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Abstract

This thesis is concerned with two major applications in data mining, community detec-

tion and ranking. The problems arising in the above applications can be described as a

mathematical optimization problem, which, however, often ends up being intractable due

to some theoretical difficulties and/or the scale of instances. Solution methods tailored to

each application should be strongly desired. In this thesis, we study the solution methods

based on relaxation techniques for the three problems, modularity maximization problem,

modularity density maximization problem, and ranking problem.

Firstly, we consider the problem of maximizing the modularity in the context of the

community detection. This problem, when formulated as the well-known set partitioning

problem, has to take into account all nonempty subsets of the node set of the underlying

network, resulting in a huge number of variables and difficult set partitioning constraints.

To tackle this difficulty we propose two algorithms based on LP relaxation and Lagrangian

relaxation. Secondly, we consider the modularity density maximization which is origi-

nally formulated as a nonlinear fractional programming. We show that this problem is

equivalent to a variant of the semidefinite programming problem called 0-1SDP. We

propose to relax 0-1SDP to a semidefinite programming problem with a non-negativity

constraint of variables. The relaxed problem has a big advantage that its size depends

on neither the number of communities nor the number of edges of the network. Thirdly,

we investigate the solution method for the ranking problem. The problem is a problem

of maximizing the minimum margin, which is solved in polynomial time theoretically.

However, real-world instances of this problem become practically difficult to solve due

to their size. We propose a row and column generation algorithm, show that it solves the

problem to optimality, and also demonstrate that it mitigates the computational burden by

some computational experiment.

i





Acknowledgment

This thesis would not have been completed without the help of my supervisor Professor

Yoshitsugu Yamamoto. I would like to extend my deep appreciation to him for his enthu-

siastic guidance, a number of helpful comments, and persistent encouragement. I am also

grateful to Professors Akiko Yoshise, Maiko Shigeno, Masahiro Hachimori, and Yusuke

Kobayashi for valuable advice. I wish to thank Professor Ayako Shibuya of Yamaguchi

University. A great deal of gratitude goes to Professor Tomomi Matsui of Tokyo Institute

of Technology, Professor Keiji Tatsumi of Osaka University, and Keisuke Sato of Rail-

way Technical Research Institute, with whom I did joint works. I wish to extend special

thanks to my colleagues Kotohumi Inaba, Akihiro Tanaka, and other members of the team

Phil Opt )))). Finally, a special word of appreciation goes to my parents.

iii





Contents

Abstract i

Acknowledgment iii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Typical Applications in Data Mining . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Background of community detection . . . . . . . . . . . . . . . . 3

1.2.2 Background of ranking problem . . . . . . . . . . . . . . . . . . 5

1.2.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . 6

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Modularity Maximization 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Definitions and notation . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Some properties and complexity . . . . . . . . . . . . . . . . . . 10

2.2 Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 QP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Clique partitioning formulation . . . . . . . . . . . . . . . . . . 14

2.2.3 Set partitioning formulation . . . . . . . . . . . . . . . . . . . . 15

2.3 LP Relaxation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 LP relaxation problem and its dual problem . . . . . . . . . . . . 17

v



2.3.2 Cutting plane method . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Bounding procedures and stopping criterion . . . . . . . . . . . . 21

2.3.4 Pegging test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.5 Whole algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.6 Computational experiments . . . . . . . . . . . . . . . . . . . . 28

2.4 Lagrangian Relaxation Algorithms . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Lagrangian relaxation and Lagrangian dual problem . . . . . . . 34

2.4.2 Column generation method . . . . . . . . . . . . . . . . . . . . . 35

2.4.3 Bounding procedures and stopping criteria . . . . . . . . . . . . 39

2.4.4 Pegging test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.5 Convergence issue . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.6 Whole algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.7 Computational experiments . . . . . . . . . . . . . . . . . . . . 45

3 Modularity Density Maximization 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Definitions and notation . . . . . . . . . . . . . . . . . . . . . . 52

3.1.2 Some properties . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 MILP formulations . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 0-1SDP reformulation . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Conic Programming Relaxation . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Heuristics based on Dynamic Programming . . . . . . . . . . . . . . . . 62

3.4.1 Permutation based on spectrum . . . . . . . . . . . . . . . . . . 62

3.4.2 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Ranking Problem 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Definitions and notation . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Maximization of Minimum Margin for Separable Case . . . . . . . . . . 71

4.2.1 Primal of hard margin problem . . . . . . . . . . . . . . . . . . . 71

4.2.2 Dual of hard margin problem . . . . . . . . . . . . . . . . . . . . 72

vi



4.2.3 Kernel technique for hard margin problem . . . . . . . . . . . . . 74

4.3 Maximization of Minimum Margin for Non-Separable Case . . . . . . . 75

4.3.1 Primal of soft margin problem . . . . . . . . . . . . . . . . . . . 75

4.3.2 Dual of soft margin problem . . . . . . . . . . . . . . . . . . . . 76

4.3.3 Kernel technique for soft margin problem . . . . . . . . . . . . . 79

4.4 Reformulations based on Dual Representation . . . . . . . . . . . . . . . 79

4.4.1 Dual representation for hard margin problem . . . . . . . . . . . 79

4.4.2 Dual representation for soft margin problem . . . . . . . . . . . . 81

4.5 Row and Column Generation Algorithms . . . . . . . . . . . . . . . . . 81

4.5.1 Algorithms for hard margin problem . . . . . . . . . . . . . . . . 81

4.5.2 Algorithms for soft margin problem . . . . . . . . . . . . . . . . 84

4.6 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Monotonicity Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Concluding Remarks 95

5.1 Modularity Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Modularity Density Maximization . . . . . . . . . . . . . . . . . . . . . 96

5.3 Ranking Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendix 99

A Dual of Soft Margin Problem (S2) . . . . . . . . . . . . . . . . . . . . . 99

vii





List of Figures

2.1 Behavior of SCP for Karate . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Behaviors of SCP and MCP for each instance . . . . . . . . . . . . . . . . 33

2.3 Behaviors of LSCG and LMCG for each instance . . . . . . . . . . . . . . 49

3.1 Comparison with two matrices . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 The upper and lower bounds vs. elapsed time in the branch-and-bound . . . 67

4.1 Classification by (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Classification by (S̃) with the Gaussian kernel . . . . . . . . . . . . . . . . 87

4.3 Classification by (S̃) with the polynomial kernel . . . . . . . . . . . . . . . 87

4.4 Breakdown of the computation time for “NS.1000.5” . . . . . . . . . . . . 91

ix





List of Tables

2.1 Plateau situation of SCP . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Solved instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Computational results of SCP and MCP (ε = 0) . . . . . . . . . . . . . . 30

2.4 Lower bounds by several existing heuristics, SCP and MCP . . . . . . . . 31

2.5 Computational results of SCP and MCP (ε = 0.03) . . . . . . . . . . . . 32

2.6 Computational results of LSCG and LMCG (ε = 0) . . . . . . . . . . . . 46

2.7 Lower bounds by several existing heuristics, LSCG and LMCG . . . . . . 47

2.8 Computational results of LSCG and LMCG (ε = 0.03) . . . . . . . . . . 48

3.1 Solved instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Computational results of our algorithm . . . . . . . . . . . . . . . . . . . 65

3.3 Computational results of the branch-and-bound algorithm for (MILP1) . . 66

4.1 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Average rank losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xi





Chapter 1

Introduction

In recent years, progress in information technology including facility for the data acqui-

sition, cost reduction for the data storage and high-speed data communication, has built

up an enormous amount of data. However, thus accumulated data is not organized well,

hence much interest has arisen in how to mine the data to elicit useful information. From

this background, knowledge discovery in databases, KDD for short, and data mining

have been attracting a great deal of attention from both fields of research and practice.

According to Bradley et al. [17], KDD and data mining are defined as follows: “KDD is

the process of identifying valid, novel, potentially useful, and ultimately understandable

structure in data. This process involves selecting or sampling data from a data ware-

house, cleaning or preprocessing it, transforming or reducing it (if needed), applying a

data mining component to produce structure, and then evaluating the derived structure,

and data mining is a step in the KDD process concerned with the algorithmic means by

which patterns or models are enumerated from the data under acceptable computational

efficiency limitations. ”

We will consider three problems arising from data mining: modularity maximization

problem, modularity density maximization problem and ranking problem. After giving a

brief review of typical applications in data mining, we give an outline of these problems

together with their backgrounds, and then the outcome of our research.
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1.1 Typical Applications in Data Mining

The data set dealt with in data mining falls into two types, labeled and unlabeled. An

individual piece of data in the labeled data set is a pair of an attribute and a label. Data

mining for this type of data set is called supervised learning, and its aim is to infer a hid-

den functional relation between the set of attributes and the set of labels, and to apply the

inferred relation to predict a label of a newly-arrived data. On the other hand, unlabeled

data set is composed of data without any significant label, and data mining for this type

of data set is called unsupervised learning.

Applications in data mining can be divided into four main categories: association rule,

clustering, classification, and regression analysis [18].

• Association rule is a task to find frequent patterns (rules) or interesting correlations

among objects in the transaction.

• Clustering is a task to divide objects into several groups (clusters) consisting of

objects which share a common, possibly yet unknown, characteristics.

• Classification is a task to predict a categorical label (class) of a newly-arrived object

based on a relation obtained from a given data set.

• Regression analysis is a task to estimate a relationship between an attribute (inde-

pendent variable) and a numerical label (dependent variable).

The first two are unsupervised learning, and the remaining two are supervised learning.

1.2 Overview of the Thesis

This thesis is concerned with three problems, modularity maximization problem, mod-

ularity density maximization problem, and ranking problem. The first two problems are

regarded as a clustering problem where the similarity among objects is given by a network

structure with those objects as its nodes. Ranking problem is regarded as a classification

problem where the label assigned to each data is a categorical value, whereas it can be

regarded as a regression problem when the label is a real value.
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1.2.1 Background of community detection

Network clustering has received growing attention as one of major problems in data min-

ing. One of the most important issues in the network analysis is to find a meaningful

structure, which often addresses identifying or detecting community structure. Here com-

munities are the sets of nodes such that each set consists of tightly connected nodes, but

loosely connected each other. Community detection is applied to analyze the underly-

ing relationship of a wide variety of networks such as the social network, the biological

network, the world-wide-web, and VLSI network.

Modularity maximization A variety of approaches to detect communities has been

proposed. The cut size defined as the number of edges connecting communities is one

of the most commonly used quality measure. Minimizing the cut size, known as the

minimum cut method, however often results in forming a number of very small commu-

nities. Several variants to overcome this drawback have been introduced such as the ratio

cut [91], the normalized cut [85], and min-max cut [33].

Some authors presented centrality concepts to characterize the important and influen-

tial nodes in a network, such as degree centrality, closeness centrality, and betweenness

centrality. Girvan and Newman [46] extended the definition of the betweenness centrality

from a node to an edge of a network, which represents the ratio between the total number

of shortest paths between all pairs of nodes and the number of those that pass through the

particular edge. They also proposed a heuristic algorithm based on an edge version of

the betweenness centrality. Their algorithm proceeds by removing an edge with the high-

est betweenness, and then ends up with several connected components each of which is to

make a community. Although this algorithm performs well on both real-world and bench-

mark networks, it places a heavy computational burden due to the necessary calculation

of the betweenness centrality in every step.

A novel quality measure, called modularity, has been proposed by Newman and Gir-

van [78]. The modularity was originally used as a stopping criterion of the hierarchical

divisive algorithm [78]. Then Newman [76] suggested an approach of maximizing the

modularity due to the observation that a high value of the modularity leads to a good

community structure. Then the modularity maximization became one of the central sub-

jects of research.

