
Finding a Shortest Non-Zero Path in Group-Labeled Graphs

via Permanent Computation∗

Yusuke Kobayashi† Sho Toyooka‡

December 14, 2015

Abstract

A group-labeled graph is a directed graph with each arc labeled by a group element, and
the label of a path is defined as the sum of the labels of the traversed arcs. In this paper,
we propose a polynomial time randomized algorithm for the problem of finding a shortest
s-t path with a non-zero label in a given group-labeled graph (which we call the Shortest
Non-Zero Path Problem). This problem generalizes the problem of finding a shortest path
with an odd number of edges, which is known to be solvable in polynomial time by using
matching algorithms. Our algorithm for the Shortest Non-Zero Path Problem is based on
the ideas of Björklund and Husfeldt (2014). We reduce the problem to the computation of
the permanent of a polynomial matrix modulo two. Furthermore, by devising an algorithm
for computing the permanent of a polynomial matrix modulo 2r for any fixed integer r, we
extend our result to the problem of packing internally-disjoint s-t paths.

1 Introduction

The shortest path problem is one of the most well-studied problems in combinatorial optimiza-
tion. In the problem, the objective is to find a shortest path connecting two specified vertices s
and t in a given graph, and it can be done easily by the breadth first search if each edge has a
unit length. For the shortest path problem in undirected (or directed) graphs with non-negative
edge lengths, many polynomial time algorithms are proposed, such as Dijkstra’s algorithm [3]
and the Bellman-Ford algorithm [1]. As an extension of the shortest path problem, we can
consider the problem with a parity constraint: given an undirected graph G = (V,E), two
specified vertices s and t, and a non-negative length of each edge, find a shortest odd (or even)
s-t path. Here, a path is said to be odd (resp. even) if it contains odd (resp. even) number of
edges. Actually, this problem can be reduced to the weighted matching problem (see e.g. [12,
Section 29.11e] and [7]), and hence it can be solved in polynomial time with the aid of weighted
matching algorithms. Note that the directed variant is much harder than the undirected case,
namely, it is NP-hard to test whether a given directed graph contains an odd (or even) directed
path from s to t [9]. We also note that we can easily find a shortest odd (or even) s-t walk in a
given (directed) graph by standard dynamic programming.

As a generalization of the parity constraints, group-labeled graphs have been investigated [8],
where a group-labeled graph is a directed graph with each arc labeled by a group element. In a
group-labeled graph, the label of a path is defined as the sum of the labels of the traversed arcs,

∗Research is supported by JST, ERATO, Kawarabayashi Large Graph Project, and by KAKENHI Grant
Number 24106002, 24700004.

†University of Tsukuba, Japan. E-mail: kobayashi@sk.tsukuba.ac.jp
‡University of Tokyo, Japan. E-mail: sho toyooka@mist.i.u-tokyo.ac.jp

1

where each arc can be traversed in the reverse direction and then the label is inversed. Group
labeled graphs are also called gain graphs or voltage graphs, and they were originally introduced
in the field of topological graph theory with an application to construct graph embeddings in
surfaces (see [5, 6, 15]). In this paper, we consider only abelian groups, and hence the group
operation is denoted by addition and the identity is denoted by 0. We now introduce the
Shortest Non-Zero Path Problem, which is described as follows: given a group-labeled graph
with two specified vertices s and t, find an s-t path with a non-zero label that contains minimum
number of arcs. This generalizes the shortest odd s-t path problem in undirected graphs with
unit length edges, because odd s-t paths in an undirected graph G correspond to non-zero s-t
paths in the Z2-labeled graph obtained from G by orienting each edge arbitrarily and by setting
the label of each arc as 1. In this paper, we propose a polynomial time randomized algorithm
for the Shortest Non-Zero Path Problem.

In order to state our result formally, we now give some notations. For an abelian group Γ, a
Γ-labeled graph is a pair (G,ψ) of a directed graphG = (V,E) and a mapping ψ : E → Γ (called a
label function). A walk in a Γ-labeled graph (G,ψ) is a sequenceW = (v0, e1, v1, e2, v2, . . . , el, vl)
of vertices vi and arcs ei in G such that either ei = vi−1vi or ei = vivi−1 for i = 1, . . . , l.
A path is a walk whose vertices are distinct from one another. The label of a walk W =
(v0, e1, v1, . . . , el, vl) is defined as ψ(W) = ψ̃(e1) + ψ̃(e2) + · · · + ψ̃(el), where ψ̃(ei) = ψ(ei) if
ei = vi−1vi and ψ̃(ei) = −ψ(ei) if ei = vivi−1. The arc set of a walk W is denoted by E(W).
With these notations, the Shortest Non-Zero Path Problem and our result are described as
follows.� �
Shortest Non-Zero Path Problem in Γ-labeled Graphs

Input: a Γ-labeled graph (G,ψ) with two specified vertices s, t ∈ V .

Find: an s-t path P with ψ(P) ̸= 0 that contains a minimum number of arcs (if exists).� �
Theorem 1. Let Γ be a fixed finite abelian group. There is a polynomial time randomized
algorithm for the Shortest Non-Zero Path Problem in Γ-labeled Graphs.

