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Abstract

At the heart of optimal hedging with additive models is to replicate the payoff of European basket

options using separate options as close as possible. In this paper, we extend those technique for

the case of path-dependent barrier options, where the mean square error of the payoffs between the

basket barrier option and the sum of options on the individual assets is minimized over any smooth

payoff functions. To this end, we propose to represent the underlying assets using the Brownian

bride decomposition and show that computations involving conditional expectations of basket bar-

rier optons boil down to those of unconditional expectations. This procedure enables us to provide

an alogrithm to compute the necessary and sufficient condition for the optimal hedging problem

based on the Monte Carlo method. Then, we consider to apply our methodology to the Black-Cox

type first passage time structural model, where a dafaultable company possesses/runs multiple as-

sets/projects and the default may occur the first time the asset value hits a certain lower threshold

before the maturity. We formulate the equity value separation problem using additive models, in

which individual equity values are introduced so that their sum approximates the total equity value

as close as possible. It is also shown that any portion of total equity value may be assigned as an

initial value of each individual equity when using the optimal smooth functions. Finally, we examine

the contributions of individual equity values to default or survival by applying a certain normaliza-

tion for conditional expectations via numerical experiments to illustrate our proposed methodology.

Keywords: Basket barrier options, Optimal hedging, Additive models, Smooth functions, First pas-

sage time structural models

1 Introduction

Options theory has played an important role not only for pricing applications but also for default risk modeling

known as the so-called structural models. In this context, Merton (1974) provided a pioneering work which

indicates that the default is assumed to occur when the firm value is below the face value (or the settlement

value) of the debt at the maturity. Thus, the equity holders are considered to possess European call options

whose values may be computed based on the Black-Scholes-Merton formula (Black and Scholes (1973), Merton

(1973)) under the standard assumptions. On the other hand, Black and Cox (1976) extends the original model

for the case where the default may occur the first time the asset value hits a certain lower threshold before the
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maturity, providing the equity holders with the down-and-out knock-out options. In either cases, developments

of options theory lead to useful interpretations of the relations between default risk and equity values.

In this paper, we consider to generalize the optimal hedging technique with additive models in Yamada

(2010–2012) to address the case of basket barrier options and discuss its application to the first passage time

structural model. The optimal hedging problem is formulated as follows: Minimize the mean square error

between the terminal payoff of basket options and the sum of smooth functions on individual underlying assets

over any smooth payoff functions. Since each payoff may be replicated using standard European options as

shown in Carr and Madan (2001), the resulting optimal hedging technique may be interpreted to provide a

static hedging strategy for basket options using individual European options. It should be mentioned that our

approach is related to the multivariate generalization of static hedging problem in Carr et. al (1998), in which

the barrier option payoff on the single underlying asset is replicated based on the standard European options.

Also note that, for hedging European basket options using options on individual assets, a super-hedging strategy

consisting of the weighted sum of options with the same types (i.e., calls or puts) may be available as described in

Hobson et al. (2005) and Su (2008), where the super-hedging strategy is to find a portfolio whose terminal value

is always larger than that of the multivariate option. Moreover, there is another approach for hedging basket

options using dynamic trading strategy, where a semi-definite programming based receding horizon control

approach has been developed in Primbs (2009). To the best of our knowledge, hedging path-dependent basket

options in terms of individual options has been uncovered in spite of the problem importance.

At the heart of optimal hedging with additive models in Yamada (2010–2012) is to solve the necessary and

sufficient condition expressed in terms of a system of linear equations of conditional expectations, where the

computations involving conditional expectations for the multivariate derivatives is shown to boil down to those

of unconditional expectations based on the Independence Lemma (see e.g., S.E. Shreve (2004)) by assuming

that the underlying assets follow multivariate geometric Brownian motions. On the other hand, one cannot

apply the Independence Lemma directly to the path-dependent options due to the autocorrelations of Brownian

motions. In this paper, we propose to represent the underlying assets using the Brownian bride processes and

prove that computations involving conditional expectations of basket barrier options may be reduced to those

of unconditional expectations based on the Independence Lemma. This procedure enables us to provide an

algorithm to solve the necessary and sufficient condition for the optimal hedging problem based on the Monte

Carlo method.

Then, we consider to apply our methodology to the Black-Cox type first passage time structural model,

where a dafaultable company possesses/runs multiple assets/projects and the default may occur the first time

the asset value hits a certain lower threshold before the maturity. We formulate the equity value separation

problem using additive models, in which individual equity values are introduced so that their sum approximates

the total equity value as close as possible under the risk neutral probability measure. It is also shown that any

portion of total equity value may be assigned as an initial value of each individual equity when using the optimal

smooth functions. Finally, we examine the contributions of individual equity values to default or survival by

applying a certain normalization for conditional expectations based on the numerical experiments to illustrate

our proposed methodology.

