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Abstract. In this study, we investigate a low-Weber-number flow of a liquid curtain bridged 

between two vertical edge guides and the upper surface of a moving substrate. Surface waves 

are observed on the liquid curtain, which are generated due to a large pressure difference between 

the inner and outer region of the meniscus on the substrate, and propagate upstream. They are 

categorised as varicose waves that propagate upstream on the curtain and become stationary 

because of the downstream flow. The Kistler’s equation, which governs the flow in thin liquid 

curtains, is solved under the downstream boundary conditions, and the numerical solutions are 

studied carefully. The solutions are categorised into three cases depending on the boundary 

conditions. The stability of the varicose waves is also discussed as wavelets were observed on 

these waves. The two types of modes staggered and peak-valley patterns are considered in the 

present study, and they depend on the Reynolds number, the Weber number, and the amplitude 

of the surface waves. The former is observed in our experiment, while the latter is predicted by 

our calculation. Both the types of modes can be derived using the equations with periodic 

coefficients that originated from the periodic base flow due to the varicose waves. The stability 

analysis of the waves shows that the appearance of the peak-valley pattern requires a 

significantly greater amplitude of the waves, and a significantly higher Weber number and 

Reynolds number compared to the condition in which the staggered pattern is observed. 

1. Introduction 

Coating of a thin liquid layer on numerous high quality products is an important step in industrial 

manufacturing [1]. The process of coating involves overlaying one or several liquid layers onto the 

surface of products. After this process, the thin liquid layers are ultimately transformed into a solid coat 

that offers specific functions for products via chilling, drying, or some other means [2]. 

 

In recent years, miniaturised and high precision liquid-crystal display (LCD) screens, which are used 

for small displays have been rapidly developed. The thin and high-precision film covering the LCD 

screen is manufactured by a slide coating method, in which the coating layer can be influenced by the 

oscillation of the slot and the substrate, as the distance between them is considerably small. On the other 

hand, curtain coating can avoid this type of influence, and is a good method for coating on rugged 

substrates. However, curtain coating has not been applied to LCD screens, because the liquid curtain 

with small discharge, i.e. small Weber number, causes instabilities of the flow and the free surfaces [3]. 
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As a new coating method, curtain coating has two outstanding advantages—it can coat extremely thin 

layers on irregular surfaces and this process can be carried out with rather high coating speeds. The 

difficulties involved with this method are mostly related to the freely falling liquid curtain. One of the 

difficulty is that the liquid curtain breaks up easily once the flow rate is under a threshold [4]. The other 

difficulty is the susceptibility to the disturbance of the freely falling liquid curtain, leading to unevenness 

of the coating layer. Given the two difficulties, this method is mostly applied with a high Weber number, 

i.e. 2We  , which implies that the inertial force is larger than the surface tension. We  is defined by 

qU   where  , q ,U  and  denote the liquid density, the unit discharge, the liquid velocity and the 

surface tension , respectively. New possibilities in curtain coating have been explored by examining the 

flow of a freely falling liquid curtain with a low Weber number ( 2We  ) [5]. Nevertheless, it focuses 

on the flow of the liquid curtain into a pool and not a substrate. In our study, we focus on a freely falling 

liquid curtain onto a substrate with a rather low Weber number ( 0.2We  ), and a roller and a conveyer 

belt are employed as the substrate. The discharge of the liquid is quite small, below which the liquid 

curtain does not form. In this case, the flow of the liquid curtain is significantly influenced by the surface 

tension and not the inertial force. 

  

One of the serious problems in curtain coating is the instability of the liquid film [6]. The influence of 

gravity and applied pressure of the surrounding air is important for the stability of the liquid curtain, 

which can clearly affect the curtain shape [7]. The wetting process [8-10], besides affecting the air 

entrainment [11], can also influence the patterns of the liquid curtain. Higher viscosity, which can 

enhance the critical speed at which the air entrainment occurs, is a good way to avoid dynamic wetting 

failure [12]. In fact, higher viscosity can also affect the stability of the liquid curtain [3]. Besides, the 

effects of surface tension on a liquid sheet falling in the gravitational field is also important [13].  

 

A number of important works on the stability of falling liquid curtain have been overlooked. Lin 

examined the stability of a viscous liquid curtain falling down steadily under the influence of gravity 

[14]. Li and Tankin investigated the temporal stability of a two-dimensional viscous liquid sheet [15]. 

Li focused on the spatial stability of a thin moving viscous plane liquid sheet in a resting inviscid gas 

medium [16]. Benilov et al. conducted a research on the stability of thin liquid curtain with respect to 

two-dimensional perturbations [17]. Liu et al. analysed the weakly nonlinear stability of a viscous planar 

liquid sheet moving in an inviscid stationary gas ambience by a perturbation expansion technique [18]. 