We note that Γ is not a part of the input of the problem, that is, |Γ| is a fixed constant
when we consider polynomial solvability of the problem. We also note that we can easily find a
shortest s-t walk with a non-zero label in polynomial time by standard dynamic programming.
More precisely, for each integer l and for each vertex v ∈ V , we compute all the possible labels
of s-v walks of length at most l. This can be done in polynomial time by using information
on the case of l − 1. Since this algorithm keeps no information on the intermediate vertices of
s-v walks, it is impossible to deal with paths instead of walks. Therefore, the same argument
cannot be applied to the Shortest Non-Zero Path problem.

In our algorithm for the Shortest Non-Zero Path Problem, we introduce a matrix whose
entries are polynomials, which is similar to the adjacency matrix. We reduce the Shortest Non-
Zero Path problem to the computation of the permanent of this matrix modulo two under the
assumption that the instance has a unique optimal solution (Proposition 4). This reduction
is based on the ideas in the breakthrough paper by Björklund and Husfeldt [2], which gives a
randomized polynomial time algorithm for the shortest two disjoint paths problem. Although
computing the permanent of matrices is hard in general, it is shown in [2] that we can compute
the permanent of one-variable polynomial matrices modulo two or four in polynomial time.
Thus, we can solve the Shortest Non-Zero Path problem if the instance has a unique optimal
solution. Even if the instance has more than one optimal solutions, we can convert it to an

2

instance with a unique optimal solution with high probability by using a standard random
perturbation technique and the isolation lemma (Lemma 6) in the same way as [2].

Since our algorithm is based on the permanent computation, we can say that our algorithm is
algebraic rather than combinatorial. Linear algebraic objects such as determinant or permanent
are closely related to some combinatorial optimization problems. One of the most classical
examples is a relationship between the Tutte matrix and the maximum matching problem. It is
well-known that the determinant of the Tutte matrix is non-zero if and only if the graph has a
perfect matching [13], and we can obtain a randomized polynomial time algorithm for finding a
perfect matching based on this relationship [10]. Later, this algorithm was derandomized in [4].

Permanent also appears in some combinatorial optimization problems. For example, the
permanent of the adjacency matrix of a directed graph is equal to the number of cycle covers,
and the permanent of the adjacency matrix of a bipartite graph is equal to the number of perfect
matchings. However, since it is NP-hard to compute the permanent [14], these relationships
do not lead to efficient algebraic algorithms. As far as we know, Björklund and Husfeldt’s
algorithm [2] mentioned above is the first efficient algorithm for a combinatorial optimization
problem based on computing the permanent. Their key idea is to use the permanent modulo
four, which can be computed in polynomial time. With such a background, the present paper
aims to extend the applicability of the techniques in [2]. Indeed, we solve the Shortest Non-
Zero Path Problem and the Shortest Non-Zero k Disjoint Paths Problem, which are completely
different from the problem in [2], by computing the permanent modulo 2r for some integer r.

The rest of this paper is organized as follows. In Section 2, we give an algebraic algorithm
for the Shortest Non-Zero Path Problem and prove Theorem 1. In Section 3, we extend our
result to a kind of path packing problem, which we call the Shortest Non-Zero k Disjoint Paths
Problem. Note that this problem deals with s-t paths, whereas Björklund and Husfeldt [2]
deal with two paths with distinct end vertices. In the algorithm for the Shortest Non-Zero k
Disjoint Paths Problem, we use an algorithm for computing the permanent of a polynomial
matrix modulo 2r for fixed integer r, which is given in Section 4.

In what follows, by subdividing all arcs and assigning appropriate labels if necessary, we
assume that the input graph contains neither self-loops nor parallel arcs without loss of gener-
ality.

2 Algebraic Approach to the Problem

In this section, we give a proof of Theorem 1, namely, we propose an algebraic approach to the
Shortest Non-Zero Path Problem, in which we use the permanent of a polynomial matrix. The
permanent of an n× n matrix A = (aij) is defined as

perA =
∑
σ∈Sn

n∏
i=1

aiσ(i),

where Sn is the set of all permutations on n elements. By the definition, the permanent of
the adjacency matrix of a directed graph is corresponding to the number of cycle covers in this
directed graph, where a cycle cover is a set of arcs in which each vertex has exactly one incoming
arc and exactly one outgoing arc. More generally, we can easily see the following.

Lemma 2. Let G = (V,E) be a directed graph which has no multiple arcs and may have parallel
arcs and self-loops. Let A = (aij) be a matrix whose rows and columns are indexed by V such
that aij = 0 holds for any i, j ∈ V with ij ̸∈ E. Then, we have

perA =
∑

F∈C(G)

∏
ij∈F

aij ,

3

where C(G) is the set of all cycle covers in G.

To prove Theorem 1, we first deal with the case of Γ = Zp(:= Z/pZ) for some integer p. We
extend this case to the general case by using the fundamental theorem of finite abelian groups.