Modularity density maximization The modularity maximization receives criticism
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from mainly two viewpoints: degeneracy and resolution limit. Degeneracy, pointed out

in Good et al. [47], means the presence of several partitions with high modularity which

makes it difficult to find a global optimal partition. Resolution limit, brought up in For-

tunato and Barthélemy [42], refers to the sensitivity of modularity to the total number of

edges in the network, which leaves small communities not identified and hidden inside

larger ones. Even in the schematic case where a network consists of multiple replicas of

an identical clique which are connected by a single edge, Fortunato and Barthélemy [42]

showed that maximizing the modularity resulted in communities consisting of two or

more cliques connected when the number of cliques in the network is larger than the

square root of the number of edges. This narrows the application area of the modular-

ity maximization since most of real-world networks contain communities with different

scales.

To overcome the resolution limit, there have been extensive studies so far [5,48,74,88].

Arenas et al. [5] clarified the topological interpretation of the resolution limit, and then

proposed a multiple resolution method which performs community detection at different

scales as varying a parameter to specify the scale. However, as mentioned above, real-

world networks are characterized by the coexistence of communities with very different

scales. Hence, once a resolution parameter is determined, the multiple resolution method

tends to merge communities whose scales are smaller than the predetermined parameter

and also to split communities whose scales are larger than that [60].

Recently, Li et al. [63] have proposed a new measure for community detection, which

is called modularity density. Based on a theoretical analysis they show that the modularity

density (i) does not divide a clique into separate communities, (ii) can resolve most mod-

ular networks correctly, which means maximizing the modularity density results in the

partition with each single clique as a community in the schematic case mentioned above,

and (iii) can detect communities with different scales. Thanks to these desirable proper-

ties, the modularity density maximization increasingly comes into a meaningful problem

to comprehend a community structure.

The modularity and the modularity density are defined for a partition of the set of

nodes on undirected and unweighted networks. Some authors extended the definitions

of the modularity and the modularity density to the directed and/or weighted networks

in order to grasp more valuable meaning. In addition, it would be natural to consider
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that a node can belong to a number of communities in the real-world networks, thus

communities may overlap with each other. See, for instance [25,61,75] for further details.

This thesis does not address the above extension and is devoted to only detecting disjoint

communities in the undirected and unweighted networks.

Comparison between Modularity and Modularity density First, we mention the math-

ematical programming formulations for the above two problems. The modularity maxi-

mization is straightforwardly formulated as an integer linear programming, such as a set

partitioning formulation and a clique partitioning formulation. On the other hand, the

modularity density maximization is formulated as a nonlinear fractional programming

since the modularity density takes account of the number of nodes in each community.

This difference in formulation indicates that the modularity density maximization seems

to be more intractable than the modularity maximization.

Concerning the computational complexity of the above two problems, the NP-hardness

of the modularity maximization problem has been shown by Brandes et al. [19], while the

NP-hardness of the modularity density maximization still remains open [28], but some

computational results reported in [29, 30] imply that maximizing the modularity density

is also hard.

1.2.2 Background of ranking problem

Development of the world-wide-web has enabled an instantaneous access to enormous

information, meanwhile obtaining desirable information is becoming increasingly diffi-

cult. Consequently, construction of a search engine that provides effective information

retrieval receives growing attention. Given a query, a search engine is expected to retrieve

documents together with the ranking showing how relevant the documents are. Thus, re-

liable and efficient ranking is an important task in many information retrieval applications

including collaborative-filtering, text-summarization, and online-advertising.

Given a data set which consists of pairs of an attribute vector and a label chosen from

the ordered set of labels, the aim of ranking we consider in this thesis is to infer an under-

lying model which assigns the label. This problem is regarded as a multi-class classifica-

tion, which has, besides information retrieval, many other applications, e.g., credit rating

and computational biology. Several methods have been proposed, such as PRank [31],

Subset Ranking [27], and McRank [62].
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Shashua and Levin [83] have proposed a method based on the fixed margin strat-

egy, which can be regarded as a variant of multi-class support vector machine. What

distinguishes their approach from other multi-class support vector machines is that the

identical normal vector should be shared by all the separating hyperplanes. Their for-

mulation ends up with a convex quadratic programming problem, hence the nonlinear

classification method called kernel technique can be naturally applied. Although the con-

vex quadratic programming is solved in polynomial time theoretically, one can hardly

secure the computational resource to even hold the problem when the size of the given

data set is considerably large.

It would sometimes be desirable that the obtained separating curves have some mono-

tonicity property. A few researchers discussed the monotonicity issue, for example [24,

36]. The main idea of their approaches is to produce a large amount of virtual data which

satisfies the desirable monotonic property, and then add the virtual data to the problem.

However, this makes the resulting problem difficult, in addition, while it does not guaran-

tee the monotonic separating curves.

1.2.3 Contributions of the Thesis

The contribution of this thesis is twofold: community detection in Chapters 2 and 3, and

ranking in Chapter 4.

Chapters 2 and 3 are devoted to the development of relaxation algorithms for the

modularity maximization and the modularity density maximization problems. Owing

to the computational difficulty of these problems, most of researchers have proposed

heuristic algorithms so far, while exact algorithms have been proposed only in a few

papers [2, 3, 29, 93].

For the modularity maximization, we propose two algorithms each based on LP re-

laxation and Lagrangian relaxation. Both algorithms have an advantage that they are able

to provide the upper bounds on the optimal modularity by solving a small sub-problem.

They also enjoy the advantage that multiple cuts (resp., columns) within a cutting plane

(resp., a column generation) process significantly reduces the number of iterations. We

report some computational results to evaluate the performance of our algorithms.

In Chapter 3 we show that a variant of the semidefinite optimization problem, called

0-1SDP, is equivalent to the modularity density maximization problem. This formulation

6



has the big advantage that its size is independent of the number of edges of the network.

For an upper bound on the optimal modularity density, we propose to solve a doubly non-

negative relaxation problem, and for a lower bound we propose an algorithm based on

the combination of spectral heuristics and dynamic programming. Some computational

results are also reported.

Chapter 4 is devoted to the development of an efficient exact algorithm for the ranking

problem. We propose a formulation based on but different from the fixed margin strategy

by Shashua and Levin, then develop a row and column generation algorithm. The algo-

rithm starts with a sub-problem which is much smaller than the original problem in both

the number of variables and constraints, and increments both of them as the computation

goes on. We show that the algorithm solves the problem to optimality. Assuming some

conditions, we present a model which necessarily yields the monotonic separating curves.

1.3 Organization of the Thesis

This thesis is organized as follows.

In Chapter 2, we first give the definition and some properties of the modularity, and

introduce several formulations of the modularity maximization problem. Next, we pro-

pose LP relaxation-based and Lagrangian relaxation-based algorithms, and then describe

some techniques to accelerate the algorithms, also discuss the convergence issue of our

algorithms. Finally, we report the computational experiments of the algorithms.

In Chapter 3, giving the definition of the modularity density and a nonlinear frac-

tional programming formulation of the modularity density maximization problem, we

review some properties of the modularity density. We present 0-1SDP formulation for the

modularity density maximization and show the equivalence between the two problems.

Moreover, we propose to solve a doubly non-negative relaxation problem of 0-1SDP, and

explain a heuristic algorithm which constructs a feasible solution by using the solution

of the relaxation problem. Finally, we conduct the numerical experiments to evaluate the

lower and upper bounds obtained by our algorithm.

In Chapter 4, we first formulate the ranking problem as the problem of maximizing

minimum margin, and give its dual problem to apply the kernel technique. Next, we

7



propose a primal formulation with the dual representation of the normal vector in the ob-

jective function, and develop an algorithm based on this formulation. The algorithm takes

advantage of the row and column generation technique in order to mitigate the compu-

tational burden, while keeping its finite convergence property to optimality. After giving

a small illustrative example, we report the computational experiments of our algorithm.

Finally, we discuss the monotonicity property of the separating curves.

In Chapter 5, we give some concluding remarks, and mention some future works.

8



Chapter 2

Modularity Maximization

2.1 Introduction

As social network services grow, community detection has been attracting a great deal of

attention. Since Newman and Girvan [46] proposed the modularity as a quality measure

of community detection, the modularity maximization problem became one of the central

subjects of research. Most of the solution methods proposed so far are heuristic algorithms

due to its NP-hardness, which was shown by Brandes et al. [19], while exact algorithms

have been proposed only in a few papers.

Aloise et al. [3] formulated the problem as a set partitioning problem, which has to

take into account all, exponentially many, nonempty subsets of the node set. Therefore,

one cannot secure the computational resource to hold the problem when the number of

nodes is large. They proposed an algorithm based on the column generation, and applied

the stabilized column generation to accelerate the algorithm. Although it is known that the

stabilized column generation works well for the problem with set partitioning constraints,

several parameters should be controlled dynamically and correctly at every iteration.

In this chapter, for the set partitioning formulation of the modularity maximization,

we propose two algorithms based on LP relaxation and Lagrangian relaxation. Both al-

gorithms have an advantage that they are able to derive the upper bounds on the optimal

modularity from a small sub-problem. In order to accelerate our algorithms, we incorpo-

rate several ideas into the algorithms including modification of stopping criteria, method

of multiple cuts or multiple columns, and pegging test.
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2.1.1 Definitions and notation

Let G = (V, E) be an undirected graph with the set V of n nodes and the set E of m edges.

We say that Π = {C1, C2, . . . , Ck} is a partition of V if V =
∪k

p=1 Cp, Cp ∩ Cq = ∅ for

any distinct p and q, and Cp 6= ∅ for any p. Each member Cp of a partition is called a

community. We denote the set of edges that have both end-nodes in C by E(C). Then

modularity, denoted by Q(Π), of a partition Π is defined as

Q(Π) =
∑
C∈Π

(
|E(C)|

m
−
(∑

i∈C di

2m

)2
)

,

where | · | denotes the cardinality of the corresponding set and di is the degree of node

i. For i, j ∈ V let eij be the (i, j) element of the adjacency matrix of graph G, and π(i)

be the index of community which node i belongs to, i.e., π(i) = p means i ∈ Cp. Then

Q(Π) is rewritten as follows:

Q(Π) =
1

2m

∑
i∈V

∑
j∈V

(
eij −

didj

2m

)
δ(π(i), π(j)),

where δ is the Kronecker delta, i.e., δ(p, q) is equal to one when p = q and zero otherwise.

Modularity maximization problem, MM for short, is the problem of finding a partition

of V that maximizes the modularity Q(Π). Denoting (eij − didj/2m) by wij , then the

problem is formulated as

(MM)

∣∣∣∣∣∣∣∣
maximize

1

2m

∑
i∈V

∑
j∈V

wij δ(π(i), π(j))

subject to Π is a partition of V.

2.1.2 Some properties and complexity

In this subsection, we present some properties of modularity, which will be useful in later

discussion.

Lemma 2.1 (Brandes et al. [19], Lemma 1.) For any partition Π of V , modularity Q(Π)

falls between -1/2 and 1.

The above lemma gives trivial lower and upper bounds on modularity.

Lemma 2.2 (Brandes et al. [19], Corollary 1.) Isolated nodes have no impact on modu-

larity.

10



Thanks to lemma 2.2, we exclude isolated nodes from further consideration in this thesis,

hence we can assume that the degree is greater than zero for any node.

Lemma 2.3 (Brandes et al. [19], Lemma 2.) Let Π? be a partition with maximum modu-

larity, then Π? has no community that consists of a single node with degree one.

Lemma 2.4 (Brandes et al. [19], Lemma 3.) There exists a partition with maximum mod-

ularity, in which each community consists of a connected subgraph.

From Lemma 2.3 and 2.4, we can conclude that a node with degree one and its neighbor

must belong to the same community in the optimal partition.

Proposition 2.5 Let i ∈ V be a node with degree one and j ∈ V be adjacent to node i,

then nodes i and j are assigned to the same community.

Brandes et al. [19] also provided the computational complexity for the modularity

maximization problem. They proved that the modularity maximization problem is NP-

hard. More precisely, they considered the following problem which is the decision version

of the modularity maximization.