 

In the present study, we have considered a curtain coating wherein the height of the curtain is comparable 

to the meniscus formed above the substrate. The Weber number in the present study is quite low; 

therefore, the curtain is formed because of the bridging between the die exit and the roller surface. On 

the other hand, we have observed large amplitude varicose waves. In this study, we observe the variation 

in these waves under different conditions, and find a suitable environmental condition for the coating 

process. 

 

The contents of the present study are as follows. Section 2 introduces the experimental method and the 

experimental results with various experimental conditions of liquids, falling heights, substrate speeds, 

and process of pre-wetting. Section 3 shows the equations governing the liquid curtain profile, their 

approximate solutions, the numerical analysis and the analysis of the stability of the liquid curtain. 

Finally, in section 4, our studies are summarized. 
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2. Experimental Analysis 

2.1. Experimental set-up 

Figure 1 shows the experimental setup used in the present study. Liquid is circulated from a tank to a 

slot using a pump (ORIENTAL MOTOR Usm540-401W). The slot die has a width of 60 mm. Two 

vertical edge guides are installed on both sides of the slot, and a liquid curtain forms a bridge between 

these guides. The edge guides, each having a diameter of 1 mm, are composed of stainless steel. In 

order to understand the effect of different shapes’ substrate to the profiles ofliquid curtains, two types 

of substrates—roller and conveyer belt—are used in our experiment, both of which are made up of 

stainless steel. The roller has a diameter of 37 mm and a width of 60 mm, while the conveyer belt has 

a length of 500 mm and a width of 60 mm. 

 

   
(a)                                                                                       (b) 

Figure 1. Experimental setup with different substrates. (a) Roller (b) Conveyer belt 

 

 
Figure 2. Flow visualization. 

 

The curtain thus forms between the exit of the slot and the upper surface of the substrate. As shown in 

figure 2, the curtain pattern is visualized by the lamp (M-Visual Light Source LD-M210) over the liquid 

curtain, and images and videos are obtained by a high-speed camera (Photron Fastcam SA4). 

2.2. Surface waves 

Surface waves are observed for all the cases investigated in this study. As the substrate speed is rather 

low compared to the velocity of the liquid curtain, the curtain profile is nearly vertical and the flow of 

curtain vertically impinges on the substrate surface. The meniscus develops from the curtain to the 

roller’s surface. As the Weber number is very small, i.e. the inertial force is much lesser than the surface 

tension and the pressure difference between the inner and outer region of the meniscus on the surface of 
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the substrate is considerably large, surface waves are produced and develops upstream as shown in figure 

3. In the present paper, subWe , subCa , Re  denote the Weber number above the substrate, the Capillary 

number above the substrate, and the Reynolds number, and are defined by /sqU  , /sU  , and 

/q  , respectively. Here,  , q , sU , , and   denote the liquid density, the unit discharge, the liquid 

velocity at the bottom of the liquid curtain, the surface tension, and the viscosity, respectively. The 

captions of parameters in the experiments appearing in figure 4, 6, 8 and 9 are listed in table 1. We 

established that the wave number and the wave amplitude of the surface waves depend on the properties 

of liquids and the the falling heights, given in section 2.2.1. In addition, the process of prewetting and 

the substrate speed also influences the surface waves, as observed in section 2.2.2. The surface waves 

and their stability are discussed in section 3. 

 

 
Figure 3. Pressure difference near the meniscus. inP  and outP , denote the pressure inside and outside 

of the meniscus, respectively.  denotes the surface tension. 

 

Table 1. Captions of parameters in the experiments. 

V  Substrate speed 

q   Unit discharge 

h   Falling height 

W:E:G Water:ethanol:glycerine 

Re  Reynolds number 

subWe  Weber number above the substrate 

subCa  Capillary number above the substrate 

 

2.2.1. Roller experiment 

Table 2 lists the liquid properties and the experimental conditions in this experiment, which aids in 

classifying the variation in wave patterns of the surface waves. The liquid is prepared by mixing water, 

ethanol, and glycerine in four appropriate ratios in order to vary the liquid viscosity and surface tension 

over a broad range. In these experiments, the positions of experimental setup and lamp are fixed. So the 

wave crests, wave troughs and wave slopes can be observed through the reflection of light. The wave 

amplitude cannot be measured directly because the falling height is only several millimeters and the 

existence of the slot and the substrate also hinders this measurement, so the sensor head to measure the 

film thickness could not be inserted just above the curtain surface. 
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Table 2. Experimental conditions with different liquids. 