Suppose that we are given an instance of the Shortest Non-Zero Path Problem, that is,
we are given a Zp-labeled graph (G = (V,E), ψ) with two specified vertices s, t ∈ V . By
identifying Zp with {0, 1, 2, . . . , p− 1} ⊆ Z, for each ij ∈ E, we regard ψ(ij) as an integer with
0 ≤ ψ(ij) ≤ p − 1. We define a matrix A = (aij) over Z[x, y] whose rows and columns are
indexed by V as follows:

aij =



xyψ(ij) if ij ∈ E, i ̸= t, and j ̸= s;

xyp−ψ(ji) if ji ∈ E, i ̸= t, and j ̸= s;

1 if i = j ∈ V \ {s, t};
1 if (i, j) = (t, s);

0 otherwise.

(1)

Note that since G has neither self-loops nor parallel arcs, ij ∈ E implies that i ̸= j and
ji ̸∈ E, which ensures that aij is well-defined. Since the maximum degree of y in perA is at
most |V |p, perA can be uniquely expressed as

perA =

|V |p∑
l=0

ql(x)y
l,

where ql(x) is a polynomial in x with integer coefficients. With these polynomials, we define
Q(x) as the polynomial with coefficients in {0, 1} such that

Q(x) ≡
∑

l ̸≡0 (mod p)

ql(x) (mod 2), (2)

where we denote
∑

i bix
i ≡

∑
i cix

i (mod 2) if bi ≡ ci (mod 2) for every i.

Lemma 3. For a Zp-labeled graph (G,ψ) with two vertices s and t, Q(x) defined above can be
computed in polynomial time.

Proof. In order to compute Q(x), we only need perA modulo two, which can be computed as
follows:

1. replace y with xN to obtain a one-variable polynomial matrix A′, where N is greater than
the maximum degree of x in perA (e.g., N := n+ 1),

2. compute perA′ modulo two, and

3. replace xaN+b with xbya in perA′ to obtain perA modulo two.

Since we can compute the permanent of one-variable polynomial matrices modulo two in poly-
nomial time (see [2] or Section 4), this algorithm runs in polynomial time.

The following proposition shows a relationship between Q(x) and the Shortest Non-Zero
Path Problem.

Proposition 4. Suppose that we are given a Zp-labeled graph (G,ψ) with two vertices s and
t, which is an instance of the Shortest Non-Zero Path Problem. Assume that it has a unique
optimal solution. Then, the optimal value of this instance is equal to the minimum degree of
Q(x) defined as above.

4

Proof. For an instance (G = (V,E), ψ, s, t) of the Shortest Non-Zero Path Problem, we define
a new directed graph G′ = (V,E′) with vertex set V by

E1 = {ij | ij ∈ E, i ̸= t, and j ̸= s},
E2 = {ij | ji ∈ E, i ̸= t, and j ̸= s},
E3 = {ij | i = j ∈ V \ {s, t}} ∪ {ts},
E′ = E1 ∪ E2 ∪ E3.

We also define a new mapping ψ′ : E′ → {0, 1, . . . , p− 1} by

ψ′(ij) =


ψ(ij) if ij ∈ E1;

p− ψ(ji) if ij ∈ E2;

0 if ij ∈ E3

for ij ∈ E′. We can see that an s-t path P in Zp-labeled graph (G,ψ) is corresponding to a
directed path P ′ from s to t (called an s-t dipath) in directed graph G′ and their labels ψ(P)
and ψ′(P ′) :=

∑
e∈E(P ′) ψ

′(e) are equal modulo p. Since G′ and the matrix A defined as (1)

satisfy the condition in Lemma 2, i.e., ij ̸∈ E′ implies that aij = 0, we obtain

perA =
∑

F∈C(G′)

∏
ij∈F

aij , (3)

where C(G′) is the set of all cycle covers in G′. We observe that a cycle cover F ∈ C(G′) must
contain the arc ts, and hence F also contains an s-t dipath P . We now divide C(G′) into two
parts: one is the set C1 of all cycle covers containing an s-t dipath P with ψ′(P) ̸= 0, and
the other is the set C2 of all cycle covers containing an s-t dipath P with ψ′(P) = 0. By (3),
for each cycle cover F ∈ C(G′), we can naturally define the contribution of F to Q(x), say
QF (x). That is, QF (x) = 0 if

∑
e∈F ψ

′(e) ≡ 0 (mod p), and QF (x) = xcF otherwise, where
cF = |F ∩ (E1 ∪ E2)|. Then, we have Q(x) ≡

∑
F∈C(G′)QF (x) (mod 2) by the definition. In

what follows, we consider
∑

F∈C1 QF (x) and
∑

F∈C2 QF (x), separately.
First, we consider

∑
F∈C1 QF (x). For an s-t dipath P in G′, let AP be the matrix obtained

from A by eliminating the rows and the columns corresponding to the vertices in P . Since each
F ∈ C1 contains a non-zero s-t dipath, we have∑

F∈C1

∏
ij∈F

aij =
∑

P : non-zero s-t dipath

(∏
ij∈E(P)

aij

)
perAP

=
∑

P : non-zero s-t dipath

x|E(P)|yψ̄(P) perAP , (4)

where ψ̄(P) is some integer with ψ̄(P) ≡ ψ′(P) (mod p). Consider the cycle cover F0 ∈ C1
that consists of the s-t dipath P0 corresponding to the unique optimal solution (the shortest
non-zero path) of the original problem, arc ts, and self-loops incident to vertices in G′ − P0.
Then, QF0(x) = x|E(P0)|. By the uniqueness of the optimal solution and (4), we can see that
x|E(P0)| is the minimum degree term in

∑
F∈C1 QF (x) and its coefficient is 1.