The rest of this paper is organized as follows: In Section 2, we formulate the optimal hedging problem with

additive models, discuss some properties of the problem, and introduce the necessarily and sufficient condition

with respect to the optimal smooth functions. In Section 3, we show a key result that enables us to provide a

computational procedure of optimal smooth functions for barrier options. In Section 4, we discuss how we can

apply the optimal hedging technique with additive models for the equity value separation problem. Numerical
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experiments are also provided to illustrate our proposed methodology in Section 5. Section 6 offers some

concluding remarks.

2 Problem formulation

2.1 Optimal hedging problem with additive models

Let Si,t, i = 1, . . . ,m be the values of m underlying assets at time t ∈ [0, ∞) under a probability space

(Ω, F , P) and filtration {Ft}t∈[0, ∞). Also, let At and τ denote the value of basket portfolio and the first

passage time with a lower threshold L given as

At := S1,t + · · ·+ Sm,t, t ∈ [0, ∞).

and

τ := argmin {t > 0 |At = L} , (2.1)

respectively. Then, the optimal hedging problem with additive models is defined as follows:

min
fi∈S

E

{GT −
m∑
i=1

fi (Si,T )

}2
 (2.2)

where GT is the terminal value of basket barrier option at the expiration T > 0, e.g.,

GT = I{τ>T} × (AT −K)
+
, (2.3)

in the case of a call with a strike price K, and S a set of smooth functions. Note that the problem formulation

in (2.2) clearly addresses the case of European options in Yamada (2010–2012) when L = 0 and that we will

consider the case where the payoff is of the form of call options in (2.3) for simplicity of the notation.

There are some useful interpretations of the problem (2.2). First, the problem (2.2) may be considered

as a multivariate generalization of static hedging problem for the single variate barrier option in Carr et. al

(1998) using European options. Since each payoffs defined by optimal smooth functions may be replicated

based on the standard European options as shown in Carr and Madan (2001), our problem aims to find a static

hedging strategy using European options on individual underlying assets that approximates the basket barrier

option payoff as close as possible in the minimum mean square error sense. Second, our problem may provide

a separation problem of the equity value using individual smooth functions in the sense of first passage time

structural models, in which the equity value of a defaultable company with multiple assets may be given by the

value of basket barrier option in structural models. We will discuss this equity value separation problem with

additive models later in this paper.

2.2 Necessary and sufficient condition

Similar to the European options case in Yamada (2012), we use the following lemma, which is introduced in

Chapter 5 of Hastie and Tibshirani (1990):

Lemma 1 Smooth functions f∗1 , . . . , f
∗
m provide minimizers of problem (2.2), if and only if the following con-

ditions are satisfied:
m∑
j=1

E
[
f∗j (Sj,T )

∣∣Si,T ] = E [GT |Si,T ] , i = 1, . . . ,m (2.4)
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By taking unconditional expectation for both sides of equation (2.4), we have

E [GT ] =

m∑
i=1

E [f∗i (Si,T )] . (2.5)

Therefore, it holds that

Var

[
GT −

m∑
i=1

f∗i (Si,T )

]
= E

(GT −
m∑
i=1

f∗i (Si,T )

)2
 . (2.6)

Conditions (2.5) and (2.6) suggest that minimizing the mean square error corresponds to the variance mini-

mization with zero mean constraint, i.e., the hedge is considered mean-variance optimal.

As in Yamada (2012), we assume that the underlying asset values are modeled via correlated geometric

Brownian motions,

dSi,t = µiSi,tdt+ σiSi,tdWi,t, i = 1, . . . ,m, (2.7)

where W1,t, . . . ,Wm,t are (correlated) Brownian motions with dWi,tdWj,t = ρijdt, i, j = 1, . . . ,m, i ̸= j on

(Ω, F , P), and µi, σi and ρij are given mean rate of return, volatility, and correlation coefficients parameters.

One of the advantages for considering (2.7) is that there exists a dynamic trading strategy to replicate the

terminal payoff f∗i (Si,T ) once the optimal smooth functions are specified, similar to the Black-Scholes-Merton

dynamic hedging strategy (Black and Scholes (1973), Merton (1973)).