Die width w  (cm) 6.0 

Slot width IH  (mm) 0.3 

Unit discharge q  (cm2 s-1) 0.227 

Water(W):ethanol(E):glycerine(G) (wt %) 95:5:0 76:4:20 70:20:10 40:40:20 

Viscosity   (cP) 1.11 2.01 2.76 3.97 

Surface tension coefficient   (N m-1) 56.7 52.0 34.8 26.3 

Density   (g cm-3) 0.989 1.044 0.830 0.968 

Substrate speed V  (cm s-1) 6.6 

Falling height h  (mm) 8.0 

Substrate  Roller 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Wave patterns of the surface waves in vertical direction observed in the experiment on a 

falling liquid curtain onto a roller ( 6.6V  cm s-1, 0.227q   cm2 s-1). (a) W:E:G = 95:5:0, 0.16subWe 

0.16, 20.2Re  , 0.0079subCa  . (b) W:E:G = 76:4:20, 0.18subWe  , 11.8Re  , 0.015subCa  . (c) 

W:E:G = 70:20:10, 0.22subWe  , 6.8Re  , 0.032subCa  . (d) W:E:G = 40:40:20, 0.34subWe  , 

5.5Re  , 0.062subCa  . 
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(a)                                               (b)                                               (c) 

Figure 5. Wave patterns. Here, the x  and y  coordinates are defined by vertical and horizontal directions, 

respectively. (a) Straight wave crests with wavelength xL . (b) Peak-valley wave crests with wavelength

xL  and yL . (c) Staggered wave crests with wavelengths, 2 xL and yL . 

 

Figure 4 shows the curtain surface for the roller experiment with different liquids. Wave patterns 

observed in the present study are summarized as follows: 

(1) Wave number, k : In figure 4, for the several long and narrow zones in the horizontal direction, the 

bright and dark zones represent the crests and troughs of the surface waves in the vertical direction. 

The wave-length gradually becomes shorter, in the order as shown from figures (a) to (d), which 

implies that the wave number k  increases with the increase in subWe . 

(2) Wave amplitude, A : A  cannot be measured directly, but the variation of the wave amplitude can 

be seen through the photo-images, because the wave steepness can be observed through the 

differences in brightness between the bright and dark zones due to the reflection of light as shown 

in figure 4. The wave slopes increase from upstream to downstream for every case, (a), (b), (c), and 

(d). 

(3) Distribution of wave crests: Figure 5 lists three types of wave patterns, namely, straight wave crests, 

peak-valley wave crests, and staggered wave crests, respectively. The straight and staggered wave 

crests are observed in our experiment while the peak-valley wave crests are not. For the cases of (b), 

(c), and (d), they belong to straight wave crests. However, case (a) belongs to staggered wave crests. 

The modes of peak-valley and staggered waves are investigated in order to explain the instability of 

the surface waves, and details regarding the same are discussed in section 5. 

 

       
(a)                                                                               (d) 

       
(b)                                                                               (e) 
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(c)                                                                               (f) 

Figure 6. Wave patterns with different unit discharge q and falling height h . (a) 0.227q   cm2 s-1, 

20.2Re  , 3h  mm, 0.1subWe  , and 0.0049subCa  . (b) 0.227q   cm2 s-1, 20.2Re  , 5h   mm, 

0.13subWe  , and 0.0063subCa  . (c) 0.227q   cm2 s-1, 20.2Re  , 8h  mm, 0.16subWe  , and 

0.0079subCa  . (d) 0.955q   cm2 s-1, 85.1Re  , 5h   mm, 0.74subWe  , and 0.0078subCa  . (e) 

0.955q   cm2 s-1, 85.1Re  , 8h   mm, 0.85subWe  , and 0.0099subCa  . (f) 0.955q   cm2 s-1, 

85.1Re  , 10h   mm, 0.91subWe  , and 0.0107subCa  . 

 

A larger unit discharge and a greater falling height imply that the curtain flow impinges the surface of 

the substrate at a greater speed. The experimental conditions for this case are listed in table 3. Figure 6 

shows the appearance of the liquid curtain with different unit discharge q and falling height h . When 

the discharge is fixed at a small value ( 0.227q   cm2 s-1) and the falling height is small ( 3h   mm), 

the liquid curtain appears smooth without surface waves as shown in figure 6 (a). With the increase in 

the falling height ( 5h   mm), the liquid curtain is less smoother, and the stable surface waves appear 

on it as shown in figure 6 (b). If the falling height reaches a certain value ( 8h   mm), the surface waves 

on the liquid curtain becomes unstable, leading to the staggered wave pattern. It is also observed that 

the wave number k  increases with the increase in the falling height. When the discharge is fixed at a 

larger value ( 0.955q   cm2 s-1), similar phenomena with different falling heights of the liquid curtain 

are observed as shown in figure 6 (d), 6 (e) and 6 (f). When the falling height is small ( 5h   mm) as 

shown in figure (d), the liquid curtain, in similar state with that in figure 6(b), is not so smooth. If the 

falling height reaches a certain value ( 8h   mm) as shown in figure 6 (e) and (f), the surface waves on 

the liquid curtain becomes unstable and the staggered wave pattern appears, similar with the patterns 

shown in figure 6(c). 

Table 3. Experimental conditions with different falling heights. 