Next, we show
∑

F∈C2 QF (x) ≡ 0 (mod 2). Let F ∈ C2 be a cycle cover satisfying that
QF (x) ̸= 0. By the definition of QF (x),

∑
e∈F ψ(e) ̸≡ 0 (mod p) and QF (x) = xcF . Let P be

the s-t dipath with the label zero in F . We consider the cycle cover F ′ ∈ C2 obtained from
F by reversing all arcs in F − E(P) − ts. Since

∑
e∈F ′ ψ(e) ≡ −

∑
e∈F ψ(e) ̸≡ 0 (mod p), we

have QF ′(x) = xcF , and hence QF (x) + QF ′(x) ≡ 0 (mod 2). Note that F ̸= F ′, because

5

F −E(P)− ts contains at least one cycle whose label is not equal to zero. In this way, all cycle
covers F in C2 with QF (x) ̸= 0 can be put into pairs so that the total contribution of each pair
to Q(x) is zero modulo two. Therefore, we obtain

∑
F∈C2 QF (x) ≡ 0 (mod 2).

By the above analyses of
∑

F∈C1 QF (x) and
∑

F∈C2 QF (x), the minimum degree of Q(x) is
equal to the minimum length of the non-zero s-t path.

By combining Lemma 3 and Proposition 4, we obtain a deterministic polynomial time algo-
rithm for the Shortest Non-Zero Path Problem under the assumption that the instance has a
unique optimal solution. Even when a given instance has more than one optimal solutions, we
can convert it to the case with a unique optimal solution by perturbing the lengths of the arcs.

Proposition 5. Suppose that we are given a Γ-labeled graph (G,ψ) with two vertices s and t,
which is an instance of the Shortest Non-Zero Path Problem. We choose a weight w(e) of each
arc e independently and uniformly at random from W := {2|V ||E|, 2|V ||E| + 1, . . . , 2|V ||E| +
2|E| − 1}. We construct a new instance by replacing each arc e with a path of length w(e),
where the labels of the new arcs are chosen so that the label of the path is equal to ψ(e). Then,
the obtained instance has a unique optimal solution with probability at least 1

2 (if the original
instance has a feasible solution).

Proof. The validity of this proposition is based on the following isolation lemma [11]:

Lemma 6. Let S be a finite set, F be a family of subsets of S, and W be a set of integers
different from each other. Suppose that the weight of each element in S is chosen from W
independently and uniformly at random, then with probability at least 1− |S|

|W | , there is a unique
set in F of minimum total weight.

We apply this lemma, in which S = E, W = {2|V ||E|, 2|V ||E|+ 1, . . . , 2|V ||E|+ 2|E| − 1},
and F is the family of all subsets of E belonging to each s-t non-zero path in G. Then, with
probability at least 1 − |E|

2|E| =
1
2 , there is a unique s-t non-zero path of minimum total weight

in G. Since the total weight
∑

e∈E(P)w(e) of an s-t path P in G is equal to the length of the
corresponding path in the new instance, the obtained instance has a unique optimal solution
with probability at least 1

2 .

Since an optimal solution in the instance obtained in Proposition 5 is corresponding to an
optimal solution in the original instance, by Lemma 3 and Propositions 4 and 5, we obtain
Theorem 1 under the assumption that Γ = Zp for some integer p.

We now consider the case when Γ is a finite abelian group. In this case, we apply the
fundamental theorem of finite abelian groups and decompose Γ as Γ = Zp1 ⊕ Zp2 ⊕ · · · ⊕ Zpl
where p1, . . . , pl are some integers. Note that l is bounded by a fixed constant since Γ is fixed.
By using this decomposition, for an instance (G,ψ, s, t) of the Shortest Non-Zero Path Problem
in Γ-labeled Graphs, define a new label function ψi : E → Zpi for i = 1, 2, . . . , l such that
ψ(e) = ψ1(e) ⊕ ψ2(e) ⊕ · · · ⊕ ψl(e) for e ∈ E. For i = 1, 2, . . . , l, let Pi be a shortest non-
zero s-t path in (G,ψi). Then, a shortest one among {P1, P2, . . . , Pl} is a shortest non-zero s-t
path in (G,ψ), because a path P satisfies that ψ(P) ̸= 0 if and only if ψi(P) ̸= 0 for some
i ∈ {1, 2, . . . , l}. Therefore, by solving the Shortest Non-Zero Path Problem in Zpi-labeled
Graphs (G,ψi) for i = 1, 2, . . . , l, we obtain an optimal solution of the original problem in
(G,ψ), which shows Theorem 1.

3 Extension to Packing Disjoint s-t Paths

In this section, we generalize the Shortest Non-Zero Path Problem to the problem of finding k
internally-disjoint s-t paths of shortest total length under the condition that the sum of their

6

labels is not zero. We note that our result in this section does not imply the result in [2],
because Björklund and Husfeldt [2] deal with the problem of finding an s1-t1 path and an s2-t2
path, which is different from our problem setting. Our problem is formally described as follows,
where k is a positive integer and Γ is a finite abelian group.� �
Shortest Non-Zero k Disjoint Paths Problem in Γ-labeled Graphs

Input: a Γ-labeled graph (G,ψ) with two specified vertices s, t ∈ V .