Problem 2.6 (MODULARITY) Given a graph G = (V, E) and a real number K ∈
[−1/2, 1], is there a partition Π of V such that Q(Π) ≥ K?

Their complexity result is based on a reduction from the following NP-complete decision

problem.

Problem 2.7 (3-PARTITION) Given 3k positive integer numbers A = {a1, . . . , a3k}
such that

∑3k
i=1 ai = kb and b/4 < ai < b/2 for an integer b and for i = 1, . . . , 3k, is

there a partition of A into k sets such that the sum of the numbers in each set is equal to

b?

Theorem 2.8 (Brandes et al. [19], Theorem 3.) MODULARITY is strongly NP-complete.

Therefore there exists no polynomial time algorithm that finds a partition with maximum

modularity unless P=NP. This turned researchers’ attention to heuristic algorithms, which

resulted in several efficient heuristic algorithms such as the hierarchical agglomerative

method by Clauset et al. [26], the spectral divisive method by Newman [77], the divisive

11



method by Cafieri et al. [20], the linear programming with rounding procedure [2] and

the simulated annealing by Guimerá and Amaral [51].

On the other hand, among exact algorithms three approaches should be mentioned.

The first one of them is based on the quadratic programming formulation, QP for short.

This formulation suffers from symmetry, that is, there exists a large number of equivalent

solutions. As a consequence, computation time increases due to expanding the search

space of solutions. Xu et al. [93] solved instances up to 104 nodes by introducing some

symmetric breaking constraints. The second one is based on the formulation of the prob-

lem as a clique partitioning problem proposed by Grötschel and Wakabayashi [49]. In this

formulation, a binary variable corresponding to each pair of nodes represents whether the

two nodes belong to the same community. Then the number of variables and constraints

amount to O(n2) and O(n3), respectively, both of which grow rapidly with the number

of nodes. Based on this formulation Aloise et al. [3] solved instances up to 115 nodes

by using the cutting plane algorithm. The third one is the set partitioning formulation.

Since this formulation has to take into account all nonempty subsets of the node set, it has

O(2n) variables. One can hardly secure the computational resource to hold the problem

when n is large. Aloise et al. [3] proposed an algorithm based on the column generation,

and solved instances up to 512 nodes exactly.

For the large network whose optimal modularity is unknown, it is also important to

obtain an upper bound of the optimal modularity in terms of the accuracy evaluation of

the solution provided by heuristic algorithms. Miyauchi and Miyamoto [72] proposed an

algorithm computing a nontrivial upper bound, and succeeded in obtaining upper bounds

of instances up to 4941 nodes.

2.2 Formulations

In this section we introduce three different formulations of the modularity maximization

problem. The first one is based on the QP formulation, the second one is based on the

clique partitioning formulation, and the third one is based on the set partitioning formula-

tion.
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2.2.1 QP formulation

Usually, we do not know the optimal number of communities for the modularity maxi-

mization problem a priori. Now we consider the problem of partitioning n nodes into t or

less communities for a positive integer t ≥ 2. The QP formulation for this problem has

been proposed by Xu et al. [93]. Let T be the index set {1, 2, . . . , t} and for each edge

l = {i, j} ∈ E and each p ∈ T , let xlp be the binary variable such that

xlp =

1 when l ∈ E(Cp)

0 otherwise.

For each node i ∈ V and each p ∈ T , let yip be defined by

yip =

1 when i ∈ Cp

0 otherwise.

Then (MM) is formulated as the following quadratic programming:

(QP )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
∑
p∈T

 1

m

∑
l∈E

xlp −
1

4m2

(∑
i∈V

diyip

)2


subject to
∑
p∈T

yip = 1 (i ∈ V )

xlp ≤ yip (l = {i, j} ∈ E, p ∈ T )

xlp ≤ yjp (l = {i, j} ∈ E, p ∈ T )

xlp ∈ {0, 1} (l ∈ E, p ∈ T )

yip ∈ {0, 1} (i ∈ V, p ∈ T ).

The first set of constraints imposes that each node belongs to exactly one community,

and the remaining constraints express that any edge l = {i, j} belongs to a set of edges

E(Cp) if both end-nodes i, j belong to the community Cp. This formulation suffers from

symmetry, that is, re-indexing some communities yields alternative equivalent solutions.

For an optimal solution with t communities, t ! equivalent solutions exist. Such solutions

are called symmetric solutions. As a consequence, branch-and-bound algorithm tends

not to work well. Xu et al. [93] have proposed some valid inequalities to get rid of the

symmetric solutions from the feasible region. In this paper, we will not solve the problem

(QP ), but make use of this problem to obtain an upper bound on the optimal value of

(P ). See Subsection 2.3.3 for the detail.
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2.2.2 Clique partitioning formulation

For each pair of nodes i and j, we introduce a binary variable xij , which represents

whether the two nodes belong to the same community, i.e., the variable xij equals 1 when

the nodes i and j belong to the same community and 0 otherwise. Then the modularity is

expressed as follows:
1

2m

∑
i∈V

∑
j∈V

wijxij,

which is rewritten as
1

m

∑
i∈V

∑
j∈V ; i<j

wijxij +
1

2m

∑
i∈V

wii

due to the symmetry of xij and xii = 1 for any i ∈ V . Thus (MM) is formulated as the

following integer programming:

(CPP)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
1

m

∑
(i,j)∈V 2

<

wijxij +
1

2m

∑
i∈V

wii

subject to xij + xjk − xik ≤ 1 ((i, j, k) ∈ V 3
<)

xij − xjk + xik ≤ 1 ((i, j, k) ∈ V 3
<)

−xij + xjk + xik ≤ 1 ((i, j, k) ∈ V 3
<)

xij ∈ {0, 1} ((i, j) ∈ V 2
<),

where

V 2
< = { (i, j) ∈ V × V | i, j ∈ V ; i < j },

V 3
< = { (i, j, k) ∈ V × V × V | i, j, k ∈ V ; i < j < k }.

The first three sets of constraints guarantee that if i and j belong to the same community

and j and k belong to the same community, then i and k also belong to the same com-

munity. These sets of constraints are called transitivity constraints. See Grötschel and

Wakabayashi [50] for the facial structure of the clique partitioning polytope.

The difficulty of the problem (CPP) is the huge number of constraints, which amounts

to n(n−1)(n−2)/2. Dinh and Thai [34] proposed the sparse formulations of both (CPP)

and its LP relaxation, that is, they clarified redundant constraints at an optimal solution of

the problems. More precisely they showed that the following constraints are redundant.

xij + xjk − xik ≤ 1 for (i, j, k) ∈ V 3
< ; {i, j} /∈ E and {j, k} /∈ E,

xij − xjk + xik ≤ 1 for (i, j, k) ∈ V 3
< ; {i, j} /∈ E and {i, k} /∈ E,

−xij + xjk + xik ≤ 1 for (i, j, k) ∈ V 3
< ; {j, k} /∈ E and {i, k} /∈ E.
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Recently, the above result was extended by Miyauchi and Sukegawa [73], who presented

that the following constraints are also redundant in (CPP) and the LP relaxation of (CPP).

xij + xjk − xik ≤ 1 for (i, j, k) ∈ V 3
< ; wij < 0 and wjk < 0,

xij − xjk + xik ≤ 1 for (i, j, k) ∈ V 3
< ; wij < 0 and wik < 0,

−xij + xjk + xik ≤ 1 for (i, j, k) ∈ V 3
< ; wjk < 0 and wik < 0.

Miyauchi and Miyamoto [72] developed a cutting plane algorithm to solve the LP re-

laxation problem of the sparse formulation by Dinh and Thai [34], and succeeded in

obtaining upper bounds on modularity for large instances.

2.2.3 Set partitioning formulation

Let P denote the family of all nonempty subsets of V . Note that P is composed of 2n− 1

subsets of V . Introducing a binary variable zC for each C ∈ P , a partition Π is represented

by the (2n − 1)-dimensional binary vector z = (zC)C∈P defined as

zC =

1 when C ∈ Π

0 otherwise.

This enables us to formulate problem (MM) as an integer programming problem. For

each i ∈ V and C ∈ P let aiC be defined by

aiC =

1 when i ∈ C

0 otherwise.

The column aC = (a1C , . . . , anC)> is the incidence vector of community C, i.e., C =

{ i ∈ V | aiC = 1 }. For each C ∈ P let fC be

fC =
1

2m

∑
i∈C

∑
j∈C

wij, (2.1)

which is rewritten as

=
1

2m

∑
i∈V

∑
j∈V

wijaiCajC .
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The constant fC represents the contribution of community C to the objective function

Q(Π) when community C is selected as a member of the partition Π. Thus (MM) is

formulated as the integer programming (P ):

(P )

∣∣∣∣∣∣∣∣∣∣∣

maximize
∑
C∈P

fCzC

subject to
∑
C∈P

aiCzC = 1 (i ∈ V )

zC ∈ {0, 1} (C ∈ P).

Since the first set of constraints states that the communities adopted form a partition of V ,

this problem is called a set partitioning problem. From now on, we will call the first set

of constraints set partitioning constraints.

We say that Π = {C1, C2, . . . , Ck} is a cover of V if V =
∪k

p=1 Cp and Cp 6= ∅ for any

p. Relaxing the set partitioning constraints in (P ) to
∑

C∈P aiCzC ≥ 1 for any i ∈ V , the

obtained problem is called a set covering problem which is to find a cover of V . Due to

its huge number of variables, these problems easily become computationally intractable

as the number of nodes grows. Moreover even if the set partitioning problem as well as

the set covering problem has small number of variables, the problems still remain difficult

owing to their NP-hardness.

As for these problems given the set of columns explicitly, exact algorithms have been

proposed [6, 8, 9, 12]. Balas and Carrera [6] exactly solved the large instances with up

to 400 constraints and 4000 variables by branch-and-bound algorithm based on a subgra-

dient optimization. Heuristic and metaheuristic algorithms have been also studied in the

literature [10, 11, 21, 23, 52]. See survey papers [22, 89].

2.3 LP Relaxation Algorithms

Not only the number of variables but also their integrality makes problem (P ) a highly

intractable problem. Then it would be a natural and clever strategy to consider relaxation

problems for the useful information about the solution of (P ). The first choice to consider

would be the LP relaxation.

For the modularity maximization, a column generation algorithm based on the LP

relaxation was proposed by Aloise et al. [3]. Column generation is a common trick to

deal with the problems with a huge number of variables, but the auxiliary problem of
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determining the entering column ends up as a quadratic programming in binary variables.

They applied the stabilized column generation by Du Merle et al. [37] to accelerate the

algorithm, and used variable neighborhood search heuristics [43] to solve the auxiliary

problem. Although the stabilized column generation is a sophisticated technique, the size

of the problem to consider is larger than that of original one due to adding the slack and

surplus variables to reduce degeneracy of the LP problem. In addition, penalty parameters

for the slack and surplus variables should be updated dynamically at each iteration in the

algorithm. In order to use the stabilized column generation efficiently, one must initialize

and update the parameters correctly. However it is difficult to design a specific parameter

tuning.

In this section, we propose cutting plane algorithms, which provide the nontrivial

upper and lower bounds on the optimal modularity at each iteration. This could enable us

to decrease the number of iterations of the algorithms. Our algorithms have the following

features: (i) our algorithms do not require additional computational burden in estimating

an upper bound on modularity at each iteration, and (ii) have few parameters to control

compared with the stabilized column generation, hence it is simple and easy to implement

the algorithms.

2.3.1 LP relaxation problem and its dual problem

The LP relaxation problem is defined by replacing the binary constraints zC ∈ {0, 1} by

0 ≤ zC ≤ 1. It is given as

(RP )

∣∣∣∣∣∣∣∣∣∣∣

maximize
∑
C∈P

fCzC

subject to
∑
C∈P

aiCzC = 1 (i ∈ V )

zC ≥ 0 (C ∈ P).