Die width w  (cm) 6.0 

Slot width IH  (mm) 0.3 

Unit discharge q  (cm2 s-1) 0.227 and 0.955 

Water(W):ethanol(E):glycerine(G) (wt %) 95:5:0 

Viscosity   (cP) 1.11 

Surface tension coefficient   (N m-1) 56.7 

Density   (g cm-3) 0.989 

Substrate speed V  (cm s-1) 6.6 

Falling height h  (mm) 3.0, 5.0, 8.0 and 10.0 

Substrate  Roller 
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2.2.2. Conveyer belt substrate 

In this experiment, we used the mist generator to generate mist. The working process is shown in figure 

7. When the mist gets in touch with the surface of the roller, a very thin liquid coating layer forms on 

the surface of the roller, which we refer to as the pre-wet coating [11]. The discharge of the mist to the 

substrate is less than 1% of that of the coated liquid. Hence, we can ignore the influence of the pre-wet 

coating layer on the thickness of the final coating layer. We aim to understand the influence of the pre-

wet coating on the surface wave patterns. The experimental conditions for this case are listed in table 4. 

 
Figure 7. Process of prewetting. The mist generator is Panasonic EH-SA32-P. 

 

Table 4. Experimental conditions for non –pre-wet and pre-wet processes. 

Die width w  (cm) 6.0 

Slot width IH  (mm) 0.3 

Unit discharge q  (cm2 s-1) 0.268, 0.751 and 1.14 

Water(W):ethanol(E):glycerine(G) (wt %) 95:5:0 

Viscosity   (cP) 1.11 

Surface tension coefficient   (N m-1) 56.7 

Density   (g cm-3) 0.989 

Substrate speed V  (cm s-1) 45.0 

Falling height h  (mm) 5.0 

Substrate  Conveyer belt 

 

Figures 8 (a), (b), and (c) show the liquid patterns with dry -substrate and pre-wet -substrate. Through 

comparison, we observe that the steepness of the liquid curtain reduces after pre-wetting. Here, the 

steepness of the liquid curtain is defined by the ratio of the amplitude to the wavelength of the varicose 

waves on the liquid curtain. The variation of wave amplitude and wave number of the surface waves are 

reduced for  the pre-wet –substrate as  compared to the dry -substrate. The front side of the liquid curtain 

of figure 8 (b) is shown in figure 8 (d-1). There is a shift of contact line of wetting for the two different 

substrates. Figure 8 (d-2) contain the images of the side face of the liquid curtains. Compared to a dry -

substrate, the angle between the middle liquid surface and the edge guide is lesser for the pre-wet -

substrate. 
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Dry -substrate           Pre-wet -substrate  

 
(a) 

 
(b) 

 
(c) 

 
(d-1) 

 
(d-2)  

Figure 8. Liquid curtains with dry -substrate and pre-wet -substrate. The left and right sides of the 

image show the cases for dry and pre-wet substrates, respectively. (a) 0.268q   cm2 s-1, 0.15subWe  , 

and 23.9Re  . (b) 0.751q   cm2 s-1, 0.53subWe  , and 66.9Re  . (c)  1.14q   cm2 s-1, 0.98subWe  , 

and 101.6Re  . (d) 𝑞 =0.751 cm2/s, 0.53subWe  , and 66.9Re  . (d-1) The front sides of the liquid 

curtains. (d-2) The side face of the liquid curtains. 
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(a) Dry -substrate                             (b) Pre-wet -substrate 

Figure 9. Schematic view of the difference of pressure distribution. (Here, P  denotes the pressure 

inside the meniscus,   the contact angle and the subscripts ‘1’ and ‘2’ the value for dry -substrate and 

pre-wet –substrate, respectively.) 

 

The dynamic wetting line should be three-phase with a dry-substrate, which is a gas-liquid-solid sys-

tem. After pre-wetting, a rather thin liquid coating forms on the surface of moving substrate. So, the 

dynamic wetting line should be two-phase, which is a gas-liquid system. Compared with three-phase 

system, two-phase system is wetted more easily, leading to the shift of contact line and change of the 

angle between the middle liquid surface and the edge guide. The reason for this difference may due to 

the variation of the pressure distribution as shown in figure 9. The pressure of the liquid curtain near the 

surface of the substrate is reduced after pre-wetting as the contact angle   becomes smaller which 

changes the direction of the surface tension force.  

 

Table 5. Experimental conditions with different substrate speeds. 

Die width w  (cm) 6.0 

Slot width IH  (mm) 0.3 

Unit discharge q  (cm2 s-1) 0.227 

Water(W):ethanol(E):glycerine(G) (wt %) 95:5:0 

Viscosity   (cP) 1.11 

Surface tension coefficient   (N m-1) 56.7 

Density   (g cm-3) 0.989 

Substrate speed V  (cm s-1) 9.0, 15.0 and 21.0 

Falling height h  (mm) 5.0 

Substrate  Conveyer belt 
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(a) 

 
(b) 

 
(c) 

Figure 10. Different substrate velocities V . Here, 0.497q   cm2 s-1, 0.31subWe  , and 44.3Re  . (a) 

0.9V   cm s-1. (b) 1.5V   cm s-1. (c) 2.1V   cm s-1. 