Find: k internally-disjoint s-t paths P1, . . . , Pk minimizing the total number of arcs con-
tained in them subject to

∑k
i=1 ψ(Pi) ̸= 0 (if exist).� �

We can easily see that the case of k = 1 is corresponding to the Shortest Non-Zero Path
Problem. The objective of this section is to extend Theorem 1 to the following theorem.

Theorem 7. Let k be a fixed positive integer and Γ be a fixed finite abelian group. There is a
polynomial time randomized algorithm for the Shortest Non-Zero k Disjoint Paths Problem in
Γ-labeled Graphs.

Proof. By subdividing all arcs and assigning appropriate labels if necessary, we may assume
that the input graph contains neither self-loops nor parallel arcs and there is no arc connecting
s and t without loss of generality. By using the same argument as the previous section, it suffices
to discuss the case of Γ = Zp. Suppose that we are given an instance of the Shortest Non-Zero
k Disjoint Paths Problem. We construct a new graph G′ = (V ′, E′) from G by replacing s with
its k copies s1, s2, . . . , sk and by replacing t with its k copies t1, t2, . . . , tk. Note that each arc
incident to s (resp. t) is also replaced with its k copies incident to si (resp. ti), and the label
function ψ on E is naturally extended to E′ (see Figure 1). Define S = {s1, s2, . . . , sk} and
T = {t1, t2, . . . , tk}.

Recall that, for each ij ∈ E′, we can regard ψ(ij) as an integer with 0 ≤ ψ(ij) ≤ p− 1. We
define a matrix A′ = (a′ij) over Z[x, y] whose rows and columns are indexed by V ′ as follows:

a′ij =



xyψ(ij) if ij ∈ E′, i ̸∈ T, and j ̸∈ S;

xyp−ψ(ji) if ji ∈ E′, i ̸∈ T, and j ̸∈ S;

1 if i = j ∈ V ′ \ (S ∪ T);
1 if (i, j) = (tl, sl) for some l ∈ {1, 2, . . . , k};
0 otherwise.

(5)

In a similar way to (2), we express perA′ as

perA′ =

|V ′|p∑
l=0

q′l(x)y
l

and define Q′(x) as the polynomial with coefficients in {0, 1, 2, . . . , 2r − 1} such that

Q′(x) ≡
∑

l ̸≡0 (mod p)

q′l(x) (mod 2r).

Here, r is the minimum integer such that (k!)2/2r is not an integer, i.e., (k!)2 ̸≡ 0 (mod 2r) and
2(k!)2 ≡ 0 (mod 2r). In a similar way to Proposition 4, we can obtain the following proposition.

7

G

s t

1

3

s2

G'

s3

s1

t2

t3

t1

1

1
1

3

s2

G''

s3

s1

t2

t3

t1

1

1
1

3

p ― 3
0

0

Figure 1: Construction of G′ and G′′

Proposition 8. Let k be a positive integer. Suppose that we are given a Zp-labeled graph
G = (V,E) with two vertices s and t, which is an instance of the Shortest Non-Zero k Disjoint
Paths Problem. Assume that it has a unique optimal solution. Then, the optimal value of this
instance is equal to the minimum degree of Q′(x) defined as above.

Proof of Proposition 8. For the group-labeled graph (G′, ψ) defined as above, as in Figure 1, we
define a new directed graph G′′ = (V ′, E′′) with vertex set V ′ by

E1 = {ij | if ij ∈ E′, i ̸∈ T, and j ̸∈ S},
E2 = {ij | if ji ∈ E′, i ̸∈ T, and j ̸∈ S},
E3 = {ij | i = j ∈ V ′ \ (S ∪ T)}} ∪ {tlsl | l ∈ {1, 2, . . . , k}},
E′′ = E1 ∪ E2 ∪ E3.

We also define a new mapping ψ′′ : E′′ → {0, 1, . . . , p− 1} by

ψ′′(ij) =


ψ(ij) if ij ∈ E1;

p− ψ(ji) if ij ∈ E2;

0 if ij ∈ E3

for ij ∈ E′′. Since G′′ and the matrix A′ defined as (5) satisfy the condition in Lemma 2, i.e.,
ij ̸∈ E′′ implies that a′ij = 0, we obtain

perA′ =
∑

F∈C(G′′)

∏
ij∈F

a′ij ,

where C(G′′) is the set of all cycle covers in G′′. We observe that a cycle cover F ∈ C(G′′) must
contain the arc tlsl for l = 1, 2, . . . , k, and hence F also contains k (fully) disjoint directed paths
from S to T , which we call S-T dipaths. We now divide C(G′′) into two parts: one is the set
C′
1 of all cycle covers containing S-T dipaths whose sum of the labels is non-zero (non-zero S-T

dipaths), and the other is the set C′
2 of all cycle covers containing S-T dipaths whose sum of the

labels is zero (zero S-T dipaths). In the same way as the proof of Proposition 4, for each cycle
cover F ∈ C(G′′), we can naturally define the contribution of F to Q′(x), say Q′

