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Na-ion diffusion in NASICON-type solid electrolyte: a density 
functional study 

Kieu My Bui,a,b,c Van An Dinh,d,e* Susumu Okada,b and Takahisa Ohnoc,f,g* 

Based on the density functional theory, we have systematically studied the crystal and electronic 

structures, and diffusion mechanism of the NASICON-type solid electrolytes Na3Zr2Si2PO12. Four possible 

elementary processes are addressed: three inner-chain and one inter-chain processes. In inner-chain 

processes, Na tends to move inside the Na diffusion chain, while Na moves across the Na diffusion chain in 

inter-chain process. The activation energies for the inner-chain and inter-chain processes are 230 meV and 

260 meV, respectively.  By combining possible elementary processes, three preferable pathways along a, b, 

and c direction are found.  

1. Introduction 

Extensive research efforts have been made to meet the continuous 
raising of energy requirement of the modern world. Among many 
criteria for the future energy sources, two most important criteria 
are needed: performance and price. The batteries in portable devices 
are required to be more compact and efficient. Hence, there is a 
huge demand for the high energy density and high voltage sources. 
Moreover, the low cost criterion is also a must to stimulate the daily 
use appliances and mass production. On the battle of performance, 
Li-ion batteries (LIBs) are now playing the leading role with high 
gravimetric energy density (110-160 Wh/kg) and high voltage 
(3.6V).1,2 A great deal of attention has been paid in both 
experimental and theoretical study of LIBs.3–6 Nevertheless, in the 
battle of price, LIBs seem not to be a strong competitor because of 
the high price of Li and the lack of Li sources. Indeed, the abundance 
of Li in the Earth’s crust is as small as 20ppm7 and the Li source is 
unevenly distributed (mainly in South America). Hence, the search 
for a cheap material having comparable performance to LIBs is 
becoming an important issue. Standing next to Li in the first group of 

periodic table, Na is the second-lightest and smallest alkali metal 
after Li. Na-ion batteries (SIBs) are now attracting attention because 
of the lower price and higher abundance.8–11 Na is not only the sixth 
richest abundance element on earth crust but also a widely 
distributed material. On the aspect of the material abundance and 
low cost, SIBs have potential to replace LIBs on large scale grid energy 
storage.  

In SIBs, a problem that needed to be solved is the flammable 
liquid electrolytes because Na has high reactivity to moisture and 
oxygen causing high risk of unsafe operation. Hence, all-solid state 
batteries using non-flammable solid electrolytes have become 
trendy in designing energy storage devices.12,13 The benefits of using 
all-solid state batteries are avoiding: electrolyte leakage, liquid 
electrolytes vaporization, and phase transition at low temperature. 
Also, the reliability of the all-solid state batteries is high since they 
have excellent storage stability and long cycle life. In addition, all-
solid state batteries may prolong battery life since the side reactions 
seldom happen in solid electrolyte systems. Therefore, finding an 
appropriate solid electrolyte for all-solid state batteries is becoming 
an important issue. 

The NASICON structure, which is referred to the family of 

Na1+xZr2SixP3-xO12 (0<x<3),14–19 is famous for its high ionic 

conductivity. The discovery of the NASICON family has made further 

development in designing the fast Na+-conductor electrolyte. The 3-

D NASICON framework structure enables the material to have good 

structural stability and fast ion conduction. Hong and 

Goodenough20,21 have reported that  the ionic conductivity of 

Na1+xZr2SixP3-xO12 (0<x<3) varies according to the stoichiometry of the 

NASICON composition. The highest conductivity is obtained in the 

range of 1.8 < x < 2.2. Especially, the conductivity obtained for the 

composition Na3Zr2Si2PO12 (NZSP) 17,22–24 is comparable to the Na β’’ 

alumina.21 Recently, the all solid-state battery using Na3V2(PO4)3 

(NVP) as electrode and Na3Zr2Si2PO12 as electrolyte is attracting 

attention as a high performance and low cost battery.25,26 The 

NASICON-type Na3V2(PO4)3 electrode is becoming a promising 
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electrode material by providing better stability and higher ionic 

conductivity.27,28 Furthermore, the material can be used as both 

anode and cathode. Since NVP and NZSP have the same NASICON 

structure, there is a possibility to study the NVP/NZSP/NVP cell 

theoretically and experimentally. Since NVP is becoming one of the 

most promising candidates for cathode material in SIBs, many 

experiment studies of NVP were made.29–31 More recently, Bui et 

al.28 have systematically studied the structure and diffusion 

mechanism in NVP theoretically. However, to the best of our 

knowledge, there is still lack of theoretical study of NZSP. Hence, 

having a thorough understanding of the structural properties and 

diffusion mechanism in the electrolyte NZSP is becoming more and 

more necessary.  