 

 

The liquid curtain with different substrate speed is shown in figure 10. The experimental condition for 

this experiment is listed in table 5. The substrate speed increases while the falling height is fixed. When 

the substrate speed is small ( 0.9V  cm s-1), the liquid curtain is smooth and stable as shown in figure 

10 (a). As the substrate speed increases, the smoothness is not maintained as the surface waves start to 

appear on the liquid curtain as shown in figure 10 (b). If the substrate speed continues to increase, the 

wave number k of the surface waves will also increase as shown in figure 10 (c). 

 

3. Analysis 

3.1. Surface waves in the vertical direction 

In our experiments, surface waves are observed on the liquid curtain because of existence of the substrate, 

which lead to a large pressure difference between the inner and outer region of the meniscus on the 

substrate, and propagate upstream. They are categorised as varicose waves that propagate upstream on 

the curtain and become stationary because of the downstream flow. In this section, Kistler’s equation is 

used as our governing equation. Here, we obtain the approximate solutions to these equations and try to 
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explain the wave patterns observed in our experiment with respect to them. Finally, we show the results 

of the numerical simulation using these equations and compare them with the experimental results. 

3.1.1. Two dimensional equations governing the curtain profile 

The thickness of the liquid curtain observed in our experiment is rather small compared with the 

wavelength. The governing equation for a stationary liquid curtain in vertical fall on the hypotheses that 

the ratio of thickness of the liquid curtain and wavelength is much smaller than 1 is given by Kistler [19, 

20]. In our experiment, the angle between the mid surface and the horizontal direction is observed to be 

90 ° because the roller velocity V  is small, which implies that the mid surface of the liquid curtain is 

not viewed as a curve, but as a straight line in the vertical direction.  The governing equation is given as 

follows: 

 

2 2 3
2

3 3 2 3

4 d 1 d
0

2d d

Re dH dH H H
H Fr Re

dx dx CaH H x x


  
       
   

  (1) 

The first, second, third, and last terms represent the inertial force, the viscous term, the surface tension, 

and the gravity term, respectively. Here, H  denotes the thickness of the liquid curtain and x  denotes 

the distance from the slot die along the curtain mid surface to the end of the liquid curtain in the 

downstream direction. In addition, ‘ ~ ’ denotes the dimensionless parameter, non-dimensionalised by 

the typical length scale, L . Re , Ca , and Fr  denote the Reynolds number, the Capillary number and the 

Froude number, respectively; they are respectively defined as: 

 
UL

Re



 , 

U
Ca




 , 

U
Fr

Lg
＝  (2) 

Here,  , U ,  , and g  denotes the liquid density, the liquid velocity,   the viscosity, the surface 

tension, and the acceleration due to gravity, respectively. 

3.1.2. Local linear analysis 

 

Figure 11. Non-dimensional wave number k  plotted as a function of We  for various liquids in our 

experiment of a falling liquid curtain onto a roller. Symbols denote different liquids for each 

experimental data point, as listed in the legend. The dashed line denotes equation (8). Here, 0.8K   is 

used to represent a smooth approximation of experimental data. 

 

By the perturbation method, the approximate solution to equation (1) can be given by 
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    , 1 fH x H x     (3) 

in terms of the parameter   which represents the order of the amplitude of the waves on the liquid 

curtain. Here, we choose the local curtain thickness  sH x  and velocity  sU x  as the typical length 

scale L  and velocity U , respectively. By taking into account the order of  , the simplified equation 

(3) is obtained: 

 

2

2
8 2 0

f f
f

d H dH
Ca WeH

dxdx
   .  (4) 

This is a second-order linear ordinary differential equation. Its general solution is given by: 

  
 4

2

8
sin 2 1

Ca x h

f

We
H x e We x

Re

  
   

 

.  (5) 

Here, the wave amplitude at the bottom of the liquid curtain is considered to be unit. In our experiment, 

as
2

1
We

Re
, equation (6) can be rewritten by: 

  
   

4
sin 2

Ca x h

fH x e Wex


 .  (6) 

According to equation (6), we can conclude that the disturbance decays upstream and the Capillary 

number Ca  determines the decay rate. Moreover, the non-dimensional wave number k  depends on the 

Weber number We . 

 2k We   (7) 

It should be noted that both Ca and We  decrease upstream as the liquid velocity  U x  decreases 

upstream. 

 

In figure 11, the comparison of the wave numbers and Weber numbers of experimental and theoretical 

data are shown. With Weber number increases, the wave number also increases. The non-dimensional 

wave number k  for the experimental data is given by: 

 
2 sH

k



 ,  (8) 

where the wave length   is measured by Photron FASTCAM Viewer 3, and the curtain thickness sH  

is given by 

  
 s

s

q
H x

U x
 .  (9) 

Here,  sU x  is substituted as 

    s BU x KU x ,  (10) 

where BU  is derived from Bernoulli’s theorem as follows: 

   2
0 2BU x U gx  , 0

I

q
U

H
 .  (11) 

In addition, K denotes the ratio of liquid velocities obtained by calculating the rate of change of position 

with respect to time and estimated by Bernoulli’s theorem. In our experiment, tracer-particles are put in 

the liquid and their traces are recorded by high speed camera as shown in figure 12 (a) and (b). The 

velocities are obtained by calculating the rate of change of position with respect to time. The figure 12 

(c) shows the data of the velocities of the particle. 0.8K   can represent the velocities well generally. 