F (x). In what
follows, we consider

∑
F∈C′

1
Q′
F (x) and

∑
F∈C′

2
Q′
F (x), separately.

First, we consider
∑

F∈C′
1
Q′
F (x). For a set P of dipaths in G′′, let E(P) be the set of the

arcs contained in the dipaths in P, define ψ′′(P) :=
∑

e∈E(P) ψ
′′(e), and let A′

P be the matrix

obtained from A′ by eliminating the rows and the columns corresponding to the vertices in the
dipaths in P. Since each F ∈ C′

1 contains non-zero S-T dipaths, we have∑
F∈C′

1

∏
ij∈F

a′ij =
∑

P: non-zero S-T dipaths

x|E(P)|yψ̄(P) perA′
P , (6)

8

where ψ̄(P) is some integer with ψ̄(P) ≡ ψ′′(P) (mod p). Let P0 be the unique optimal solution
of the Shortest Non-Zero k Disjoint Paths Problem. Consider a cycle cover F0 ∈ C′

1 in G′′

that consists of non-zero S-T paths P corresponding to P0, arcs tlsl (l = 1, . . . , k), and self-
loops incident to vertices not contained in P. Then, Q′

F0
(x) = x|E(P0)|. Since we can obtain

P from P0 by determining a one-to-one correspondence between P0 and S and a one-to-one
correspondence between P0 and T , we have (k!)2 possibilities of F0 with the above condition.
Therefore, (k!)2x|E(P0)| is the minimum degree term in

∑
F∈C′

1
Q′
F (x). Note that (k!)2 ̸≡ 0

(mod 2r) by the definition of r.
Next, we show

∑
F∈C′

2
Q′
F (x) ≡ 0 (mod 2r). Let F ∈ C′

2 be a cycle cover satisfying that

Q′
F (x) ̸= 0. Then,

∑
e∈F ψ

′′(e) ̸≡ 0 (mod p) and Q′
F (x) = xcF , where cF = |F ∩ (E1 ∪ E2)|.

By changing the indices of {s1, . . . , sk} and {t1, . . . , tk} in F , we obtain (k!)2 cycle covers
F1(= F), F2, . . . , F(k!)2 ∈ C′

2 such that Q′
Fi
(x) = xcF for i = 1, 2, . . . , (k!)2. Note that these

cycle covers are distinct since the original graph has no arc connecting s and t. Let P be the
zero S-T dipaths in F , and consider the cycle cover F ′ ∈ C′

2 obtained from F by reversing all
arcs in F −E(P)− {t1s1, . . . , tksk}. Since

∑
e∈F ′ ψ′′(e) ≡ −

∑
e∈F ψ

′′(e) ̸≡ 0 (mod p), we have
QF ′(x) = xcF . Again, by changing the indices of {s1, . . . , sk} and {t1, . . . , tk} in F ′, we have
(k!)2 cycle covers F ′

1(= F ′), F ′
2, . . . , F

′
(k!)2 ∈ C′

2 such that Q′
F ′
i
(x) = xcF for i = 1, 2, . . . , (k!)2.

Therefore,
∑(k!)2

i=1 (QFi(x) + QF ′
i
(x)) = 2(k!)2xcF ≡ 0 (mod 2r), since 2(k!)2 ≡ 0 (mod 2r) by

the definition of r. In this way, all cycle covers F in C′
2 with Q′

F (x) ̸= 0 can be divided into
sets of 2(k!)2 cycle covers so that the total contribution of each set to Q′(x) is zero modulo 2r.
Therefore, we obtain

∑
F∈C′

2
Q′
F (x) ≡ 0 (mod 2r).

By the above analyses of
∑

F∈C′
1
Q′
F (x) and

∑
F∈C′

2
Q′
F (x), the minimum degree of Q′(x)

is equal to the optimal value of the Shortest Non-Zero k Disjoint Paths Problem. (End of the
proof of Proposition 8)

In order to compute Q′(x) modulo 2r, in a similar way to Lemma 3, we convert A′ to a
matrix in Z[x] and compute its permanent modulo 2r. This can be done in polynomial time as
we will see in the next section (see Theorem 9). Note that the degree of each element of the
obtained matrix is at most O(|V ′|2), and hence the degree of the permanent is at most O(|V ′|3),
which is needed when we apply Theorem 9. Therefore, by Proposition 8 and the perturbation
technique used in Section 2, we obtain Theorem 7.

4 Computing the Permanent Modulo 2r

For the computation of Q′(x), we propose an algorithm for computing the permanent of poly-
nomial matrices modulo 2r, which we believe is of independent interest.

Although computing the permanent of integer matrices is NP-hard [14], Valiant [14] gave a
polynomial time algorithm for computing the permanent of matrices whose entries are in Z2r ,
where r is a fixed constant. By using a similar technique to [14], Björklund and Husfeldt [2]
gave a polynomial time algorithm for computing the permanent of matrices whose entries are
in Z4[x], that is, each entry is a polynomial in x with coefficients in Z4. Our contribution is to
generalize this result to the case of Z2r [x], where r is a fixed constant. For a matrix A whose
entries are in Z[x] and for a positive integer r, let per2rA be the permanent of A modulo 2r,
i.e., the polynomial with coefficients in {0, 1, 2, . . . , 2r − 1} such that

per2rA ≡ perA (mod 2r).