Since the sigma-algebra generated by Wi,T contains the same information as that by Si,T under the price

dynamics in (2.7), condition (2.4) in Lemma 1 may be rewritten as

m∑
j=1

E
[
f∗j (Sj,T )

∣∣Wi,T

]
= E [GT |Wi,T ] , i = 1, . . . ,m. (2.8)

Noting that GT is nonnegative in general, there exists a unique function ĝi satisfying E [GT |Wi,T ] = ĝi (Wi,T )

for each i = 1, . . . ,m1, i.e., condition (2.8) may further be written as

m∑
j=1

E
[
f∗j (Sj,T )

∣∣Wi,T

]
= ĝi (Wi,T ) , i = 1, . . . ,m. (2.9)

Let pj|i (wj |wi) denote conditional probability density functions (PDFs) of Wj,T given Wi,T = wi ∈ ℜ, i.e.,

pj|i (wj |wi) :=
1√

2π(1− ρ2ij)T
exp

{
− (wj − ρijwi)

2

2
(
1− ρ2ij

)
T

}
. (2.10)

Then, the problem boils down to searching over a set of real functions, f∗i , i = 1, . . . ,m, satisfying the following

condition for any wi ∈ ℜ:

f∗i
(
Si,0e

νiT+σiwi
)
+
∑
j ̸=i

∫
f∗j
(
Sj,0e

νjT+σjwj
)
pj|i (wj |wi) dwj = ĝi (wi) , i = 1, . . . ,m. (2.11)

If we have a methodology to compute ĝi (wi) efficiently for any wi ∈ ℜ, then one can find f∗i , i = 1, . . . ,m by

constructing a set of linear equations with suitable discretization of (2.11) as shown in Yamada (2012).

1See pp. 81 in Shreve (2004).
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3 Computational method

In this section, we show a key result that enables us to express ĝ (wi) using unconditional expectation and

provide the computational procedure.

3.1 Representation of underlying assets using Brownian bridge decomposition

To this end, we use an equivalent representation for the solution of SDE (2.7) based on the following Cholesky

decomposition: Assume that Σdt ∈ ℜm×m denotes the covariance matrix of dSj,t/Sj,t, j = 1, . . . ,m being

decomposed as Σ = Λ1Λ
⊤
1 dt ∈ ℜm×m by a lower triangular matrix Λ1 ∈ ℜm×m, where

Λ1 :=


σ11 0 · · · 0

σ21 σ22
. . .

...
...

...
. . . 0

σm1 σm2 · · · σmm

 ∈ ℜm×m, σ11 = σ1.

Then, there exist independent Brownian motions, Bj,t, j = 1, . . . ,m, on (Ω, F , P) such that

Sj,t = Sj,0 exp

(
νjt+

j∑
k=1

σjkBk,t

)
, νj := µj −

σ2
j

2
, j = 1, . . . ,m, (3.1)

Note that S1,t depends on B1,t only and therefore, W1,t ≡ B1,t holds.

Although the lower triangular matrix is unique in the Cholesky decomposition, we have m different ways of

representations by sorting Sj,t as j ∈ {1, . . . ,m}, {2, . . . ,m, 1}, {3, . . . ,m, 1, 2}, . . . , or {m, 1, . . . ,m− 1}. Let
Λi be the lower triangle matrix of the Cholesky decomposition when Sj,t is sorted as j ∈ {i, . . . ,m, 1, . . . , i− 1},
i.e., ΛiΛ

⊤
i dt is the covariance matrix of dSj,t/Sj,t, j = i, . . . ,m, 1, . . . , i− 1. Similar to the case j ∈ {1, . . . ,m},

Sj,t may be represented as in (3.1) by replacing j ∈ {1, . . . ,m} with j ∈ {i, . . . ,m, 1, . . . , i− 1}, and in this

case, we see that Si,t depends on Bi,t only and that Wi,t ≡ Bi,t holds.

In the case of European options, i.e., L = 0, there exists an m-variate function hi such that

GT = (AT −K)
+
= hi (Wi,T , Bi+1,T , . . . , Bm,T , B1,T , . . . , Bi−1,T ) . (3.2)

Noting that Wi,t is independent of the other Brownian motions, we can apply the Independence Lemma2 that

a function ĥi of a dummy variable wi ∈ ℜ,

ĥi (wi) := E [hi (wi, Bi+1,T , . . . , Bm,T , B1,T , . . . , Bi−1,T )] , (3.3)

satisfies the following condition:

ĥi (Wi,T ) = E [GT |Wi,T ]

= E [hi (Wi,T , Bi+1,T , . . . , Bm,T , B1,T , . . . , Bi−1,T )|Wi,T ] . (3.4)

Clearly, conditions (3.3) and (3.4) indicate that ĝi ≡ ĥi, i = 1, . . . ,m holds.

On the other hand, GT depends on the entire paths of multivariate underlying assets, Si,t, i = 1, . . . ,m,

in the case of barrier options, i.e., L > 0 in (2.3), and one cannot apply the Independence Lemma directly to

derive equivalent conditions to (3.3) due to the autocorrelations of Brownian motions,

E [Wi,tWi,s] = s ∧ t, i = 1, . . . ,m, s, t ∈ [0, T ].
2See pp. 73 in Shreve (2004).
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To identify the independence condition, here we propose to apply the Brownian bridge decomposition below.