The upper bound constraints zC ≤ 1 are redundant owing to the first set of constraints,

hence omitted. The linear programming dual problem of (RP ) is given as the following

(RD):

(RD)

∣∣∣∣∣∣∣∣∣∣∣

minimize
∑
i∈V

λi

subject to
∑
i∈V

aiCλi ≥ fC (C ∈ P)

λi ∈ R (i ∈ V ).
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Now let us denote the feasible region and the optimal value of an optimization problem,

say H , by F(H) and ω(H), respectively. Since (RP ) is a relaxation problem of (P ), it

holds that F(P ) ⊆ F(RP ), hence ω(P ) ≤ ω(RP ). Applying the linear programming

duality theorem to the primal dual pair (RP ) and (RD), we see ω(P ) ≤ ω(RD). Namely,

solving either (RP ) or (RD) we will obtain an upper bound of ω(P ). An optimal solution

of (RP ) often provides a clue as to possibly a good feasible solution of (P ). However

the problems (RP ) and (RD) still remain difficult owing to exponentially many variables

and constraints.

2.3.2 Cutting plane method

The constraints of problem (RD) far outnumber the variables, hence most of them should

not be binding at an optimal solution. The cutting plane method is one of commonly used

methods for LP problem of this kind.

Now we will give a brief review of the cutting plane method which is based on the

classical Kelley’s algorithm [56]. The key idea of the cutting plane method is to deal with

a small subfamily S of P , and instead of (RD), to solve the following problem with fewer

constraints:

(RD(S))

∣∣∣∣∣∣∣∣∣∣∣

minimize
∑
i∈V

λi

subject to
∑
i∈V

aiCλi ≥ fC (C ∈ S)

λi ∈ R (i ∈ V ).

Let λ denote an optimal solution of (RD(S)). Since the constraints
∑

i∈V aiCλi ≥ fC

for C ∈ P \ S are not considered, it is not necessarily a feasible solution of (RD).

To check the feasibility of λ, we define a measure of violation γC(λ) of the constraint

corresponding to C as

γC(λ) = fC −
∑
i∈V

aiCλi. (2.2)

Note that γC(λ) ≤ 0 for all C ∈ S. When γC(λ) ≤ 0 for all C ∈ P \ S, λ is a feasible

solution of the problem (RD), hence an optimal solution of the problem (RD). When

γC(λ) > 0

holds for some C ∈ P \ S, adding this C to S can lead to an improvement of the optimal

value of the problem (RD(S)), i.e., ω(RD(S ∪ {C})) ≥ ω(RD(S)). Substituting (2.1)
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for fC of (2.2) yields

γC(λ) =
1

2m

∑
i∈V

∑
j∈V

wijaiCajC −
∑
i∈V

aiCλi,

hence the problem of maximizing γC(λ) over P is formulated as the problem (AP (λ))

with a quadratic objective function in binary variables:

(AP (λ))

∣∣∣∣∣∣∣
maximize

1

2m

∑
i∈V

∑
j∈V

wijyiyj −
∑
i∈V

λiyi

subject to yi ∈ {0, 1} (i ∈ V ).

An optimal solution y∗ of this problem provides the incidence vector of the commu-

nity that maximizes γC(λ) over P . Since y = 0 is a feasible solution of this problem,

the optimal value is non-negative. According to the quadratic formulation presented in

Subsection 2.2.1, (AP (λ)) is equivalently formulated as the following problem with a

quadratic concave function:

(AP (λ)) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
1

m

∑
l∈E

xl −
1

4m2

(∑
i∈V

diyi

)2

−
∑
i∈V

λiyi

subject to xl ≤ yi (l = {i, j} ∈ E)

xl ≤ yj (l = {i, j} ∈ E)

xl ∈ {0, 1} (l ∈ E)

yi ∈ {0, 1} (i ∈ V ).

For each edge l = {i, j} ∈ E, a binary variable xl is equal to 1 when both end-nodes i, j

of edge l belong to a community that maximizes γC(λ), and for each i ∈ V a variables

yi is equal to 1 when node i belongs to the community and 0 otherwise. Having found y∗

with positive optimal value, we have only to add the constraint∑
i∈V

y∗
i λi ≥ f ∗

to (RD(S)), where

f ∗ =
1

2m

∑
i∈V

∑
j∈V

wijy
∗
i y

∗
j .

From the above discussion, a prototype of the cutting plane algorithm is given as

follows.

Algorithm Prototype of the Cutting Plane
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Step 1 : Let S be an initial family of nonempty subsets of V .

Step 2 : Solve (RD(S)) to obtain an optimal solution λ and the optimal value ω(RD(S)).

Step 3 : Solve (AP (S)) and set y∗ be an optimal solution.

Step 4 : If ω(AP (λ)) ≤ 0, then set S? ← S and ω? ← ω(RD(S)). Output S? and ω?,

and terminate.

Otherwise set C∗ ← { i ∈ V | y∗
i = 1 } and increment S ← S ∪ {C∗}. Return

to Step 2.

Other than (2.2), various cut quality measures have been proposed in the literature,

e.g., cut depth, which appears in [7], cut depth variant [92], cut angle, and cut sparsity.

The auxiliary problem will be altered in accordance with selection of cut quality measures.

See Amaldi et al. [4] and the references therein for the detail.

The initial subfamily S could be empty, but a clever choice may enhance the efficiency

of the algorithm. In our experiments, we collected all singletons of V to make the initial

family S.

It is also a crucial issue to select the solution method solving the problem (RD(S)). In

the simplex method, a warm-start strategy works effectively, that is, the simplex method

can re-optimize a nearby problem in a few pivots by exploiting an optimal solution of

the preceding problem, then the obtained solution is an extreme point of the optimal

face of the polyhedron. Since there exist many extreme points in the case of degenerate

LP problem, one would like to cut the whole optimal face. However the cutting plane

generated from the extreme point may not cut off much more than this point. On the other

hand, the solution retuned by the interior-point method is an interior point of the optimal

face, then the cutting plane generated from this point may cut off the whole face although

there is no advantage of the warm-start. Bixby et al. [16] proposed an approach combined

the interior-point method with the simplex method, and showed the combined approach

outperformed both of a pure interior-point method and a pure simplex method. Elhedhli

and Goffin [39] proposed more elaborate method, which is called analytic center cutting

plane method, ACCPM for short. ACCPM generates a cut at an analytic center of the

feasible region for (RD(S)).
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When the algorithm terminates, we have solved (RD), hence also (RP ), which usu-

ally admits a fractional optimal solution. The final family S? however would yield a set

of primal variables that are likely to be positive at an optimal solution of the problem (P ).

Then we propose to solve the following problem (P (S?)) of variables zC with C ∈ S?.

(P (S?))

∣∣∣∣∣∣∣∣∣∣∣

maximize
∑
C∈S?

fCzC

subject to
∑
C∈S?

aiCzC = 1 (i ∈ V )

zC ∈ {0, 1} (C ∈ S?).

This problem is expected to have much fewer variables than problem (P ) does, so that

it could be solved within a reasonable time by an IP solver, e.g., CPLEX, Gurobi and

Xpress. Lacking variables zC with C not in S?, (P (S?)) provides a lower bound of ω(P ).

Then

ω(P (S?)) ≤ ω(P ) ≤ ω(RD(S?)).

The value ω(RD(S?)) − ω(P (S?)) provides an upper bound of the difference between

ω(P (S?)) and ω(P ), hence the quality of the solution of (P (S?)) given by an IP solver.

2.3.3 Bounding procedures and stopping criterion

The cutting plane algorithm is a powerful technique for large-scale integer programming

problem. Generally, this algorithm often suffers from slow convergence, and many it-

erations may be needed to prove the optimality of (RD) after the optimal value of the

problem (RD(S)) has reached the optimal value ω(RD). In this subsection, we develop

methods to obtain nontrivial upper and lower bounds, and propose a stopping criterion.

To obtain an upper bound of ω(P ), we recall the problem (QP ) presented in Subsec-

tion 2.2.1. We relax the first set of constraints and add them to the objective function as a

penalty with Lagrangian multiplier vector λ ∈ Rn, and obtain the following Lagrangian

relaxation problem:

(LRQP (λ))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
∑
p∈T

 1
m

∑
l∈E

xlp −
1

4m2

(∑
i∈V

diyip

)2
+

∑
i∈V

λi(1−
∑
p∈T

yip)

subject to xlp ≤ yip (l = {i, j} ∈ E, p ∈ T )

xlp ≤ yjp (l = {i, j} ∈ E, p ∈ T )

xlp ∈ {0, 1} (l ∈ E, p ∈ T )

yip ∈ {0, 1} (i ∈ V, p ∈ T ).
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Owing to the absence of the first set of constraints of the problem (QP ), the problem

(LRQP (λ)) is decomposable into t subproblems. For each p ∈ T , let us denote the

subproblem by (LRQP (λ, p)), then the subproblem (LRQP (λ, p)) is as follows:

(LRQP (λ, p))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
1

m

∑
l∈E

xlp −
1

4m2

(∑
i∈V

diyip

)2

−
∑
i∈V

λiyip

subject to xlp ≤ yip (l = {i, j} ∈ E)

xlp ≤ yjp (l = {i, j} ∈ E)

xlp ∈ {0, 1} (l ∈ E)

yip ∈ {0, 1} (i ∈ V ).

The optimal value of (LRQP (λ)) is given via the optimal value ω(LRQP (λ, p)) as

follows:

ω(LRQP (λ)) =
∑
p∈T

max
x,y∈F(LRQP (λ,p))

 1
m

∑
l∈E

xlp −
1

4m2

(∑
i∈V

diyip

)2

−
∑
i∈V

λiyip

+
∑
i∈V

λi

=
∑
p∈T

ω(LRQP (λ, p)) +
∑
i∈V

λi.

Note that each subproblem (LRQP (λ, p)) has the same optimal value regardless of index

p ∈ T and the problem (LRQP (λ, p)) is equivalent to (AP (λ)). Therefore we have the

following equation:

ω(LRQP (λ)) = t · ω(AP (λ)) +
∑
i∈V

λi. (2.3)

When we set the number t to an upper bound of the number of communities at an optimal

solution of (P ), the problem (QP ) is a relaxation problem of (P ), hence the optimal value

of the problem (LRQP (λ)) provides an upper bound of ω(P ) for any λ ∈ Rn.

Proposition 2.9 Let t be an upper bound of the number of communities at an optimal

solution of (P ). Then (2.3) is an upper bound of ω(P ) for any λ ∈ Rn.

Proof : Clear from the above discussion. �

Due to arbitrariness of λ ∈ Rn in Proposition 2.9, the proposition holds for an optimal

solution obtained at each iteration of the algorithm. Thus we can obtain an upper bound

of ω(P ) without additional computation.

Next we describe the heuristic algorithm to obtain a feasible solution of the problem

(P ), which is based on a simple rounding procedure. First, we derive an optimal solution
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z(S) of (RP (S)) from the optimal dual solution λ obtained at Step 2 of the cutting plane

algorithm. Since this primal solution is usually a fractional solution, we construct an

integer solution z̄ = (z̄C)C∈S by rounding z̄C = 1 if zC(S) > 0, and z̄C = 0 otherwise.

Let C denote a sub-family represented by the solution z̄ for succinct notation. The sub-

family C is not necessarily a partition of V , but a cover of V due to the feasibility of z(S)

for the problem (RP (S)). Thus it is likely that some communities overlap with each

other. For a given C, we define the following set

M(C, i) = {C ∈ C | i ∈ C }

in order to check whether C is a partition of V . When the cardinality of M(C, i) is equal

to 1 for any i ∈ V , the sub-family C is a partition of V , hence we can obtain a lower

bound of ω(P ). If |M(C, i)| > 1 holds for some i ∈ V , then we compute the variation

∆(i, C) of the contribution fC when node i is removed from a community C,

∆(i, C) =
1

m

∑
j∈C

wij

for each C ∈ M(C, i). Let C∗ be the community that minimizes ∆(i, C) over M(C, i),
and we remove the index i from any C ∈ M(C, i) \ C∗. From the above discussion, the

rounding heuristics is described as follows.