Our result is stated as follows.

9

Theorem 9. Let r be a fixed nonnegative integer and A be an n× n matrix whose entries are
in Z[x]. Suppose that we are given an integer N which is greater than the maximum degree of
per2rA. Then, per2rA can be computed in polynomial time in n and N .

Proof. Our proof is based on ideas in [2]. Let EN denote Z[x]/(xN), which is a quotient ring
divided by the ideal generated by xN . Roughly, EN is the set of polynomials obtained from
Z[x] by ignoring the terms whose degrees are at least N . Since the maximum degree of per2rA
is at most N − 1, to compute per2rA, we may identify Z[x] with EN by ignoring the terms
whose degrees are at least N . Let Mn(EN) be the set of all n× n matrices whose entries are in
EN . We say that a polynomial a ∈ EN is even if all coefficients of a are even and odd if a is
not even. For an odd polynomial a, let m(a) be the index of the lowest order term of a whose
coefficient is odd.

For a given matrix A = (aij) ∈ Mn(EN), our algorithm for computing per2rA is described
as follows. Note that all the computation in the algorithm is done on EN , that is, we remove
all terms whose degrees are at least N .

Algorithm Permanent(r,A)

A1. If n = 1, return a11 modulo 2r. If r = 0, return 0.

A2. Choose i ∈ {1, 2, . . . , n} such that ai1 is odd and m(ai1) is minimum (if exists). Then,
exchange rows 1 and i.

A3. If ai1 is even for i = 2, 3 . . . , n, then compute per2rA by Lemma 10 and return it. Otherwise,
take an index i ∈ {2, 3, . . . , n} such that ai1 is odd, and compute a polynomial c ∈ EN
such that ai1 + c a11 ∈ EN is even by Lemma 11.

A4. Let A[i, 1] be the matrix obtained from A by replacing the ith row with the first row.
Compute per2r(A+ cA[i, 1]) by using Algorithm Permanent(r,A+ cA[i, 1]) recursively
and compute c per2rA[i, 1] by Lemma 12. Then, compute per2rA by

per2rA ≡ per2r(A+ cA[i, 1])− c per2rA[i, 1] (mod 2r),

and return it.

For integers n ≥ 1, r ≥ 0, and k ≥ 0, let TN (n, r, k) be the worst case running time of the
algorithm for computing per2rA for a matrix A = (aij) ∈ Mn(EN) such that |{i ∈ {1, 2, . . . n} |
ai1 is odd}| is at most k. Note that TN is monotone, that is, TN (n, r, k) ≥ TN (n

′, r′, k′) if n ≥ n′,
r ≥ r′, and k ≥ k′. For each n and each r, let T ∗

N (n, r) := maxk TN (n, r, k)(= TN (n, r, n)). In
what follows, we prove that T ∗

N (n, r) is bounded by a polynomial in n and N for fixed r. Let
poly(n,N) denote some polynomial in n and N . Note that when poly(n,N) appears more than
once, they might denote distinct polynomials.

The following lemmas are used in Algorithm Permanent(r,A).

Lemma 10. Let n ≥ 2 and r ≥ 1 be integers and A = (aij) be a matrix in Mn(EN). If ai1 is even
for i = 2, 3 . . . , n, then we can compute per2rA in T ∗

N (n−1, r)+(n−1)T ∗
N (n−1, r−1)+poly(n,N)

time. That is, TN (n, r, 1) ≤ T ∗
N (n− 1, r) + (n− 1)T ∗

N (n− 1, r − 1) + poly(n,N) for n ≥ 2 and
r ≥ 1.

Proof. By expanding perA along the first column, we have

per2rA ≡ a11per2rA11 +
n∑
i=2

ai1per2rAi1 (mod 2r), (7)

10

where Ai1 is the matrix obtained from A by removing row i and column 1. For i = 2, 3, . . . , n,
since ai1 is even, we have

ai1per2rAi1 ≡ ai1per2r−1Ai1 (mod 2r).

This shows that we can compute (7) in T ∗
N (n − 1, r) + (n − 1)T ∗

N (n − 1, r − 1) + poly(n,N)
time.

Lemma 11. For odd polynomials a ∈ EN and b ∈ EN with m(a) ≤ m(b), we can compute a
polynomial c ∈ EN such that b+ ca ∈ EN is even in polynomial time in N .

Proof. Such a c can be computed by the following algorithm.

B1. Set l = 0 and c(0) = 0 ∈ EN .

B2. While b+ c(l)a is not even, set c(l+1) = c(l) + xm(b+c(l)a)−m(a) and increment l.

B3. Return c(l).

Since each iteration in Step B2 increases m(b+ c(l)a) by at least one and this value is at most
N − 1, this algorithm runs in polynomial time in N .