Let Xi,t, t ∈ [0, T ] be a Brownian bridge process such that

Xi,t := Bi,t −
t

T
Bi,T , i = 1, . . . ,m. (3.5)

Then, the independent Brownian motions, Bi,t, i = 1, . . . ,m, may be expressed as

Bi,t = Xi,t +
t

T
Bi,T , i = 1, . . . ,m. (3.6)

Condition (3.6) implies that each Brownian motion may be described as a function of t, Brownian bridge process

Xi,t, and the terminal condition Bi,T . It can easily be shown that Xi,t is a Gaussian process and that Bi,T is

independent of Xi,t, i = 1, . . . ,m.

Consider the case that Si,t is sorted as i ∈ {1, . . . ,m}. Using the Brownian bridge, Si,t, t ∈ [0, T ] is

rewritten as

Si,t = Si,0 exp

νit+ i∑
j=1

σij

(
Xj,t +

t

T
Bj,T

) , i = 1, . . . ,m. (3.7)

Since each Si,t is a function of (t, B1,T , . . . , Bm,T , X1,t, . . . , Xm,t) with B1,t ≡ W1,t, the barrier option payoff

GT is a function of the following arguments:

W1,T , B2,T , . . . , Bm,T , {t, X1,t, . . . , Xm,t}t∈[0, T ] , (3.8)

i.e., there is a function ϕ1 satisfying

GT = ϕ1

(
W1,T , B2,T , . . . , Bm,T , {t, X1,t, . . . , Xm,t}t∈[0, T ]

)
. (3.9)

Noting that W1,T is independent of B2,T , . . . , Bm,T and X1,t, . . . , Xm,t for any t ∈ [0, T ], we can now apply the

Independence Lemma as follows: The function ĝ which gives the conditional expectation,

ĝ1 (W1,T ) = E [GT |W1,T ] = E
[
ϕ1

(
W1,T , B2,T , . . . , Bm,T , {t, X1,t, . . . , Xm,t}t∈[0, T ]

)∣∣∣W1,T

]
(3.10)

satisfies the following condition for a nonrandom dummy variable w1 ∈ ℜ:

ĝ (w1) = E
[
ϕ1

(
w1, B2,T , . . . , Bm,T , {t, X1,t, . . . , Xm,t}t∈[0, T ]

)]
. (3.11)

Similarly, we can construct a function ϕk, k = 2, . . . ,m by sorting Si,t as i ∈ {2, . . . ,m, 1}, {3, . . . ,m, 1, 2}, . . .
, and {m, 1, . . . ,m− 1} and applying the same procedure. As a result, we obtain the following theorem:

Theorem 1 Assume that GT is given by (2.3). Then, for each i ∈ {1, 2, . . . ,m} and a (nonrandom) dummy

variable wi ∈ ℜ, there exists a function ϕi satisfying

ĝi (wi) = E
[
ϕi

(
wi, {Bj,T }j=1,...,m, j ̸=i , {t, X1,t, . . . , Xm,t}t∈[0, T ]

)]
. (3.12)

3.2 Computational procedure for barrier options

We see that, for any given real number wi ∈ ℜ, i = 1, . . . ,m, ĝi (wi) is computed using a Monte Carlo method for

unconditional expectation (3.12). In this case, we need to generate Brownian bridge processes, Xi,t, i = 1, . . . ,m

based on the discrete observations, but in fact, we can generate the Brownian bridge sample paths by using the

Brownian motion sample paths. The total procedure is summarized as follows:
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Step 0: Let N be appropriate number of observations and δT := T/N . For given i ∈ {1, . . . ,m} and wi, repeat

Steps 1–3 below.

Step 1: For the time periods, tn := n · δT , n = 0, 1, . . . , N , generate sample paths of m-dimensional (indepen-

dent) Brownian motions, Bi,tn , i = 1, . . . ,m.

Step 2: For each Bi,tn , compute the Brownian bridge processes, as

Xi,tn := Bi,tn − tn
tN
Bi,tN , i = 1, . . . ,m, n = 0, 1, . . . , N. (3.13)

Step 3: Substitute Xi,tn and Bi,tN into ϕi in (3.12) for i = 1, . . . ,m as

ϕi

(
wi, {Bj,tN }j=1,...,m, j ̸=i , {tn, X1,tn , . . . , Xm,tn}n=0,1,...,N

)
. (3.14)

Step 4: After repeating Steps 1–3 sufficiently many times, compute the average of equation (3.14) to obtain

an estimated value of ĝi (wi) , i = 1, . . . ,m.