The value of K  is less than 1 due to the viscosity effect and the wave generation. So, the measured 

velocity is always smaller than  BU x . The particle velocity fluctuates around the curve of 0.8K 
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because of the existence of the surface waves. By using these data, the thickness variation upstream are 

estimated (0.07 mm ~ 0.3 mm) from the continuity of unit discharge. The figure 13 explain the method 

employed to measure the averaged wavelengths, which represent the experimental data in figure 11. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 12. Liquid velocities obtained by calculating the rate of change of position with respect to 

time. (W:E:G = 70:20:10, 0V  cm s-1, 0.227q   cm2 s-1) (a) Tracer-particles in the liquid curtain. 

The mean diameter of these tracer-particles is 15 μm. (b)Trace of particle in the liquid curtain. The 

pictures of the tracer-particle in different times are joined together from left to right. (c) The velocity 

of the tracer-particle. 
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Figure 13. The method to obtain the wavelength. 1 , 2 , 3 , 4  and 5  are measured as the mean 

wavelengths as the fluctuation of these surface waves is small compared with them (W:E:G = 95:5:0, 

6.6V  cm s-1, 0.227q   cm2 s-1). 

 

According to previous study [21], there are two types of waves propagating in a liquid curtain, i.e. 

sinuous and varicose waves, which have the following celerity: 

 
 

2
sin

s

C
H x




   (12) 

 
 

2

s
var

H x
C k




 , 

2
k




 , (13) 

respectively. Here,  ,  , H , and k denote the liquid density, the surface tension coefficient, the curtain 

thickness and  the wave number, respectively. The waves observed in our experiment are stationary; 

therefore, we could obtain the wave velocity, which is equal to the liquid velocity everywhere in the 

vertical direction, i.e. 

  s varU x C   (14) 

which leads to equation (8). Hence, the surface waves in our experiment are varicose waves. 

3.1.3. Numerical analysis 

In our experiment, the flow of liquid curtain is divided into two zones, namely, falling and impingement 

zones (or symmetric and asymmetric zones) as shown in figure 14. The falling zone can be viewed as a 

symmetrical mode, while the impingement zone is asymmetrical mode. Equation (1) can be solved under 

the boundary conditions of 0x   and x h  as follows: 

  0 1H  , 
 dH h

a
dx

 , 
 2

2

d H h
b

dx
   (15) 

where h  denotes the non-dimensional distance from the slot die to the bottom of the falling zone 

normalized by the die widths IH ; a  and b  represent the meniscus angle and the pressure inside the 

meniscus, respectively. Though a and b can be determined from the flow in the impingement zone, we 

assume these values and discuss a general behaviour of the curtain as a whole. 
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Figure 14. Flow zones in our experiment. 

 
Figure 15. The number of solutions depends on the values of a  and b . The coloured line represents 

the boundary between the single and three solutions. The regions on the upper and lower sides of the 

line represent the cases of single and three solutions, respectively. 
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Figure 16. Multiple solutions of curtain profiles with the same values of, a  and b , i.e. 0.2a  , 

0.2b   , and W:E:G = 95:5:0. x  is scaled by the slot width IH , 0.3 mm. 

 

Table 6. The thicknesses of liquid curtain at the bottom of it under different boundary conditions. 

a  b   0H   H h  

0.1 

-0.18 

1 

0.24 

-0.19 0.24 and 3.91 

-0.25 0.24, 2.60 and 5.02 

-0.1 

-0.18 0.24 

-0.22 0.24 and 3.39 

-0.25 0.24, 1.92 and 7.09 

 

In the present study, we fix the value of a  and use a shooting method to find the value of b  which fits 

the boundary condition at the die exit, i.e.  0 1H  . A similar method has been employed in another 

paper [13]. Moreover, we find that even under the same boundary conditions, there may be more than 

one solution to equation (3), which implies that besides the given boundary conditions, the curtain 

profile also depends on other conditions. Table 6 lists a plot of the thicknesses of liquid curtain at the 

bottom of it under different boundary conditions. Figure 15 shows the number of solutions in the a - b  

plane. Furthermore, an example of the curtain profiles corresponding to multiple solutions is shown in 
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figure 16. The curtain profile (Sol1) fits the experimental data well while (Sol2) and (Sol3) do not, 

especially near the bottom of the liquid curtain where the mean thickness is less than that at the top in 

the experiments. The existence of these two patterns imply that different curtain profiles are possible 

under some experimental conditions in the impingement zone, such as whether the roller is stationary 

or in movement. 