Procedure Rounding-Heuristics (RH(S))

Input : a current family S
Output : a lower bound `(P )

Step 1 : Let z(S) be an optimal solution of (RP (S)).

Step 2 : Construct z̄ from z(S) by the rounding procedure. Set C be a sub-family repre-

sented by z̄.

Step 3 : If |M(C, i) | = 1 for any i ∈ V , then calculate fC for any C ∈ C. Set `(P ) ←∑
C∈C fC , and terminate.

Step 4 : Otherwise select a minimum index i ∈ V such that |M(C, i) | > 1.

Compute ∆(i, C) for any C ∈M(C, i), and set

C∗ ← argmin{∆(i, C) | C ∈M(C, i) }.

For all C ∈M(C, i) \ C∗, set C ← C \ {i}.
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Step 5 : Update the sub-family C according to the modification at Step 4, and return to

Step 3.

Now we consider the stopping criterion of our algorithm. If the difference between the

upper bound and ω(RD(S)) is small, we can stop the algorithm even if ω(AP (λ)) ≤ 0

does not hold. Then we use the following condition as one of the stopping criterion of our

algorithm for a predetermined parameter ε ≥ 0:

UB− ω(RD(S))

UB
≤ ε,

where UB is the smallest upper bound obtained so far.

2.3.4 Pegging test

In this subsection we consider the problem reduction method for the problem (P (S?)).

We can identify the variables which take either one or zero at the optimal solution of

(P (S?)), this well-known technique is called pegging test. In order to explain the peg-

ging test, we first consider the Lagrangian relaxation problem of (P (S?)). Introducing

a multiplier vector λ ∈ Rn for the first set of constraints, we obtain the following La-

grangian relaxation problem (LR(S?, λ)) with only the binary variable constraints:

(LR(S?, λ))

∣∣∣∣∣∣∣
maximize

∑
C∈S?

fCzC +
∑
i∈V

λi(1−
∑
C∈S?

aiCzC)

subject to zC ∈ {0, 1} (C ∈ S?).

From (2.2), the objective function of (LR(S?,λ)) is written as

∑
C∈S?

γC(λ)zC +
∑
i∈V

λi.

For a given multiplier vector λ ∈ Rn, we can obtain an optimal solution z(λ) of (LR(S?,λ))

by simply setting zC(λ) = 1 if γC(λ) > 0, and zC(λ) = 0 otherwise.

Proposition 2.10 Let LB be a lower bound of (P (S?)) and λ be an optimal solution of

(RD(S?)), respectively. If
∑

i∈V λi + γC(λ) < LB, then zC = 0 for any optimal solution

of the problem (P (S?)).
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Proof : Since the problem (LR(S?, λ)) is a relaxation problem of (P (S?)), we have

ω(P (S? | zC = 1)) ≤ ω(LR(S?,λ | zC = 1)). (2.4)

For any C ∈ S?, γC(λ) is non-positive due to the feasibility of λ for the problem

(RD(S?)), hence ω(LR(S?, λ)) =
∑

i∈V λi holds. Moreover we obtain

ω(LR(S?, λ | zC = 1)) =
∑
i∈V

λi + γC(λ). (2.5)

From (2.4), (2.5) and the assumption, we have the following inequality

ω(P (S? | zC = 1)) ≤
∑
i∈V

λi + γC(λ) < LB.

The above inequality ω(P (S? | zC = 1)) < LB implies the non-existence of the optimal

solution that satisfies zC = 1. Therefore zC = 0 for any optimal solution of the problem

(P (S?)). �

2.3.5 Whole algorithm

Our proposed algorithm is described as follows. Note that S is incremented by a single

set C determined by y∗ found in Step 3. We will call this algorithm the Single-Cutting-

Plane-at-a-Time Algorithm, SCP for short. The algorithm consists of two phases: the

first phase is to find binding constraints at an optimal solution of the original (RD) and

to obtain upper and lower bounds of ω(P ) (Step 1 to Step 4 in SCP), the second phase is

to solve the problem (P (S?)) constructed from S? obtained in the first phase (Step 5 in

SCP).

Algorithm Single-Cutting-Plane-at-a-Time (SCP)

Step 1 : Let S be an initial family of nonempty subsets of V and ε be a tolerance param-

eter, respectively. Initialize an upper bound UB and a lower bound LB by setting

UB← 1 and LB← 0.

Step 2 : Solve (RD(S)) to obtain an optimal solution λ and the optimal value ω(RD(S)).

Call the procedure RH(S) to compute a lower bound `(P ) of ω(P ). If LB <

`(P ), then LB← `(P ).
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Step 3 : Solve (AP (λ)) and set y∗ be an optimal solution. Compute an upper bound

u(P ) according to Proposition 2.9. If UB > u(P ), then UB← u(P ).

Step 4 : If ω(AP (λ)) ≤ 0 or (UB − ω(RD(S)))/UB ≤ ε, then set S? ← S, ω? ←
ω(RD(S)), LB? ← LB and UB? ← UB. Go to Step 5.

Otherwise set C ← {i ∈ V | y∗
i = 1}, increment S ← S ∪ {C}. Go to Step 2.

Step 5 : Execute the pegging test according to Proposition 2.10. Solve (P (S?)) to obtain

an optimal integer solution.

Carrying out some preliminary experiments by SCP, we frequently observed that the

optimal value ω(RD(S)) stays constant for many iterations even when S is repeatedly

incremented. Take “Karate” for instance, we show in Table 2.1 and Figure 2.1 how slowly

ω(RD(S)) increases as the algorithm SCP progresses. Here “Karate” is the benchmark

instance provided by DIMACS. The slow convergence we observed may arise from a
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Figure 2.1: Behavior of SCP for Karate

Table 2.1: Plateau situation of SCP

Karate

iteration ω(RD(S))

0 0.00000

10 0.37179

20 0.37179

30 0.37179

40 0.38047

49 0.41979

particular structure of (RD(S)) that all coefficients of the objective function are one and

all coefficients of the constraints are either zero or one. This makes the contour of the

objective function and some face ofF(RD(S)) be parallel, and the whole face be optimal.

As a consequence, the optimal value ω(RD(S)) stays constant although lots of cutting

planes are added. To cut off such a face entirely, we propose to simultaneously add

multiple cutting planes which may complement well each other.

The first cutting plane is the same as the one defined by y∗ and f∗ obtained from

problem (AP (λ)). We then fix the variables yi to zero for all i with y∗
i = 1, and consider
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(AP (λ)). More precisely, we let V (1) = { i ∈ V | y∗
i = 1 } and approximately solve the

problem

(AP (λ, V (1)))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
1

m

∑
l∈E

xl −
1

4m2

(∑
i∈V

diyi

)2

−
∑
i∈V

λiyi

subject to xl ≤ yi (l = {i, j} ∈ E)

xl ≤ yj (l = {i, j} ∈ E)

xl ∈ {0, 1} (l ∈ E)

yi ∈ {0, 1} (i ∈ V \ V (1))

yi = 0 (i ∈ V (1))

to obtain y(1) and f (1), i.e., the second cutting plane. In a general step, with V (h) = { i ∈
V | y(l)

i = 1 for some l < h } we approximately solve

(AP (λ, V (h)))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
1

m

∑
l∈E

xl −
1

4m2

(∑
i∈V

diyi

)2

−
∑
i∈V

λiyi

subject to xl ≤ yi (l = {i, j} ∈ E)

xl ≤ yj (l = {i, j} ∈ E)

xl ∈ {0, 1} (l ∈ E)

yi ∈ {0, 1} (i ∈ V \ V (h))

yi = 0 (i ∈ V (h)),

where y(0) = y∗ and V (0) = ∅. As long as ω(AP (λ, V (h))) is positive, we keep on

generating cutting planes. When ω(AP (λ, V (h))) becomes non-positive, we add all the

cutting planes obtained so far to S. The Step 4 of the algorithm SCP should be modified

as follows. We will call the algorithm with this modification the Multiple-Cutting-Planes-

at-a-Time Algorithm, MCP for short.

Step 4 of the Multiple-Cutting-Planes-at-a-Time Algorithm

Step 4 : If ω(AP (λ)) ≤ 0 or (UB−ω(RD(S)))/UB ≤ ε, set S? ← S , ω? ← ω(RD(S)),

LB? ← LB and UB? ← UB. Go to Step 5.

Otherwise generate cutting planes until ω(AP (λ, V (h))) becomes non-positive.

Add all the cutting planes generated to S. Go to Step 2.
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2.3.6 Computational experiments

We report the computational experiments with algorithms SCP and MCP. The experiment

was performed on a PC with Intel Core i7, 3.70 GHz processor and 32.0 GB of memory.

We implemented the algorithms in Python 2.7. Giving priority to generate stronger cuts,

we used the barrier method in Gurobi 6.0.0 as an LP solver to solve the problem (RD(S)).

Mitchell [71] pointed out that the barrier method can re-optimize a nearby problem more

quickly than the simplex method does in the situation where many cuts are added to the

preceding problem at a time, hence it is possibly advantageous for the algorithm MCP to

use the barrier method.

In order to evaluate the performance of our algorithms, we solved six benchmark in-

stances; Zachary’s karate club dataset [94] representing friendship relationships between

members of a club, Lusseau’s dolphins dataset [66] representing communications between

dolphins in Doubtful Sound New Zealand, Hugo’s Les Misèrables dataset [57] represent-

ing characters in Victor Hugo’s famous novel and their interactions, Krebs’ political books

dataset [58] representing co-purchasing of the books on U.S. politics by the same buyer,

Football dataset representing the schedule of football games between American college

teams [46], and s838 [70] dataset representing electronic circuits. The size, the known

optimal value ω(P ) and the optimal number of communities t? of each instance are given

in Table 2.2.

Table 2.2: Solved instances

ID name n m ω(P ) t?

1 Karate 34 78 0.41979 4

2 Dolphins 62 159 0.52852 5

3 Les Misèrables 77 254 0.56001 6

4 Books 105 441 0.52724 4

5 Football 115 613 0.60457 10

6 s838 512 819 0.8194 12

We set S initially to the family of all singletons, i.e., S = {{1}, ..., {n}}, and set

the parameter t, which is used in calculating an upper bound, to the optimal number of
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communities t?.

We first conduct experiment with a tolerance parameter ε = 0, that is, SCP and MCP

keep on generating cuts as long as ω(AP (λ)) > 0. Table 2.3 shows the results of both

algorithms for each instance. The collected statistics in this table are given as follows:

• iteration : number of solving the problem (RD(S))

• |S?| : cardinality of the final family of subsets S?

• ω? : optimal value of (RD(S?)) obtained at the end of the first phase

• LB? : lower bound at the end of the first phase

• UB? : upper bound at the end of the first phase

• ω(P (S?)) : optimal value of (P (S?))

• gap (%) : relative gap defined by gap =
(

ω(P )−ω(P (S?))
ω(P )

)
× 100

• time 1 : computation time of the first phase in seconds

• time 2 : computation time of the second phase in seconds

• pegged : number of pegged variables

The symbol “*” in the columns “time 2” and “pegged” represents that the second phase

is not executed since the difference between the obtained LB? and UB? vanishes at the

end of the first phase of the algorithm, hence this implies that the corresponding instance

is solved to optimality. The symbol “OT” in the column “time 1” represents that the

algorithm does not terminate after more than 604,800 seconds, seven days.