2. Method 

This paper presents the diffusion mechanism of NZSP using the 
density functional theory (DFT) as implemented in the Vienna ab 
initio simulation package (VASP).32 The geometry optimization and 
electronic structure analysis were carried out with Monkhorst-pack 
k-point sampling of 2×2×2. The wave functions were expanded by 
plane-wave basis set with a cutoff energy of 500 eV. The generalized 
gradient approximation (GGA)33 with PBE functional was used to deal 
with the exchange and correlation energy. The diffusion study was 
made by introducing one Na vacancy into the NZSP monoclinic cell of 
80 atoms including three formula units (f.u).  For the elementary 
diffusion processes, we defined Na diffusion pathways and then 
calculated the corresponding activation barriers using the nudged 
elastic band (NEB)34 method. The convergence condition of 
calculated energies and forces were set at 0.01 eV/f.u and 0.01 eV/Å, 
respectively.  

 At low temperature, the space group of Na1+xZr2SixP3-xO12 for x < 

1.6 and x > 2.4 is rhombohedral R3̅c, while that for 1.6 < x <2.4 is 
monoclinic C2/c. Fig. 1 shows the Na3Zr2Si2PO12 structure. 
Na3Zr2Si2PO12 is a three-dimensional framework created by 
alternative arranged PO4 and SiO4 tetrahedral and ZrO6 octahedral. 
Each ZrO6 octahedra shares its corner with six PO4 or SiO4 octahedra 
while each PO4 or SiO4 tetrahedra is connected to four ZrO6 

octahedra. This structure creates a “hexagonal bottleneck” whose 

shortest diameter is 4.6 Å, which is even bigger by twice than the 
sum of the Na+ and O2- ionic radii. Such large space enables Na to 
move through, enhancing the conductivity of the material. There are 
three different Na sites in the structure:  Na1, Na2, and Na3.21 Each 
Na1 site is linked three-dimensionally to two Na2 sites and four Na3 

sites, while each Na2 or Na3 site is connected to two Na1 sites. The 
positions of Na1, Na2, and Na3 are shown in Fig. 1.  For construction 
of the material, we considered many Na-vacancy arrangements from 
the initial structure and then chose the most stable arrangement for 
further study.  

 

3. Result 

Table 1: The experimental and calculated lattice parameters (Å) in 
Na3Zr2Si2PO12. 

 
a (Å) b (Å) c (Å) 

Exp.21 15.586 9.029 9.205 

Calculation 15.801 9.147 9.245 

 

Table 2: The bond distances (Å) of Na1-O, Na2-O, Na3-O P-O, Si-O 
and Zr-O in Na3Zr2Si2PO12. 

 Experiment21 Calculation 

Na1-O (Å) 
2×2.599 
2×2.620 
2×2.608 

2.3636 
2.3691 
2.3922 
2.5270 
2.5332 
3.0080 

Na2-O (Å) 

2×2.413 
2×2.600 
2×2.808 
2×2.974 

2×2.4533 
2×2.5285 
2×2.6181 
2×2.7332 

Na3-O (Å) 

2.441 
2.449 
2.478 
2.621 
2.648 
2.772 

2.3636 
2.3691 
2.3922 
2.5270 
2.5331 
3.0081 

P-O (Å) 2×1.542 
2×1.546 

2×1.546 
2×1.555 

Si-O (Å) 

1.543 
1.545 
1.546 
1.583 

1.636 
1.643 
1.643 
1.648 

Zr-O 

2.055 
2.077 
2.096 
2.104 
2.137 
2.142 

1.989 
2.060 
2.076 
2.125 
2.146 
2.250 

 

Fig. 1: The crystal structure of Na3Zr2Si2PO12. Na at the Na1 
site are shown by yellow balls, Na at the Na2 site by light 
green balls, and Na at the Na3 site by dark green balls. The 
Zr octahedra are shown by pink, the Si tetrahedra by blue, 
and the P tetrahedra by grey. 
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The obtained structure of Na3Zr2Si2PO12 is shown in Fig. 1. The 

calculated lattice parameters are listed in Table 1. The calculated 

parameters obtained are a = 15.801 Å, b = 9.147 Å, and c = 9.245 Å. 

It can be seen that the optimum lattice parameters are in well 

agreement with the experiment. The bond distances of Na1-O, Na2-

O, Na3-O P-O, Si-O and Zr-O are listed in Table 2. We have found that 

the calculated P-O and Zr-O bond distances are in accordance with 

the experiment. In the experimental data, the Si-O and P-O bond 

lengths are almost similar. This is because the structure that the 

experimentalists proposed was based on the assumption that the Si 

atoms are ordered in the P positions. Hence, our result of average Si-

O bond of 1.643 Å, which is in accordance with other 

experiments,23,19 is reasonable. Furthermore, since we realized that 

the Na3-O bond length is similar to that of Na1-O, we can rename Na3 

as Na1. Hence, in our calculation, there are only two types of Na: Na1 

and Na2. The formation energy calculations indicate that the vacancy 

at the Na2 site is approximately 60 meV lower than that at the Na1 

site. 