Lemma 12. Let n ≥ 2 and r ≥ 1 be integers and A = (aij) be a matrix in Mn(EN) whose first
and second rows are identical. Then,

per2rA ≡ 2
∑

1≤i<j≤n
a1ia2jper2r−1A1i,2j (mod 2r),

where A1i,2j is the matrix obtained from A by removing rows 1 and 2 and columns i and j.
Furthermore, per2rA can be computed in 1

2n(n − 1)T ∗
N (n − 2, r − 1) + poly(n,N) time, where

T ∗
N (0, r − 1) is regarded as a constant.

Proof of Lemma 12. By expanding perA along the first and second rows,

per2rA ≡
∑
i̸=j

a1ia2jper2rA1i,2j

≡ 2
∑

1≤i<j≤n
a1ia2jper2rA1i,2j

≡ 2
∑

1≤i<j≤n
a1ia2jper2r−1A1i,2j (mod 2r),

where the last equality is derived from the fact that 2a ≡ 2a′ (mod 2r) if and only if a ≡ a′

(mod 2r−1) for a, a′ ∈ EN . Since per2r−1A1i,2j can be computed in T ∗
N (n − 2, r − 1) time,

per2rA can be computed in 1
2n(n− 1)T ∗

N (n− 2, r − 1) + poly(n,N) time. (End of the proof of
Lemma 12)

Now we are ready to evaluate TN (n, r, k) and prove Theorem 9. For k ≥ 2 and r ≥ 1, by
Step A4 of Algorithm Permanent(r,A) and Lemma 12, we obtain

TN (n, r, k) ≤ TN (n, r, k − 1) +
1

2
n(n− 1)T ∗

N (n− 2, r − 1) + poly(n,N).

11

By using this inequality repeatedly, it holds that

TN (n, r, k) ≤ TN (n, r, 1) +
k − 1

2
n(n− 1)T ∗

N (n− 2, r − 1) + poly(n,N)

≤ TN (n, r, 1) +
n3

2
T ∗
N (n− 2, r − 1) + poly(n,N). (8)

Note that this inequality holds also for k = 0, 1. By combining (8) with Lemma 10, we have

TN (n, r, k) ≤ T ∗
N (n− 1, r) + (n− 1)T ∗

N (n− 1, r − 1) +
n3

2
T ∗
N (n− 2, r − 1) + poly(n,N)

≤ T ∗
N (n− 1, r) + n3T ∗

N (n, r − 1) + poly(n,N),

where we use the monotonicity of T ∗
N in the second inequality. Since this inequality holds for

any k ≥ 0, we have

T ∗
N (n, r) ≤ T ∗

N (n− 1, r) + n3T ∗
N (n, r − 1) + poly(n,N) (9)

for any n and r. By using (9) repeatedly (by changing n), we obtain

T ∗
N (n, r) ≤ n4T ∗

N (n, r − 1) + poly(n,N). (10)

Furthermore, by using (10) repeatedly (by changing r), we obtain T ∗
N (n, r) = (poly(n,N))O(r).

This shows that Algorithm Permanent(r,A) runs in polynomial time in n and N for fixed
r.

References

[1] R.E. Bellman, On a routing problem, Quarterly of Applied Mathematics (1958) 16, pp.
87–90.

[2] A. Björklund and T. Husfeldt, Shortest two disjoint paths in polynomial time, Pro-
ceedings of the 41st International Colloquium on Automata, Languages and Programming,
Part I. LNCS 8572 (2014), pp. 211–222.

[3] E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathe-
matik (1959) 1, pp. 269–271.

[4] J.F. Geelen, An algebraic matching algorithm, Combinatorica (2000) 20, pp. 61–70.

[5] J.L Gross and T.W. Tucker, Generating all graph coverings by permutation voltage
assignments, Discrete Mathematics (1977) 18, pp. 273–283.

[6] J.L Gross and T.W. Tucker, Topological Graph Theory, Wiley Interscience, 1987.

[7] M. Grötschel and W.R. Pulleyblank, Weakly bipartite graphs and the max-cut
problem, Operations Research Letters (1981) 1, pp. 23–27.

[8] T. Huynh, The Linkage Problem for Group-Labelled Graphs PhD. Thesis, Department
of Combinatorics and Optimization, University of Waterloo, Ontario, 2009.

[9] A.S. LaPaugh and C.H. Papadimitriou, The even-path problem for graphs and di-
graphs, Networks (1984) 14, pp. 507–513.

12

[10] L. Lovász, On determinants, matchings, and random algorithms, Fundamentals of Com-
putation Theory, FCT ’79, Akademie-Verlag, Berlin, 1979, pp. 565–574.

[11] K. Mulmuley, U.V. Vazirani, and V.V. Vazirani, Matching is as easy as matrix
inversion, Combinatorica (1987) 7, pp. 105–113.

[12] A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency, Springer-Verlag,
2003.

[13] W.T. Tutte, The factorization of linear graphs, Journal of the London Mathematical
Society (1947) 22, pp. 107–111.

[14] L.G. Valiant, The complexity of computing the permanent, Theoretical Computer Sci-
ence (1979) 8, pp. 189–201.

[15] T. Zaslavsky, Biased graph. I. bias, balance, and gains, Journal of Combinatorial Theory,
Series B (1989) 47, pp. 32–52.

13