4 Equity value separation using additive models

In this section, we demonstrate how we can apply the optimal hedging technique with additive models for the

equity value separation problem. To this end, we consider a dafaultable firm owing a debt paying no coupon

until the maturity T > 0. Also, assume that the firm consists of m individual assets, Si,t, i = 1, . . . ,m, where

the firm’s asset value is denoted by

At := S1,t + · · ·Sm,t, t ∈ [0, ∞). (4.1)

4.1 Individual equity values

Let Et, t ∈ [0, T ] denote the equity shareholders’ value of the firm whose terminal value value, ET , depends on

whether or not the firm is default. For example, in the case of Merton’s structural model, the default is defined

when the terminal asset value AT is below D and the terminal equity value may be given as

ET = (AT −D)
+
, (4.2)

where D > 0 is the total amount of face value. On the other hand, in the case of first passage time structural

model, the default is defined by the first time τ the asset value hits a certain lower threshold L > 0 before the

maturity T > 0, i.e., τ < T , and ET is given as

ET = I{τ>T} × (AT −D)
+
. (4.3)

As in (4.1), the asset values are considered to be additive, i.e., the total asset value of the firm corresponds

to the sum of individual asset values. Then, how about equity values? Are equity values considered to be

additive? Or in the similar content, is the equity value, denoted by Et, splittable into individual equity values

related to each assets? One candidate to define such equity values is to apply the Merton’s structural model for

individual asset values as well as the total asset value of (4.2). However, the usage of individual equity values

defined by the Merton’s structural model may always lead to an overestimation of the total equity value from
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the following discussion: Let Ẽ be conditional expectation under risk neutral probability measure P̃, and define

individual equity values, Ei,T , i = 1, . . . ,m, by

Ei,t = e−r(T−t)Ẽ [Ei,T | Ft] , Ei,T = (Si,T −Di)
+
, (4.4)

where Di, i = 1, . . . ,m denote face values of the debts assigned for each assets such that D1 + · · ·+Dm = D.

Then it holds that

m∑
i=1

Ei,T =

m∑
i=1

(Si,T −Di)
+ ≥

(
m∑
i=1

(Si,T −Di)

)+

= (AT −D)
+
= ET . (4.5)

Condition (4.5) implies that the sum of individual equity values (under the Merton’s structural model) is always

greater than or equal to the total equity value.

In stead of applying the Merton’s structural model for individual assets directly, here we consider to introduce

individual equity values so that their sum approximates the total equity value as close as possible. A formal

definition may be described as follows:

Definition 1 Let Fi,t, t ∈ [0, T ], i = 1, . . . ,m be filtration generated by each individual asset process, Si,t.

Then, the individual equity value, denoted by Ei,t, is defined as a stochastic process adapted to Fi,t whose sum

approximates the total equity value Et as close as possible, i.e.,

Et ≃ E1,t + · · ·+ Em,t, t ∈ [0, T ]. (4.6)

We discuss that the individual equity values satisfying Definition 1 may be obtained using a solution of the

optimal hedging problem with additive models. To this end, we define the following optimal hedging problem

with additive models under the risk neutral measure P̃:

min
fi∈S

Ẽ

{ET −
m∑
i=1

fi (Si,T )

}2
 , (4.7)

Also, let f∗i , i = 1, . . . ,m denote optimal smooth functions for the optimal hedging problem (4.7).

4.2 Optimal hedging problem under risk neutral measure

At first, we assume that L = 0 and consider optimal smooth functions, f∗i , i = 1, . . . ,m, with ET defined by

(4.2). For these optimal smooth functions, there exists a function h∗i,t such that

h∗i,t (Si,t) := Ẽ [f∗i (Si,T )|Si,t] , t ∈ [0, T ], i = 1, . . . ,m. (4.8)

from the Markov property (see, e.g., Shreve (2004)), where h∗i,T = f∗i . Then, an interesting question is to ask

if h∗i,t, i = 1, . . . ,m provide optimal smooth functions of the problem,

min
hi,t∈S

Ẽ

{Et − m∑
i=1

hi,t (Si,t)

}2
, (4.9)

for any given t ∈ [0, T ]. This statement holds true from the following theorem:

Theorem 2 (Yamada 2012) For any given t ∈ [0, T ], the smooth functions h∗i,t, i = 1, . . . ,m of (4.8) provide

minimizers for the problem (4.9).
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Clearly, h∗i,t (Si,t) is adapted to Fi,t for t ∈ [0, T ] and the sum of h∗i,t (Si,t) approximates the total equity value

Ei,t in the mean square optimal sense from Theorem 2. Therefore, we conclude that h∗i,t (Si,t) , i = 1, . . . ,m

provides a candidate of the individual equity value in Definition 1.

In the case of L > 0 where the terminal equity value is defined by (4.3), one cannot obtain the property

corresponding to Theorem 2 due to the path-dependent features in τ . Although the further investigation may

be our future work, here we show that the optimal smooth functions, f∗i , i = 1, . . . ,m, of the problem (4.7) may

provide individual equities for the total equity value being approximated by a multivariate European option.