3.1.4. Numerical solutions 

Assuming the values of a and b , equation (3) is solved numerically. Figure 17 shows the numerical 

solutions corresponding to our experimental conditions. Here, we set a  as 0.1 and use the shooting 

method to find the value of b which fits the experiment data well. Comparing with the wave patterns 

shown in figure 3, it is obtained that the simulation results shown in figure 17 can explain them well. In 

addition, we have checked that the magnitude of a  and b  are not sensitive to the varicose wave profile. 

             
(a)                                                                        (b) 

             
(c)                                                                       (d) 

Figure 17. Numerical solutions of curtain profiles under the boundary conditions compared with 

experimental images. x  is scaled by the slot width IH , 0.3 mm. (a) for 0.1a  , 0.12b  , W:E:G = 
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95:5:0. (b) for 0.1a  , 0.17b  , W:E:G = 76:4:20. (c) for 0.1a  , 0.26b  , W:E:G = 70:20:10. (d) 

for 0.1a  , 0.42b  , W:E:G = 40:40:20. 

3.2. Stability of the varicose waves 

3.2.1. Three dimensional equations governing the curtain profile 

The equations governing the two-dimensional shape of a soap film have been derived by Chomaz [22]. 

Considering that the liquid curtain is stationary in our experiments, these governing equations are given 

as follows 

 

 

1
2 1 2 1 21

3 0
2

0

x

Re
H Re Re Fr

We H

H


  


         


   


eu u u u V

u

  (16) 

where vector  ,x yV VV  represents additional viscous terms given by 

 

2 2

2 2

x

y

H u v H u v
V

x x y y y x

H u v H u v
V

y x y x y x

         
       

         


        
               

  (17) 

Here, ‘ ~ ’ denotes the dimensionless parameter. The curtain thickness H , falling height x , and 

horizontal position y are non-dimensionalised by L  , the typical length scale, and the flow velocity 

 ,u vu  is non-dimensionalised by 

 L

q
U

L
   (18) 

where q  denotes the unit discharge. 

 

If we only consider the variation of the curtain thickness in the vertical direction x  in the steady state 

and ignore the terms of y , equation (16) reduces to Kistler’s equation (1). 
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Figure 18. The model of the of local curtain shape. 

 

3.2.2. Disturbance equations 

The surface waves on the liquid curtain are varicose waves and the wave crests are uniform as shown in 

figure 4 (a). However, the type will not always remain the same when the experimental conditions are 

changed. The staggered type, a peculiar way in which wave crests are distributed as shown in figure 4 

(b), is observed in our experiment. 

 

Our experimental observations show that different paths can lead from steady two-dimensional varicose 

waves to unsteady three-dimensional ones [23]. These paths are distinguished by the nature of three-

dimensional disturbances that result in different characteristic wave patterns, as emulated in figure 4. 

The commonly observed path leads to spanwise alternating ‘peak’ and ‘valleys’, i.e. regions of enhanced 

and reduced disturbance amplitudes, which are associated with a mean longitudinal wave crest of 

varicose waves. 

 

In order to simply the model of the local shape of the varicose waves, the solutions of curtain thickness 

in the steady state is substituted in 

   1 sins vH x A k x    (19) 

which is shown in figure 18. Here, A  and vk  represents the amplitude and the streamwise wave number 

of the varicose waves in the vertical direction, respectively. The variation in the thickness of the liquid 

curtain remains the same pattern everywhere in the vertical direction, and the falling height is not 

considered in this model. In addition, time is not considered as it is in the steady state. In order to express 

the solutions easily in the next step, the coordinate is transformed using 

 2v Lk x x .  (20) 

Superposition of small three-dimensional disturbances to the base flow in the form 
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   

 
 

 

  ,

1
  ,

  ,

s L L

L
s L

L

H H x H x y

u u x y
H x

v v x y













  



 

 

  (21) 

is substituted into equation (16), and linearize these equations with respect to  , then the disturbance 

equations with coefficients independent of y  is obtained. Here,   is a perturbation parameter and   

denotes the disturbance. We therefore assume disturbances in the form 

 

   

   

   

,

,

,

iky
L f L

iky
L f L

iky
L f L

H x y h x e

u x y u x e

v x y v x e







 









  (22) 

The resulting disturbance equations have periodic coefficients owing to the periodic base flow due to 

varicose waves. The equations are essentially of Hill type with damping [24]. Such systems permit 

various classes of solutions; the two most important classes arise from primary resonance with 

wavelength xL  and from principal parametric resonance with wavelength 2 xL . 