Figure 2 illustrates the non spin-polarized density of state (DOS) of 

the bulk Na3Zr2Si2PO12. The projected DOS on the 3d-states of Zr 

atoms and the 2p-states of P, Si, and O atoms are also presented. We 

found that the valence band is mainly contributed by 2p states of O 

while the conduction band is dominated by 3d states of Zr. The 3d-

states of Zr and the 2p-states of O are highly localized. Owing to wide 

band-gap of 4.6 eV, the material can be considered as an insulator. 

       When a Na vacancy is introduced into the structure, the 

neighboring Na ions may jump into the vacant site. The Na vacancy 

sites are indexed as Nai (i = A, B, C, D, E, and F). Four elementary 

processes are addressed: three inner-chain processes (Processes AB, 

BC, and CD) and one inter-chain process (Process BE). The diffusion 

mechanism in Processes AB, BC, and CD are described as below: 

i) Process AB:  the Na vacancy diffuses from NaA to NaB along        

[2̅34] direction. The diffusion takes place from the Na2 to Na1 
site. The diffusion distance is 5.237 Å. 

ii)  Process BC:  the Na vacancy moves from NaB to NaC along         

[121̅] direction. The diffusion distance is 3.322 Å. Both NaB and 
NaC locate at the Na1 sites. 

iii) Process CD:  the Na vacancy jumps from NaC to NaD along the 
direction parallel to the Process AB. The Na vacancy diffuses from 
the Na1 site to the Na2 site with a distance of 5.252 Å. 

Note that, the Na diffusion in Processes DE, EF, and FA has the same 
mechanism as that in Processes AB, BC, and CD, respectively. For 
more detail: 

 

 

Fig. 2: The density of states for the bulk of Na3Zr2Si2PO12

 

Fig. 3: Schematic of inner-chain processes in Pa. The Na at Na1 
sites are shown in yellow balls while the Na at Na2 site are shown 
in green balls. a) c-direction view. b) side view 

 
Fig. 4: Activation energies of the Na vacancy diffusion along 

Processes AB, BC, and CD. The circle, cross, and star symbols 

represent the activation energy profile of the Processes AB, BC, 

and CD, respectively. 

 

 
Fig. 5: Diffusion orbit of Processes AB, BC, and CD. Intermediate 

Na are shown in deep grey balls. 
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iv) Process DE: the Na vacancy moves from NaD to NaE along [234] 
direction. The diffusion distance and activation energy of this 
process are similar to those of Process AB. 

v) Process EF: the Na vacancy migrates from NaE to NaF along [1̅21] 
direction. The diffusion mechanism of this process is similar to 
that of Process BC. 

vi) Process FA: the Na vacancy jumps from NaF to NaA along the 
direction parallel to the process DE. The characteristic of the 
diffusion in this process is identical to that in Process CD. 

The diffusion mechanism in those processes is illustrated in Fig. 3. As 
seen in Fig. 3b, the diffusion plane of Processes DE, EF, and FA is 
perpendicular to that of Processes AB, BC, and CD. Figure 4 depicts 
the activation barrier of inner-chain processes. The energy barrier of 
Processes AB and CD is 230 meV while that of Process BC is as low as 
65 meV. This indicates that, the Na diffusion in Process BC is easier 
than that in Processes AB and CD. The diffusion trajectory of 
Processes AB, BC, and CD is depicted in Fig. 5. The NaA-NaB (3.7 Å) 
and NaB-NaC (3.9 Å) distances are almost the same. The Na diffusion 
trajectory of Process BC is straight, while those for Processes AB and 
CD are parabolic. Therefore, this Na diffusion path in Process BC is 
shorter than those in Processes AB and CD. In Processes AB and CD, 
Na migrates through the “hexagonal bottleneck” while Na travels 
easily through the large “octagonal bottleneck” in Process BC. As 
seen in Fig. 4, Ea of Process BC is lower than that of Process AB and 
CD. The images of the diffusion through “hexagonal bottleneck” and 
“octagonal bottleneck” are shown in Fig. 6. The “octagonal 
bottleneck” is created by alternatively arranged four ZrO6 octahedra 
and four SiO6 tetrahedra sharing their corner. Four ZrO6 octahedra 

lie on (311̅) plane and four SiO4 tetrahedra stand on (521) plane 
causing a high symmetry environment as depicted in Fig. 6c. Hence, 