From Table 2.3, we observe that the number of generated constraints is much smaller

than that of the original problem in both algorithms. Take Karate with 34 nodes for

instance, the generated constraints are less than 1/108 of the original constraints totaling

1.7 × 1010. To compare SCP with MCP, we observe that the number of iterations and

the computation time for the first phase of MCP are much smaller than those of SCP. We

also see that SCP and MCP solve the instances, except for s838 (ID=6), and prove the

optimality due to the vanishing gap between the upper and lower bounds. Regarding to

the instance s838 (ID=6), SCP does not terminate over 604,800 seconds, while MCP takes
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less than approximately 40,000 seconds and the gap is less than 0.005%. In addition, for

the instance s838 (ID=6), the number of pegged variables in MCP is more than 99% of

the whole set of variables.

To compere the performance of several existing heuristics and our algorithms, we give

the lower bounds on the modularity obtained by existing heuristics and our algorithms in

Table 2.4. The columns GN, CNM, SA, SD, CHL, and NR represent the Girvan-Newman

algorithm [46], the hierarchical agglomerative method by Clauset et al. [26], the simulated

annealing by Guimerá and Amaral [51], the Newman’s spectral divisive method [77], the

divisive method by Cafieri et al. [20], and the Noack-Rotta heuristics [79], respectively.

From Table 2.4, we confirm that the lower bounds obtained by MCP are equal to or

larger than those obtained by the existing heuristics for all instances, which indicates that

algorithm MCP is superior to the existing heuristics in terms of accuracy of the solution.

Table 2.4: Lower bounds by several existing heuristics, SCP and MCP

ID GN CNM SA SD CHL NR SCP MCP

1 0.401 0.38067 0.420 0.39341 0.41880 NA 0.41979 0.41979

2 0.520 0.49549 0.527 0.49120 0.52646 0.52377 0.52852 0.52852

3 0.540 0.50060 0.556 0.51383 0.54676 0.56001 0.56001 0.56001

4 NA 0.50197 0.527 0.46718 0.52629 0.52694 0.52724 0.52724

5 0.601 0.57728 0.604 0.49261 0.60091 0.60028 0.60457 0.60457

6 NA 0.80556 NA 0.73392 0.81663 0.81624 NA 0.81936

Next, we conduct experiment with a tolerance parameter ε = 0.03, and the com-

putational results are given in Table 2.5. We see that the number of iterations and the

computation time for the first phase of this experiment are smaller than those of the ex-

periment with ε = 0, but their reductions are not significant for all instances except for

the instance s838 (ID=6). Also, we observe that the predominant portion of the whole

computation is spent for the first phase, and the second phase of the algorithm requires a

fraction of the whole.

As for the accuracy of the solution, although both of SCP and MCP could not solve

the instances, except for the instance Football (ID=5), to optimality, the relative gap was

less than 1.5% for each instance.
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Figures 2.2 (a), (b), (c), (d), (e), and (f) show the upper bound and ω(RD(S)) vs. the

number of iterations. For both algorithms, ω(RD(S)) rapidly increases at an early stage,

and then increases slowly as the algorithm progresses.
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Figure 2.2: Behaviors of SCP and MCP for each instance
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2.4 Lagrangian Relaxation Algorithms

As previously mentioned, the LP relaxation provides an upper bound of the optimal value

of (P ) and the obtained upper bound is often tight. However, the LP relaxation usu-

ally suffers high degeneracy due to the set partitioning constraints. To overcome this

degeneracy, several techniques have been proposed in the literature. For vehicle-routing

and crew-scheduling problems based on the set partitioning formulation, Elhallaoui et

al. [38] proposed a dynamic constraints aggregation method, which reduces the size of

the original set partitioning problem by aggregating some of the constraints. More re-

cently, Benchimol et al. [13] developed a stabilized dynamic constraints aggregation

which combines the dynamic constraints aggregation and the stabilized column gener-

ation by Du Merle [37].

In this section, we propose column generation algorithms which solve the Lagrangian

relaxation problem for the restricted problem with fewer variables of (P ) instead of the

LP relaxation throughout the column generation process. The algorithms we propose

here are attractive owing to its low computational burden and low memory consumption

compared to the LP relaxation algorithms. In addition, we discuss the convergence issue

of our algorithm, then present an improved algorithm which converges a finite number of

iterations.

2.4.1 Lagrangian relaxation and Lagrangian dual problem

We relax the set partitioning constraints by adding them to the objective function as a

penalty with the Lagrangian multiplier vector λ = (λ1, . . . , λn)> ∈ Rn. Then we obtain

the following Lagrangian relaxation problem (LR(P ,λ)) having only binary variable

constraints:

(LR(P ,λ))

∣∣∣∣∣∣∣
maximize

∑
C∈P

fCzC +
∑
i∈V

λi(1−
∑
C∈P

aiCzC)

subject to zC ∈ {0, 1} (C ∈ P).

To write the objective function of (LR(P, λ)) in a simple form, we define the coefficient

of variable zC in the objective function as

γC(λ) = fC −
∑
i∈V

λiaiC .
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Using γC(λ), the objective function is written as follows:

L(z, λ) =
∑
C∈P

γC(λ)zC +
∑
i∈V

λi.

For a given multiplier vector λ ∈ Rn, we can obtain an optimal solution z(λ) = (zC(λ))C∈P

of (LR(P , λ)) by simply setting zC(λ) = 1 if γC(λ) > 0, and zC(λ) = 0 otherwise.

Then the optimal value ω(LR(P, λ)) provides an upper bound of ω(P ) for any λ ∈ Rn.

The upper bound given by the problem (LR(P ,λ)) depends on a choice of the Lagrangian

multiplier vector λ. The problem of finding the best upper bound of ω(P ) is called the

Lagrangian dual problem (LD), which is given as:

(LD)

∣∣∣∣∣∣ minimize ω(LR(P ,λ))

subject to λ ∈ Rn.

The objective function ω(LR(P ,λ)) of (LD) is a piecewise linear convex with respect

to λ ∈ Rn, but sub-differentiable at its breakpoints. One of the most commonly used

method for this problem is the subgradient method.

In the remainder of this subsection, we see some theoretical properties between the

problems (RD) and (LD). Now we consider LP relaxation problem of (LR(P , λ)), i.e.,

replacing the binary constraint zC ∈ {0, 1} by 0 ≤ zC ≤ 1, and denote it by (LR(P , λ)).

(LR(P, λ))

∣∣∣∣∣∣∣
maximize L(z,λ) =

∑
C∈P

γC(λ)zC +
∑
i∈V

λi

subject to 0 ≤ zC ≤ 1 (C ∈ P).

Clearly, any optimal solution of (LR(P , λ)) is also optimal for (LR(P, λ)), which is

called integrality property. Therefore the optimal value of (LD) coincides with that of

the problem (RD). See Geoffrion [44].

2.4.2 Column generation method

As we have discussed in the previous subsection, the optimal solution z(λ) of (LR(P , λ))

can be obtained by checking the sign of γC(λ). In practice, it is hard to compute all

γC(λ)’s owing to the huge number of variables. However, the number of variables which

are positive at an optimal solution of (P ) is at most the number of nodes, hence we need

only a small number of variables. Based on this fact, we use the column generation tech-

nique in order to alleviate the computation burden. In this subsection, we first introduce
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restricted problems and explain the subgradient method. Second, we apply the column

generation technique.

We choose a small subfamily S of P and consider the following restricted problem

(P (S)) with fewer variables:

(P (S))

∣∣∣∣∣∣∣∣∣∣∣

maximize
∑
C∈S

fCzC

subject to
∑
C∈S

aiCzC = 1 (i ∈ V )

zC ∈ {0, 1} (C ∈ S).

We denote the Lagrangian relaxation problem of (P (S)) by (LR(S, λ)). The problem

(LR(S,λ)) is given as

(LR(S, λ))

∣∣∣∣∣∣∣
maximize

∑
C∈S

γC(λ)zC +
∑
i∈V

λi

subject to zC ∈ {0, 1} (C ∈ S).

In the same way as in the discussion in Subsection 2.4.1, an optimal solution z(S,λ) =

(zC(λ))C∈S of the problem (LR(S, λ)) can be obtained by

zC(λ) =

1 when γC(λ) > 0

0 otherwise,
(2.6)

for a given λ ∈ Rn. We denote the Lagrangian dual problem corresponding to (P (S)) by

(LD(S)):

(LD(S))

∣∣∣∣∣∣ minimize ω(LR(S,λ))

subject to λ ∈ Rn.

We use the subgradient method to solve the problem (LD(S)).

Definition 2.11 g(λ0) ∈ Rn is a subgradient of ω(LR(S,λ)) at λ0 when g>(λ0)(λ −
λ0) ≤ ω(LR(S,λ))− ω(LR(S, λ0)) holds for any λ ∈ Rn.

The subgradient method uses the subgradient g(λ) at a current multiplier vector λ, and

updates the Lagrangian multiplier vector to the direction of −g(λ) with a step-size. The

following lemma is well known.

Lemma 2.12 Let z(S,λ) = (zC(λ))C∈S be an optimal solution of the Lagrangian re-

laxation problem (LR(S, λ)). Then g(λ) = (1 −
∑

C∈S aiCzC(λ))i∈V is a subgradient

of ω(LR(S,λ)) at λ ∈ Rn.
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Various methods to determine the step-size and their convergence properties have been

discussed. See, for example [40, 53]. We use the following rule to update the current

Lagrangian multiplier vector λ to the next multiplier vector λ̂.

λ̂i = λi − µ
ω(LR(S,λ))− LB

‖g(λ)‖2
gi(λ) for all i ∈ V , (2.7)

where µ is a step-size control parameter and LB is a lower bound of ω(P ). When the

multiplier vector is updated, the value ω(LR(S, λ)) does not necessarily decrease. We

count the number of consecutive failures to decrease the value, and when it reaches a

predetermined number, we halve the step-size control parameter. When the step-size

control parameter falls below 0.005, we stop the subgradient algorithm. The subgradient

method to solve the problem (LD(S)) is described as follows:

Procedure Sub-Gradient (SG(λ, LB))

Input : a current multiplier λ and a lower bound LB

Output : a near optimal multiplier λ, the objective value ωup, and a lower bound LB

Step 1 : Initialize a parameter µ← 2.0, and set a counter k ← 0, λ̂← λ and ωup ← +∞.

Step 2 : Solve the problem (LR(S, λ̂)) by setting zC(λ̂) according to (2.6).

If ω(LR(S, λ̂)) < ωup, then update ωup to ω(LR(S, λ̂)), and set k ← 0. Other-

wise k ← k + 1.

Step 3 : If (ωup − LB)/ωup < ε, then terminate.

Step 4 : Compute the subgradient g(λ) from z(S,λ).

If g(λ) = 0, then set LB← ωup, and terminate.

Step 5 : If µ ≤ 0.005, then terminate. If k ≥ 30, set µ← µ/2.

Step 6 : Update λ to λ̂ according to (2.7), and go to Step 2.

Note that the solution obtained by this procedure is not necessarily an optimal solution

of (LD(S)). Now we denote the obtained objective value of (LD(S)) by ω̄(LD(S)).

Since the variables zC for C ∈ P \ S are not considered in the problem (LR(S, λ)),

the optimal solution z(S,λ) is not necessarily optimal to (LR(P , λ)). Therefore there is
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no guarantee that ω(LR(S,λ)) as well as ω̄(LD(S)) reaches an upper bound of ω(P ).

When γC(λ) ≤ 0 for all C ∈ P \ S, z(S,λ) is an optimal solution of (LR(S, λ)) due

to the setting by means of (2.6), thus ω(LR(S, λ)) and ω̄(LD(S)) are upper bounds of

ω(P ). On the other hand, if there exists C ∈ P \ S which satisfies

γC(λ) > 0,

adding this C to S can lead to an improvement of the optimal value of (LR(S, λ)), i.e.,

ω(LR(S ′
,λ)) > ω(LR(S, λ)) where S ′

= S ∪ {C}. It should be noted that λ is an

appropriate solution for the problem (LD(S)) but no longer for (LD(S ′
)). Then we

solve the problem (LD(S ′
)) again to obtain a near optimal Lagrangian multiplier by the

subgradient method.