Principal parametric resonance generates the modes of instability that are associated with staggered 

pattern, for which we can obtain disturbances using 

 

          

          

          

1

1

1

cos 2 1 2 1

cos 2 1 2 1

cos 2 1 2 1

f

f

f

n

f L c L s L
n

n

f L c L s L
n

n

f L c L s L
n

h x H n n x H n sin n x

u x U n n x U n sin n x

v x V n n x V n sin n x








          





          


          








  (23) 

Applying equations (19)-(23) to governing equations (16)-(17), after linearization in  , results in a 

6 6f fn n  matrix eigenvalue problem for We , Re , A , and k  in the form 
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 (24) 

where ija  (1 i 6 fn  , 1 j 6 fn  ) are functions of We , Re , A , and k . The existence of the solutions 

depends on 0a M . We examine the existence of k  when 0a M  with suitable We , Re , and A  

values. Figure 19 (a-1) and (a-2) show the stability of the liquid curtain with varicose waves in the Re

-We  plane considering the amplitude A  of the varicose waves. With a larger amplitude A , the liquid 

curtain is more unstable and tend to become staggered pattern mode more easily. This instability occurs 

when 0.25We   at 0.3A , and 0.5We   at 0.05A . In our experiment, 1We   and 5 90Re  , so 

the instability of staggered pattern mode may appear and has been observed as shown in figure 4 (a). 

With a fixed Reynolds number ( 20.2Re   or 85.1Re  ), the appearance of the liquid curtain transforms 

form the no-staggered mode to the staggered mode as the Weber number increases. 

 

Primary resonance generates the modes of instability that are associated with peak-valley splitting, for 

which we can obtain the disturbances using 
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


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  (25) 
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Applying equations (19)-(22) and (25) to governing equations (16)-(17), after linearization in  , results 

in a 6( 1) 6( 1)f fn n    matrix eigenvalue problem for We , Re , A , and k  in the form 
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  (26) 

where ijb (1 i 6( 1)fn   ,  1 j 6 1fn   ) are functions of We , Re , A  and k . The existence of the 

solutions depends on 0b M . We examine the existence of k  when 0b M  with suitable We , Re  

and A  values. Figure 19 (b) shows the stability of the liquid curtain with varicose waves in the Re -We  

plane considering the amplitude A  of the varicose waves. The instability of peak-valley mode, 

occurring when 1.5We   and 142Re   at 0.3A , are not observed, as We and Re in our experiment 

are not in the required range. In our experiment, the amplitude A  of the varicose waves could not be 

measured directly, but the steepness is seen from the light reflection. Figure 20 shows the examples of 

the numerical simulation for the wave patterns with k  and suitableWe , Re , and A  when 0a M or

0b M . 
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(b) 

Figure 19. The instability of the varicose waves on the liquid curtain for two-dimensional disturbance. 

The triangle and cross represent the no-staggered and staggered mode in the experimental results, 

respectively. (a-1) Staggered pattern mode. (a-2) Enlarged picture of ‘Corner region’ in (a-1). (b) Peak-

valley mode 

 

            
(a)                                                                                   (b) 

Figure 20. Numerical simulation of instability. (a) Staggered pattern mode. (b) Peak-valley mode. 

4. Discussions and conclusions 

In present study, a series of experiments are shown with various experimental conditions of liquids, 

falling heights, substrate types and their speeds, and process of pre-wetting. Surface waves are observed 

on a liquid curtain bridged between the slot exit and the upper surface of a substrate and these waves 

appear only when the surface tension is much greater than the inertial force, i.e. when 1We .  In order 

to study these waves theoretically, the flow of the liquid curtain is divided into two zones, namely, 

falling and impingement zones (or symmetric and asymmetric zones) on the base of which the curtain 

profile are simulated and analysed. 

 

The summary and conclusions of the study are as follows: 
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(i)  The surface waves appearing on the liquid curtain are varicose waves, which appear due to the 

pressure difference between inner and outer regions of the meniscus on the substrate. They 

propagate upstream and become stationary because of the downstream flow. 

 

(ii) The wave number of the surface waves depends on the Weber number and the Reynolds number, 

while the decay rate of amplitude is more influenced by the Capillary number. They are influenced 

by the experimental conditions, such as liquids, falling heights, substrate speed, and the process of 

pre-wetting. 

 

(iii) Even with the same boundary conditions, there are multiple solutions for the curtain profile. The 

number of solutions depends on the slope and curvature of the curtain surface at the lower boundary, 

which may be related to the meniscus angle and the pressure inside of the meniscus. Nevertheless, 

in our experiments, only one solution was actually observed and relevant to interpreting the 

experiments while the other two solutions were rejected on physical grounds. 

 

(iv) Two types of modes for the instability of the surface waves, i.e. staggered and peak-valley patterns, 

depend on the Reynolds number, the Weber number, and the amplitude of these waves. The mode 

of staggered pattern is observed in the experiment while the mode of peak-valley pattern is not. 

Compared with the mode of staggered pattern, the appearance of the peak-valley pattern requires a 

much greater amplitude of the waves, a much higher Weber number and Reynolds number. 

 

(v) Curtain coating with a low-Weber-number liquid flow, i.e. 1We , can be applied in engineering 

on the condition of a small falling height, a low substrate speed, and liquids with high viscosity and 

low surface tension, in which case the surface waves do not appear. 
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