Correction to the Automorphism Group of a Cyclic p-gonal Curve

<table>
<thead>
<tr>
<th>Title</th>
<th>Tsukuba journal of mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>32</td>
</tr>
<tr>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Page Range</td>
<td>407-407</td>
</tr>
<tr>
<td>Year</td>
<td>2008</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2241/00144086</td>
</tr>
</tbody>
</table>
CORRECTION TO THE AUTOMORPHISM GROUP OF A CYCLIC p-GONAL CURVE

By

Naonori Ishii and Katsuaki Yoshida

In our paper [1], we have made an error about the conditions on which our arguments were built. More precisely, we presented a wrong assertion as Lemma 2.1 (ii) in [1]. Necessarily the assertion Lemma 2.1 (iii) that V is contained in the center of G is not correct either. In order to carry the whole argument through the paper, we have to assume that V is in the center of G, and we should rewrite Lemma 2.1 as follows.

The authors would like to thank Professor Aaron Wootton who pointed out this error.

Lemma 2.1. Here the notations are same as in [1].

(i) The group H acts on \mathcal{S}.

The following two conditions are equivalent.

(ii) Let a_i and a_j be in \mathcal{S}. If there exists an element $T \in G$ satisfying $T a_i = a_j$, then we have $r_i = r_j$. Here we define r_{s+1} by $r_{s+1} \equiv -\sum_{i=1}^{s} r_i \pmod{p}$ and $0 < r_{s+1} < p$ when $\sum_{i=1}^{s} r_i \neq 0 \pmod{p}$.

(iii) The automorphism V is contained in the center of G.

Proof. The statement (i) and the implication (ii) \Rightarrow (iii) have actually been proved in [1].

Proof of (ii) \iff (iii).

Assume $\tilde{T}^* x = \zeta_n x = \xi x$. Moreover assume $\mathcal{S} \cap \{0, \infty\} = \emptyset$. Let

$$\mathcal{S} = \langle \tilde{T} \rangle b_1 \cup \cdots \cup \langle \tilde{T} \rangle b_l = \bigcup_{k=1}^{l} \{ b_k, \zeta_n b_k, \zeta_n^2 b_k, \ldots, \zeta_n^{n-1} b_k \}$$

be the decomposition of \mathcal{S} by the action of $\langle \tilde{T} \rangle$. Then M is defined by

$$y^p = \prod_{k=1}^{l} (x - b_k)^{u_{k,0}} (x - \zeta_n b_k)^{u_{k,1}} \cdots (x - \zeta_n^{n-1} b_k)^{u_{k,n-1}}, \quad 1 \leq u_{k,j} \leq p - 1. \quad (1)$$

Received February 2, 2008.
By acting T^* on (1), we have

$$(T^*y)^p = \prod_{k=1}^{t}(T^*x - b_k)^{u_k,0}(T^*x - \zeta^n b_k)^{u_k,1}(T^*x - \zeta^{2n} b_k)^{u_k,2} \cdots (T^*x - \zeta^{n-1} b_k)^{u_k,n-1}$$

$$= \zeta_n^C \prod_{k=1}^{t}(x - \zeta^n b_k)^{u_k,0}(x - b_k)^{u_k,1}(x - \zeta b_k)^{u_k,2} \cdots (x - \zeta^{n-2} b_k)^{u_k,n-1},$$

where $C = \sum_{k=1}^{t} \sum_{j=0}^{n-1} u_{k,j}$.

By the assumption that V is in the center, $\frac{T^*y}{y}$ is invariant under the action of V^*. Then

$$\frac{T^*y^p}{y^p} = \xi_n^C \prod_{k=1}^{t}(x - \zeta^n b_k)^{u_k,0}(x - b_k)^{u_k,1}(x - \zeta b_k)^{u_k,2} \cdots (x - \zeta^{n-2} b_k)^{u_k,n-1}$$

$$= \xi_n^C \prod_{k=1}^{t}(x - b_k)^{u_k,0} \cdots (x - \zeta b_k)^{u_k,1} \cdots (x - \zeta^{n-2} b_k)^{u_k,n-2}$$

$$= \xi_n^C \prod_{k=1}^{t} (x - b_k)^{u_k,0} \cdots (x - \zeta b_k)^{u_k,1} \cdots (x - \zeta^{n-2} b_k)^{u_k,n-1}$$

is p-th power of the rational function $\frac{T^*y}{y} \in \mathbb{C}(x)$. Therefore we have

$$u_{k,0} \equiv \cdots \equiv u_{k,n-1} \mod p.$$ As $u_{k,j} \leq p - 1$, we have $u_{k,0} = \cdots = u_{k,n-1}$. In case $\mathcal{S} \cap \{0, \infty\} \neq \emptyset$, we can carry the same argument as above. ⊓⊔

According to this revised lemma, we have to correct the results in [1] as follows:

(1) we add the assumption that V is in the center of G to Theorem 2.1 [1];
(2) the curves listed in Theorems 3.1 and 5.1 are those with the condition that V is in the center of G.

References