Let ψ∗ (S1,T , . . . , Sm,T ) be the optimal projection of ET onto the sigma algebra generated by the terminal values

of individual assets, σ (S1,T , . . . , Sm,T ), under the risk neutral probability measure, P̃, i.e., ψ∗ is a solution of

the following problem:

min
ψi∈Sm

Ẽ
[
{ET − ψ (S1,T , . . . , Sm,T )}2

]
(4.10)

where Sm is a set of m-dimensional smooth functions. Then, it can readily be confirmed that ψ∗ provides

conditional expectation of ET given σ (S1,T , . . . , Sm,T ), i.e.,

ψ∗ (S1,T , . . . , Sm,T ) = Ẽ [ET |S1,T , . . . , Sm,T ] . (4.11)

Using ϕ∗ in (4.11), we demonstrate that the optimal hedging problem (4.7) boils down to the following problem:

min
fi∈S

Ẽ

{ψ∗ (S1,T , . . . , Sm,T )−
m∑
i=1

fi (Si,T )

}2
 . (4.12)

Since f∗i,t are optimal smooth functions for the problem (4.7), the following conditions are satisfied:

m∑
j=1

Ẽ
[
f∗j (Sj,T )

∣∣Si,T ] = Ẽ [ET |Si,T
]
, i = 1, . . . ,m (4.13)

Based on the tower property for conditional expectations, the right hand side of (4.13) may be written as

Ẽ [ET |Si,T ] = Ẽ
[
Ẽ [ET |S1,T , . . . , Sm,T ]

∣∣∣Si,T ]
= Ẽ [ψ∗ (S1,T , . . . , Sm,T )|Si,T ] . (4.14)

Therefore, it holds that

m∑
j=1

Ẽ
[
f∗j (Sj,T )

∣∣Si,T ] = Ẽ [ψ∗ (S1,T , . . . , Sm,T )|Si,T
]
, i = 1, . . . ,m, (4.15)

and hence, we conclude that f∗i,t provides optimal smooth functions for the problem (4.12) as well as those for

the problem (4.7).

The above argument (together with Theorem 2) implies that the functions, ĥi, i = 1, . . . ,m, satisfying

Ẽ [f∗i (Si,T )| Ft] = Ẽ [f∗i (Si,T )|Si,t] = ĥi (Si,t) , i = 1, . . . ,m, (4.16)

provide the optimizers of

min
hi,t∈S

Ẽ

{Êt − m∑
i=1

hi,t (Si,t)

}2
, (4.17)
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where Êt is defined by

Êt := Ẽ [ψ∗ (S1,T , . . . , Sm,T )| Ft] (4.18)

and ψ∗ (S1,T , . . . , Sm,T ) is the mean square optimal approximation of ET using conditional expectation (4.11).

Since Êt ̸= Et in general, f∗i , i = 1, . . . ,m do not necessarily provide desired solutions of individual equity

values with respect to the total equity value Et. As mentioned earlier in this subsection, this is mainly due to

the path-dependentness of barrier options and the further investigation may be required in our future work. In

this paper, we regard ĥi (Si,t) in (4.16) as proxies of individual equity values and illustrate the relations between

the individual equity values and the equity debt ratio via numerical experiments in the next section.

4.3 Initial value assignment

Before providing the numerical experiments, we show that any portion of total equity value may be assigned as

an initial value of each individual equity when using the optimal smooth functions of (4.7). Let f̄i be another

smooth function defined by

f̄i (Si,T ) := f∗i (Si,T ) + ηiE [ET ]− E [f∗i (Si,T )] , i = 1, . . . ,m (4.19)

where ηi is any parameter satisfying η1 + · · · ηm = 1. Then, the following condition holds from (2.5):

m∑
i=1

f̄i (Si,T ) =

m∑
i=1

f∗i (Si,T ) . (4.20)

Condition (4.20) suggests that f̄i, i = 1, . . . ,m defined in (4.19) are optimizers of the problem (4.7) as well.

Instead of using f∗i , we define Ei,t as

Ei,t := e−r(T−t)E
[
f̄ (Si,T )

∣∣Ft] , i = 1, . . . ,m, (4.21)

Then, at the maturity t = T , the sum of Ei,T , i = 1, . . . ,m provides an optimal approximation of the terminal

equity value ET , i.e., ET ≃
∑m
i=1Ei,T , in the sense of minimum mean square errors3. On the other hand, the

initial value may be computed as

Ei,0 = e−rTE
[
f̄i (Si,T )

]
= e−rTE [f∗i (Si,T )] + ηie

−rTE [ET ]− e−rTE [f∗i (Si,T )] = ηiE0, (4.22)

which indicates that individual equity values may be constructed so that their initial values are assigned with

arbitrarily portions of the total equity value at time t = 0. This result may be useful for the situation that

the initial values of individual equities are given a priori. For example, in the case of merger of two companies,

their individual equity values may be observable until the merger is carried out and one can set the initial

values of individual equities using the ones right before the merger. Even though individual equity values

become unobservable after the merger, it may be possible to use the individual equity values estimated from

the optimal hedging technique with additive models provided in this section.

