allocation is in IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) = ΦY

0 (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i),

a1 ∈ X11
1 (θ∗i , θ−i). Since di is the only living donor compatible with patient 1, a1 = (1, {di}).

By Proposition 1, one of d11 and d12 donates to a patient. Since donor d12 has no compatible
patient, d11 donates to patient i. Thus ai = (1, {d11}). 2
Claim 2.2b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =

(2, ∅) if m = 1,

(0, ∅) if m ∈ N\{1}.

Proof. Note that patient 1 cannot receive a hybrid transplant with own donor since x ̸ �1 y.
Since 11 is unacceptable at Ri, b1 is not 11. Thus b1 = (2, ∅). Since patient 1 uses two grafts
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Figure 20: Allocations a and b in Case 2.2.

from dc, patient i cannot use a graft from dc. Thus bi is not 20, 10 or 11. Thus bi = (0, ∅).
2
Case 3: DL

i contains no living donor. Note that, by Proposition 1, patient i never receives
a living-donor dual-graft transplant or a hybrid transplant at any profile in RN ×Θ. Thus,
by Lemma 2, patient i cannot manipulate φP .
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