when a Na vacancy is introduced at NaB (NaC), the Na at NaC (NaB) 
tends to move to the middle point between NaB and NaC. The 
corresponding energy when the Na ion locates at the middle point 
between B and C sites is 55 meV lower than those of B and C sites as 
depicted in Fig. 4.  
 Next, we would like to explain how Na vacancy behaves in inter-
chain Process BE. In this process, the Na vacancy diffuses from NaB to 
NaE along [012] direction, with a distance of 5.837 Å. The diffusion 
happens between Na1 sites. We have defined the Na diffusion chain, 
which is indicated by surrounded red dashed line In Fig. 7. Since in 
Processes AB, BC, CD, DE, EF, and FA, the Na vacancy migrates inside 
a Na layer, those processes are named as inner-chain processes. In 
Process BE, Na jumps from one Na diffusion chain to the other chain. 
Hence, the process is named as an inter-chain process shown by a 
red arrow in Fig. 7. In this process, Na has to diffuse through the 

 
 

 

 
Fig 6: Schematic of Na diffusion through hexagonal bottlenecks 

and octagonal bottleneck. a) Process AB b) Process BC c) Process 

BC with planes. The ZrO6 octahedra and SiO4 tetrahedra planes 

are shown in pink and blue, respectively. 

 

 
Fig. 7: Schematic of Pb. The Na diffusion chain is indicated by 

surrounded red dashed line. The black and red arrows indicate the 

inner-chain processes and inter-chain processes, respectively. 

 
Fig. 8: Activation energies of the Na vacancy diffusion along 

inter-chain process. 

 

 
Fig. 9: Schematic of Pc. 
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“hexagonal bottleneck” with activation barrier of 260 meV as 
depicted in Fig. 8. Note that, the Na diffusion in Process CF has the 
same mechanism as that in Process BE. In addition, although we also 
studied other processes such as from NaB to NaF, the Na has to climb 
up a higher energy barrier of 460 meV because there is no 
“hexagonal bottleneck” or “octagonal bottleneck” appeared along 
this process.  

By combining the possible elementary processes, we can figure 
out the preferable pathway. In Na3Zr2Si2PO12, three preferable 
pathways are addressed: Pathways a, b, and c. Those pathways are 
named after their diffusion direction: Pathway a along a direction, 
Pathway b along b direction, Pathway c along c direction. Pathway a 
includes inner-chain processes along NaA ↔ NaB ↔ NaC ↔ NaD ↔ 

NaE ↔ NaF ↔ NaA path as shown in Fig. 3.  The activation energy of 
285 meV for the diffusion along this pathway is calculated as the total 
energy different of the lowest energy inner-chain process BC (Ea = 55 
meV) and the highest energy inner-chain process AB (Ea = 230 meV). 
Pathway b is the combination of inner-chain processes and inter-chain 

processes along NaB ↔ NaC ↔ NaF ↔ NaE ↔ NaB path as depicted 

in Fig. 7. The activation barrier for this pathway is calculated to be 

315 meV equal to the total energy different of the lowest energy inner-

chain process BC (Ea = 55 meV) and the highest energy inter-chain 

process EB (Ea = 260 meV). Pathway c consists of only inter-chain 

processes along NaB ↔ NaE ↔ NaB path as presented in Fig. 9. The 

activation barrier for Pathway c is 260 meV. Some authors argued that 

the dynamic coupling of atom movements to the electronic excited 

states; i.e. pseudo Jahn-Teller effect, would be a factor to lower the 

barrier of ion diffusion.36,37  In the present case, because the energy 

difference between the 2p63s0 state of Na+ ion and its first excited 

state 2p53s1 is considerably large, the coupling between these 

background and excited states hardly occurs. On the other hand, it is 

clear that the typical structure of the materials includes the wide 

octahedral and hexahedral bottlenecks. These bottlenecks would 

help Na ions easily go through, correspondingly, the activation energy 

of the diffusion would be lower.   
 

4. Conclusion 

To sum up, we have investigated the geometrical and the electronic 
structure, and the Na diffusion mechanism in Na3Zr2Si2PO12 based on 
the density functional theory. The obtained lattice parameters and 
bond lengths of the structure are in accordance with the experiment. 
Two Na sites were found: Na1 and Na2. In inter-chain processes, Na 
should move through the “hexagonal bottleneck”. In inner-chain 
processes in which Na moves between the Na1 site to Na2 site, Na 
has to diffuse through the “hexagonal bottleneck”. But in inner-chain 
processes in which Na moves between the same Na1 sites, Na moves 
easily across the “octagonal bottleneck”. The three dimensional 
diffusion is confirmed in this study.  Pathways Pa, Pb, and Pc that 
consist of inner-chain and inter-chain processes are examined. The 
activation barriers for Pathways Pa, Pb, and Pc are 285 meV, 315 
meV, and 260 meV, respectively. The material exhibits high ionic 
conductivity with three-dimensional diffusion. 
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