5 Numerical experiment

Here we illustrate our optimal hedging technique for the equity value separation problem via numerical experi-

ments. Assume that a firm possesses five individual assets, Si,t, i = 1, . . . , 5, which follow SDEs in (2.7) with

3For the Merton’s structural model of ET = (AT −D)+, Et ≃
∑m

i=1 Ei,t holds for any t ∈ [0, T ] in the sense of minimum mean

square errors.
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volatility and correlation parameters of Table 5.1, where we note that the higher the asset number the smaller

the volatility. We also suppose that µi = 0, i = 1, . . . , 5 and r = 0 to investigate the effect of volatility of each

asset on default or survival. In this case, the physical probability measure provides the risk neutral probability

measure. We set T = 3 (years), Si,0 = 20, i = 1, . . . ,m, and A0 =
∑5
i=1 Si,0 = 100, whereas the face value

D of the zero-coupon debt (maturing at T ) is varied according to the debt/equity ratio, denoted by D/E, as

D/E = 0.5, 1, 2, 4, e.g., D = A0 × 0.5/(1 + 0.5) when D/E = 0.5. The default threshold L is given by L = D

for the first time structural model (Barrier option) and L = 0 for the Merton’s structural model (European

option).

Table 5.1: Volatilities and correlations

S1 S2 S3 S4 S5

S1 1

S2 0.476 1

S3 0.291 0.341 1

S4 0.315 0.287 0.389 1

S5 0.298 0.346 0.406 0.457 1

Volatility 0.549 0.421 0.307 0.232 0.157

Table 5.2: Default probabilities

D/E 0.5 1 2 4

European option (%) 0.29 5.57 21.6 38.1

Barrier option (%) 0.46 9.47 35.8 63.2

For finding optimal smooth functions of the problem (4.7), we need to compute ĝ (wi) by applying Steps

1)–4) in Section 3.2 for each i ∈ {1, . . . , 5} and a dummy variable wi. Since we can use the same set of

random variables to compute the average of ϕi in Step 4 for any wi ∈ ℜ, the number of random variables

required for the total computation is the same as that of Monte Carlo simulation for independent Brownian

motion sample paths. We generate 30, 000 sample paths of five dimensional independent Brownian motions,

where the number of observations is assumed to be N = 150. In this case, the basic time period is given

by δT = T/N = 1/50 (≃ 1 week) and the total number of independent random variables generated for this

simulation is 5× 30, 000× 150 = 225× 105. Then, we compute the Brownian bridge processes as in (3.6). Note

that, when L = 0 for the Merton’s structural model, we need the terminal values of five dimensional Brownian

motions only. Table 5.2 summerizes the default probabilities with respect to D/E = 0.5, 1, 2, 4, i.e., P (AT ≤ D)

for the Merton’s structural model entitled (European option) and P (τ ≤ T ) for the first passage time structural

model (Barrier option). We see that the default probability with D/E = 4 for the first passage time structural

model is quite high, whereas those with D/E = 0.5 are almost zero for both cases. Also, the default probabilities

for the first passage time structural model are more than 50% higher than those for the Merton’s structural

model, i.e., more than 1/3 of sample paths related to default hit the threshold L = D before the maturity in

this example.

Table 5.3: Squared correlation coefficient

D/E 0.5 1 2 4

European option (%) 100.0 99.9 99.5 98.7

Barrier option (%) 100.0 99.7 96.6 84.6

Table 5.4: Minimum mean square errors

D/E 0.5 1 2 4

European option 0.103 1.86 10.5 21.6

Barrier option 0.161 7.30 68.3 254

Tables 5.3 and 5.4 illustrate the squared correlation coefficients corresponding to the coefficients of deter-
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mination and the minimum mean square errors, respectively. The two rows in both figures are those between

ET and the sum of optimal smooth functions for the Merton’s and the first passage time structural models.

(European and Barrier options). From these results, although the higher the default probabilities the worse the

sizes of hedge errors for both the squared correlation coefficients and the minimum mean square errors, we can

get a reasonably good hedge performance even with D/E = 4 for the first passage time structural model, e.g.,

the squared correlation coefficient is about 85% indicating that 85% of total fluctuation may be explained by

the sum of optimal smooth functions.