The problem of finding a community that maximizes γC(λ) ends up as the problem

(AP (λ)) with a quadratic concave function. In the same manner as in the algorithm

based on the LP relaxation, finding y∗ with positive optimal value, we add the variable

zC corresponding to the community C = { i ∈ V | y∗
i = 1 } to the problem (LR(S, λ)).

From the above discussion, a prototype of the column generation algorithm based on the

Lagrangian relaxation is described as follows.

Algorithm Prototype of Lagrangian-based-Column-Generation

Step 1 : Let S and λ be an initial family of nonempty subsets of V and an initial multiplier

vector, respectively. Initialize a lower bound by setting LB← 0.

Step 2 : Call the procedure SG(λ, LB) to solve (LD(S)).

Set λ and ω̄(LD(S)) be a solution and the objective value of (LD(S)) returned

by the procedure.

Step 3 : Solve (AP (λ)) to obtain an optimal solution y∗.

Step 4 : If ω(AP (λ)) ≤ 0, then set S∗ ← S and ω∗ ← ω̄(LD(S)). Output S∗ and ω∗,

and terminate.

Otherwise set C∗ ← {i ∈ V | y∗
i = 1} and increment S ← S ∪ {C∗}. Return to

Step 2.
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Similarly to the algorithms based on the LP relaxation in the previous section, we

construct the problem (P (S∗)) from obtained S∗. The optimal value ω(P (S∗)) provides

a lower bound of ω(P ). Furthermore we obtain an upper bound ω̄(LD(S∗)) of ω(P )

when ω(AP (λ)) ≤ 0 is satisfied. Therefore we have the following inequality:

ω(P (S∗)) ≤ ω(P ) ≤ ω̄(LD(S∗)).

The value ω̄(LD(S∗)) − ω(P (S∗)) provides an upper bound of the difference between

ω(P ) and ω(P (S∗)).

2.4.3 Bounding procedures and stopping criteria

The column generation algorithm often suffers from slow convergence. In this algorithm,

the objective value of (LD(S)) increases slowly as the solution λ is close to the optimal

solution, namely long-tail convergence process is observed in latter iteration. This slow

convergence process is called tailing-off effect [32, 65]. When the difference between

an upper bound and ω(LD(S)) is small, we stop the algorithm even if ω(AP (λ)) ≤ 0

does not hold since the difference between the upper bound and ω(LD(S)) provides the

quality of the current objective value of (LD(S)). In addition, the most time-consuming

step in the algorithm is the step of solving the problem (AP (λ)), hence decreasing the

number of iterations of the algorithm could considerably contribute to reduce the total

computing time. We put off the description of the bounding procedures until the last in

this subsection, and first present the stopping criteria. Now we consider the following

stopping criterion
UB− ω(LD(S))

UB
≤ ε,

where UB is the best upper bound obtained so far. Namely, we stop the algorithm when

ω(LD(S)) is sufficiently close to an upper bound of ω(P ). Note that the objective value

ω̄(LD(S)) we obtain at each iteration is not necessarily optimal for (LD(S)). In other

words, the closeness of UB and ω̄(LD(S)) does not imply the closeness of UB and

ω(LD(S)). To resolve this invalidity, we propose two stopping criteria.

The first one uses a lower bound LB of ω(P ) . When the difference of between

UB and LB is small, we can claim that this lower bound fully approximates the optimal

value of ω(P ). The second one uses the optimal value of (LD(S)). As we have seen

in Subsection 2.4.1, the optimal value of the Lagrangian dual problem equals to that
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of the LP relaxation problem. We exploit this property for the purpose of computing

ω(LD(S)). Denoting the LP relaxation problem and its dual problem corresponding to

(P (S)) by (RP (S)) and (RD(S)), we have ω(LD(S)) = ω(RD(S)). The optimal value

of (RD(S)) provides the optimal value of (LD(S)). Therefore we solve the problem

(RD(S)) to obtain ω(RD(S)) only if (UB − ω̄(LD(S)))/UB ≤ ε, and check whether

the following condition holds.

UB− ω(RD(S))

UB
≤ ε.

To obtain an upper bound of ω(P ), we also make use of Proposition 2.9 thanks to the

arbitrariness of λ in this proposition. Next, we describe the Lagrangian heuristics to ob-

tain a feasible solution of the problem (P ), which is based on a simple greedy algorithm.

For given a family S and a multiplier vector λ, this algorithm iteratively select a commu-

nity C ∈ S with the maximum value of γC(λ) as a member of a partition. Note that we

have to select a community which is disjoint from the previously selected communities at

each iteration. Then removing the nodes in the previously selected communities from the

node set V , we update S to the family whose element consists of a subset of the remaining

nodes. From the above discussion, the greedy heuristics to obtain a lower bound of ω(P )

is given as follows.

Procedure Greedy-Heuristics (GH(S, λ))

Input : a current family S, and a current multiplier λ

Output : a lower bound `(P )

Step 1 : Let S and λ be a current subfamily and a Lagrangian multiplier vector, respec-

tively. Set `(P )← 0.

Step 2 : C∗ ← argmax {γC(λ) | C ∈ S}, and set `(P )← `(P ) + fC∗ .

Step 3 : Update V ′ ← V \ C∗, and S ′ ← {C ∈ S | C ⊆ V ′}.

Step 4 : If V ′ = ∅, then terminate.

Otherwise set V ← V ′ and S ← S ′. Go to Step 2.
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2.4.4 Pegging test

In this section we consider the problem reduction technique for the problem (P (S∗)),

i.e., fixing some variables without loss of the optimality of the solution. This prob-

lem reduction technique is called pegging test, which makes use of a lower bound and

ω(LR(S∗,λ)).

Proposition 2.13 Let LB be a lower bound of (P (S∗)) and α ∈ {0, 1}. If ω(LR(S∗, λ |
zC = α)) < LB, then zC = 1− α for any optimal solution of the problem (P (S∗)).

Proof : Since the problem (LR(S∗, λ)) is a relaxation problem of (P (S∗)), it is clear

that

ω(P (S∗ | zC = α)) ≤ ω(LR(S∗,λ | zC = α)). (2.8)

Suppose that ω(LR(S∗, λ | zC = α)) < LB, we can obtain ω(P (S∗ | zC = α)) < LB

from (2.8). This inequality implies the non-existence of the optimal solution that satisfies

zC = α. Hence we conclude zC = 1− α for any optimal solution of (P (S∗)) �

In addition, suppose that we have an optimal solution z(S∗, λ) of LR(S∗, λ) and that

zC(λ) = 0. Since zC = 0 implies γC(λ) ≤ 0 from (2.6), we can calculate ω(LR(S∗,λ |
zC = 1)) as follows:

ω(LR(S∗,λ | zC = 1)) = ω(LR(S∗,λ)) + γC(λ).

In the same way, when zC = 1, we can calculate ω(LR(S∗,λ | zC = 0)) as follows:

ω(LR(S∗,λ | zC = 0)) = ω(LR(S∗, λ))− γC(λ)

since zC = 1 implies γC(λ) > 0. Thus we can fix some variables by simple calculation.

2.4.5 Convergence issue

Now we discuss the convergence property of the column generation algorithm based on

the Lagrangian relaxation. If the Lagrangian multiplier vector λ obtained by the subgradi-

ent method satisfies the dual feasibility condition fC−
∑

i∈V λiaiC ≤ 0 for any C ∈ S for

the problem (RD(S)), then the community constructed by an optimal solution y∗ is not

in S. However the obtained multiplier λ does not necessarily satisfy the dual feasibility,
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hence we cannot conclude that the obtained community is not in S, i.e., a community that

is not considered yet. Thus there is no guarantee that our column generation algorithm

converges since the algorithm may repeatedly generate a community which is already in

S. To resolve this issue, we incorporate the multiplier adjustment procedure based on

Balas and Carrera [6] into our algorithm, and propose the following procedure.

Procedure Multiplier-Adjustment (MA(S,λ))

Input : a current family S and a current multiplier λ

Output : a dual feasible multiplier λ

Step 1 : If there exists a subset C ′ ∈ S such that γC′(λ) > 0, then Go to Step 2.

Otherwise terminate.

Step 2 : Choose i ∈ C ′, and set λi ← λi + γC′(λ). Go to Step 1.

The procedure MA produces a dual feasible multiplier λ without increasing the asso-

ciated objective value ω(LR(S, λ)). Namely, the following lemma holds.

Lemma 2.14 For any S and λ̄ ∈ Rn, let λ be a multiplier vector returned by the pro-

cedure MA(S, λ̄). Then γC(λ) ≤ 0 for any C ∈ S , and ω(LR(S,λ)) ≤ ω(LR(S, λ̄))

holds.

Proof : Suppose that γC′(λ̄) > 0 for some C ′ and let i∗ ∈ C ′ be the node chosen at

Step 2 of the procedure. First, we show the returned multiplier vector satisfies the dual

feasibility. The multiplier vector λ = (λi)i∈V at the end of Step 2 is given as

λi =

λ̄i (i 6= i∗)

λ̄i∗ + γC′(λ̄) (i = i∗),
(2.9)
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then we have the following equality

γC′(λ) = fC′ −
∑
i∈V

aiCλi

= fC′ −
∑

i∈V \{i∗}

aiC′λi − ai∗C′λi∗

= fC′ −
∑

i∈V \{i∗}

aiC′λ̄i − (λ̄i∗ + γC′(λ̄))

= fC′ −
∑
i∈V

aiC′λ̄i − γC′(λ̄)

= 0

due to the construction of λ and ai∗C′ = 1. Moreover λ ≥ λ̄ holds from the construction

of λ, which and the non-negativity of aiC imply that γC(λ̄) ≥ γC(λ) for any C ∈ S .

Therefore the multiplier vector ends up being dual feasible for (RD(S)) after at most |S|
iterations. Next, we show the multiplier vector does not increases the associated objective

value. The optimal values of the Lagrangian relaxation problems at each multiplier vector

λ and λ̄ are given by (2.9) as follows:

ω(LR(S,λ)) =
∑

C∈S(λ)+

γC(λ) +
∑
i∈V

λ̄i + γC′(λ̄),

ω(LR(S, λ̄)) =
∑

C∈S(λ̄)+\{C′}

γC(λ̄) + γC′(λ̄) +
∑
i∈V

λ̄i,

where S(λ)+ = {C ∈ S | γC(λ) > 0 }. Hence, we have

ω(LR(S,λ))− ω(LR(S, λ̄)) =
∑

C∈S(λ)+

γC(λ)−
∑

C∈S(λ̄)+\{C′}

γC(λ̄). (2.10)

Obviously, the inclusion relation S(λ)+ ⊆ S(λ̄)+ holds from the definition of S(λ)+

and γC(λ) ≤ γC(λ̄) for any C ∈ S. Thus this and C ′ /∈ S(λ)+ imply that (2.10) is

non-positive. �

The convergence of the algorithm directly follows Lemma 2.14.

Theorem 2.15 The Lagrangian relaxation-based algorithm with the procedure MA ter-

minates within a finite number of iterations.
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2.4.6 Whole algorithm

The algorithm based on the Lagrangian relaxation is described as follows. We will call this

algorithm the Lagrangian-based-Single-Column-Generation-at-a-Time algorithm, LSCG

for short.

Algorithm Lagrangian-based-Single-Column-Generation-at-a-Time (LSCG)

Step 1 : Determine a tolerance parameter ε, and set UB← 1 and LB← 0.

Let S and λ be an initial family of nonempty subsets of V and an initial multiplier

vector, respectively.

Step 2 : Call the procedure SG(λ, LB) to solve the problem (LD(S)). Let λ̄ and ω̄(LD(S))

be a solution and its objective value returned by the procedure.

Compute a lower bound `(P ) of ω(P ) by the procedure GH(S, λ̄).