Finally, we investigate the effect of default or survival on individual equity values estimated from the optimal

hedging technique with additive models. Here we compute normalized conditional expectations given survival or

default related to the first passage time τ , where the normalized conditional expectation of Ei,T given survival,

τ > T , is defined as a quantity being proportional to the following value:

E
[
I{τ>T}Ei,T

]
(5.1)

Similarly, the one given default is proportional to

E
[
I{τ≤T}Ei,T

]
(5.2)

Since the larger (5.1) or (5.2) the higher correlation between the individual equity value and the default or the

survival event, conditions (5.1) and (5.2) with a certain normalization may provide contribution rates of the

total equity value given survival or default. Let V
(s)
i and V

(d)
i , i = 1, . . . ,m denote such normalized conditional

expectations given by

V
(s)
i = a · E

[
I{τ>T}Ei,T

]
+ b

V
(d)
i = a · E

[
I{τ≤T}Ei,T

]
+ b

where a and b are constant parameters such that

m∑
i=1

V
(s)
i = 1,

m∑
i=1

V
(d)
i = 0.

Note that conditions (5.1) and (5.2) may be estimated once smooth functions, f∗i , i = 1, . . . ,m, are specified

using the same set of sample paths generated for the Monte Carlo simulation.

Fig. 5.1 shows the relation between the asset number vs. normalized conditional expectations given survival

or default for European options. The value of each bin in the left hand side denotes the normalized conditional

expectation V
(s)
i given survival (i.e., AT > 0) for D/E = 0.5, 1, 2, 4 with respect to the asset number i = 1, . . . , 5.

Since the sum of each bin with the same D/E is 1, the vertical axis may be interpreted to provide a contribution

rate of asset i to the equity value of the firm conditioned on survival. From the figure, we see that each equity

value is indifferent on average for D/E = 0.5 in which default probability is very small, whereas the larger the

volatility the higher contribution to the equity value and the difference becomes more significant with the larger

D/E. This indicates that, in the case where the firm is still survival under default risk, the source of excess

profit is mainly brought from a high volatility asset (or project) and the contribution of low volatility asset (or

project) is not so significant. The right hand side of Fig 5.1 shows the normalized conditional expectations,

V
(d)
i , i = 1, . . . , 5, given the firm is default for D/E = 0.5, 1, 2, 4 and i = 1, . . . , 5. Note that V

(d)
i for each asset

can be negative even though the asset value is always positive. From the figure, we see that a smaller (and

negative) value is obtained when volatility is higher and that the lower the volatility the higher the contribution

to excess profit when the firm is default.
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Fig. 5.1: Normalized conditional expectations given survival (Left; V (i)
s , i = 1, . . . , 5) or default (Right;

V
(i)
d , i = 1, . . . , 5) for European options
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i , i = 1, . . . , 5) or default (Right;

V
(d)
i , i = 1, . . . , 5) for Barrier options
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Fig. 5.2 shows normalized conditional expectations for Barrier options, where the left and right hand plots

compare V
(s)
i given survival and V

(d)
i given default, respectively, for D/E = 0.5, 1, 2, 4 and i = 1, . . . , 5. Although

the default probability for Barrier options in Table 5.2 is much higher than that for European options for every

D/E, one can observe a similar tendency for the normalized conditional expectations given survival as shown

in the left hand side of Fig. 5.2, i.e., the conditional expectations given survival depends on D/E and a higher

contribution to the excess profit is observed when volatility is higher. On the other hand, for the conditional

expectations given default, the difference is a little emphasized compared to those for European options, in

particular for D/E = 4, and the higher the volatility the higher impact on the default.

6 Conclusion

In this paper, we first generalized the optimal hedging technique with additive models in Yamada (2010–2012) for

the case of path-dependent barrier options, where the problem is to find optimal payoff functions on individual

options to replicate the payoff of path-dependent basket option as close as possible. To solve the necessary and

sufficient condition for the optimal hedging problem, we proposed to represent the underlying assets based on

the Brownian bride decomposition and showed that computations involving conditional expectations of basket

barrier options may be reduced to those of unconditional expectations. We also provided an algorithm to

compute the unconditional expectations using a Monte Carlo method. We then applied our methodology to the

Black-Cox type first passage time structural model, where a dafaultable company is assumed to possess/run

multiple assets/projects and the default may occur the first time the asset value hits a certain lower threshold

before the maturity. We formulated the equity value separation problem using additive models and introduced

individual equity values so that their sum approximates the total equity value as close as possible. It was also

shown that any portion of total equity value may be assigned as an initial value of each individual equity when

using the optimal smooth functions. Numerical experiments were also included to illustrate our methodology,

in which we estimated contributions of individual equity values to default or survival by applying a certain

normalization for conditional expectations.
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