If LB < `(P ), then set LB← `(P ).

Step 3 : Call the procedure MA(S, λ̄) in order to convert λ̄ to dual feasible solution λ.

Solve (AP (λ)) and set y∗ be an optimal solution. Compute an upper bound

u(P ) according to Proposition 2.9. If UB > u(P ), then UB← u(P ).

Step 4 : If ω(AP (λ)) ≤ 0 or (UB−LB)/UB ≤ ε, then set S? ← S, ω? ← ω̄(LD(S)), LB? ←
LB and UB? ← UB. Go to Step 8.

Step 5 : If (UB − ω̄(LD(S)))/UB ≤ ε, then solve (RD(S)) to obtain ω(RD(S)). Oth-

erwise go to Step 7.

Step 6 : If (UB− ω(RD(S)))/UB ≤ ε, then set S? ← S, ω? ← ω̄(LD(S)), LB? ← LB

and UB? ← UB. Go to Step 8.

Step 7 : Set C∗ ← { i ∈ V | y∗
i = 1 } and increment S ← S ∪ {C∗}. Return to Step 2.

Step 8 : Execute the pegging test according to Proposition 2.13. Solve (P (S?)) by an IP

solver. Output S?, LB?, UB? and ω?, and terminate.

The algorithm consists of two phases: the first phase is to collect a set of variables

that are likely to be positive at an optimal solution and to obtain lower and upper bounds
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of ω(P ) (Step 1 to Step 7 in LSCG), the second phase is to solve the problem (P (S?))

(Step 8 in LSCG). Similarly to the LP relaxation algorithm, we extend the algorithm

based on the Lagrangian relaxation to an algorithm of adding multiple columns which

may complement well each other, and call the algorithm the Lagrangian-based-Multiple-

Column-Generation-at-a-Time algorithm, LMCG for short.

2.4.7 Computational experiments

In this subsection, we report the computational experiments with algorithms LSCG and

LMCG. The experiment was performed on a PC with Intel Core i7, 3.70 GHz proces-

sor and 32.0 GB of memory. Using Gurobi 6.0.0 as an IP solver to solve the auxiliary

problem, we implemented the algorithms in Python 2.7. We solved the same instances in-

troduced in the Subsection 2.3.6. Throughout the experiments, we set an initial family S
to the family of all singletons, i.e., S = { {1}, . . . , {n} }, and an initial multiplier vector

λ to 0, respectively.

First, we conduct the experiment with a tolerance parameter ε = 0, and Table 2.6

shows the results of both algorithms for each instance. The collected statistics in this

table are given as follows:

• iteration : number of solving the problem (LD(S))

• |S?| : cardinality of the final family of subsets S?

• ω? : objective value of (LD(S?)) obtained at the end of the first phase

• LB? : lower bound at the end of the first phase

• UB? : upper bound at the end of the first phase

• ω(P (S?)) : optimal value of (P (S?))

• gap (%) : relative gap defined by gap =
(

ω(P )−ω(P (S?))
ω(P )

)
× 100

• time 1 : computation time of the first phase in seconds

• time 2 : computation time of the second phase in seconds

• pegged : number of pegged variables
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The symbol “*” in the columns “time 2” and “pegged” represents that the second phase is

not executed since the difference between the obtained LB? and UB? vanishes at the end

of the first phase.

Similarly to the results of the algorithms based on LP relaxation, we observe that the

number of generated variables is much smaller than that of the original problem in both

LSCG and LMCG from Table 2.6. To compare LSCG with LMCG, we see that LMCG

performs better than LSCG in terms of the number of iterations and the computation time

for the first phase. Especially, for the instance s838 (ID=6), the number of iterations

(resp., the computation time) is reduced by a factor of approximately 9.34 (resp., 7.58).

On the other hand, regarding the accuracy of the solution, LSCG provides the lower and

upper bounds as good as LMCG does, indeed, both algorithms solve the instances, except

for the instance s838 (ID=6), to optimality. The algorithms fail to solve the instance s838,

but the remaining gap is less than 0.005%.

To compere the performance of several existing heuristics and algorithms LSCG and

LMCG, we give the lower bounds on the modularity obtained by the same existing heuris-

tics [20, 26, 46, 51, 77, 79] used in Subsection 2.3.6 and our algorithms in Table 2.7. We

confirm that LSCG and LMCG outperform other heuristic algorithms in terms of accuracy

from the table.

Table 2.7: Lower bounds by several existing heuristics, LSCG and LMCG

ID GN CNM SA SD CHL NR LSCG LMCG

1 0.401 0.38067 0.420 0.39341 0.41880 NA 0.41979 0.41979

2 0.520 0.49549 0.527 0.49120 0.52646 0.52377 0.52852 0.52852

3 0.540 0.50060 0.556 0.51383 0.54676 0.56001 0.56001 0.56001

4 NA 0.50197 0.527 0.46718 0.52629 0.52694 0.52724 0.52724

5 0.601 0.57728 0.604 0.49261 0.60091 0.60028 0.60457 0.60457

6 NA 0.80556 NA 0.73392 0.81663 0.81624 0.81936 0.81936

Next, we conduct experiment with a tolerance parameter ε = 0.03, and the computa-

tional results of the algorithms LSCG and LMCG are given in Table 2.8. From the table,

we observe that the number of iterations and the computation time for the first phase in

this experiment are smaller than those in the experiment with ε = 0 for all instances, and
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their reductions are significant as the instance size grows unlike the computational results

of the algorithms based on LP relaxation. To be specific, for the instance s838 (ID=6), the

computation time of both LSCG and LMCG in the experiment with ε = 0.03 is reduced

by a factor approximately 1.5 compared with that in the experiment with ε = 0. Concern-

ing the accuracy of the solution, for the instances except for the instance Karate (ID=1),

we see that both algorithms fail to solve to optimality, but the gap is less than 5%.
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Figure 2.3: Behaviors of LSCG and LMCG for each instance

Figures 2.3 (a), (b), (b), (d), (e), and (f) show ω̄(LD(S)) and the upper bound vs. the

number of iterations. Similarly to the behaviors of the algorithms based on LP relaxation,
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ω̄(LD(S)) rapidly increases at an early stage, and increases slowly as the algorithm goes

on for both LSCG and LMCG.
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Chapter 3

Modularity Density Maximization

3.1 Introduction

Modularity proposed by Newman and Girvan [78] is the most commonly used measure

when the nodes of a network are grouped into communities consisting of tightly connected

nodes. However, some authors pointed out drawbacks of the modularity, the main issue

of which is resolution limit. Resolution limit refers to the sensitivity of the modularity to

the total number of edges in the graph, which leaves small communities not identified and

hidden inside larger ones. To overcome this drawback, Li et al. [63] have proposed a new

measure for community detection, which is called modularity density, and the problem

of maximizing the modularity density can be straightforwardly formulated as a nonlinear

binary programming.

As for the mathematical optimization approaches for the modularity density maxi-

mization, Costa [29] has presented some mixed integer linear programming formulations,

MILP for short, which enables an application of general-purpose solvers, e.g., CPLEX,

Gurobi and Xpress, to the problem. However, the number of communities must be fixed

in advance, and a difficult auxiliary problem need be solved in their formulations. More

recently, a hierarchical divisive heuristics has been proposed by Costa et al. [30] to obtain

a good lower bound on the modularity density.

In this chapter, for the modularity density maximization, we give a new formulation

based on a variant of a semidefinite programming called 0-1SDP. One of the advantages

of this formulation is that the size of the problem is independent of the number of edges
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of the graph. In order to obtain an upper bound on the modularity density, we propose to

relax 0-1SDP to a semidefinite programming problem with non-negative constraints. The

relaxation problem obtained can be solved in polynomial time, and also does not require

the number of communities in contrast to MILP formulations. Moreover, we develop

a method based on the combination of spectral heuristics and dynamic programming to

construct a feasible solution from the solution obtained by the relaxation problem.

3.1.1 Definitions and notation

Let G = (V,E) be an undirected graph with the set V of n nodes and the set E of

undirected m edges. We assume that V has at least two nodes. We denote the set of

edges that have one end-node in C and the other end-nodes in C ′ by E(C, C ′). When

C = C ′, we abbreviate E(C,C ′) to E(C) for the sake of simplicity. Then modularity

density, denoted by D(Π), for a partition Π is defined as

D(Π) =
∑
C∈Π

(
2|E(C)| −

∑
C′∈Π |E(C,C ′)|
|C|

)
,

where | · | denotes the cardinality of the corresponding set. We refer to each term of the

summation as the contribution of community to the modularity density.

Modularity density maximization problem, MD for short, is to find a partition of V

that maximizes the modularity density D(Π), then the problem is formulated as

(MD)

∣∣∣∣∣∣∣
maximize

∑
C∈Π

(
2|E(C)| −

∑
C′∈Π |E(C,C ′)|
|C|

)
subject to Π is a partition of V .

A nonlinear binary programming formulation for (MD) have been proposed in Li et

al. [63]. Although the optimal number of communities for the modularity density max-

imization is a priori unknown similarly to the modularity maximization problem, we

suppose it is known for the time being, and denote it by t, and let T be the index set

{ 1, 2, . . . , t }. Introducing a binary variables xip indicating whether node i belongs to
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community Cp, we have the following formulation:

(MD)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
∑
p∈T

(
2
∑

i∈V

∑
j∈V aijxipxjp −

∑
i∈V dixip∑

i∈V xip

)
subject to

∑
p∈T

xip = 1 (i ∈ V )∑
i∈V

xip ≥ 1 (p ∈ T )

xip ∈ { 0, 1 } (i ∈ V, p ∈ T ),

where aij is the (i, j) element of the adjacency matrix A of graph G, and di is the degree

of node i ∈ V . The first set of constraints states that each node belongs to exactly one

community, and the second set of constraints imposes that each community should be a

nonempty subset of V . The objective function in this problem is the sum of fractional

functions with a quadratic numerator and a linear denominator. One of the widely used

solution approaches for the problem of this kind is a parametric algorithm by Dinkel-

bach [35]. Another approach is a branch-and-bound algorithm [14, 59] in global opti-

mization area.

3.1.2 Some properties

In this subsection, we give some properties of the modularity density. Now suppose that

there exist several isolated nodes in a graph G. After removing the isolated nodes from

G, we find a partition Π? that maximizes the modularity density on the reduced graph of

G. If the contribution of a community is non-negative for any community of Π?, then

Π?∪{C̄} is an optimal partition on the original graph G, where C̄ consists of the isolated

nodes once deleted. If there exist some communities with a negative contribution, then

the contribution increases by adding the isolated nodes to these communities since the

denominator of the contribution increases. Therefore we have the following lemma.

Lemma 3.1 (Costa [29], Lemma 1.) The isolated nodes can be assigned to communities

a posteriori.

Due to Lemma 3.1, we have only to consider graphs with no isolated nodes.

Proposition 3.2 (Costa [29], Proposition 1, Corollary 1 and Corollary 2.) Let Π? be a par-

tition with maximum modularity density, then the size of each community is between 2 and
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n− 2(|Π?| − 1), i.e.,

2 ≤ |C| ≤ n− 2(|Π?| − 1) for any C ∈ Π?.

3.2 Formulations

In this section, we first present two different reformulations of the modularity density

maximization, which are based on MILP formulation according to Costa [29]. Next, we

show that the modularity density maximization can be equivalently formulated as 0-1SDP,

a variant of the semidefinite programming.

Hereafter, Sn,S+
n and Nn denote the set of n × n symmetric matrices, the positive

semidefinite cone, and the symmetric non-negative cone, i.e.,

Sn = {Y ∈ Rn×n | Y = Y > },

S+
n = {Y ∈ Sn | u>Y u ≥ 0 for all u ∈ Rn },

Nn = {Y = (yij)i,j∈{1,2,...,n} ∈ Sn | yij ≥ 0 for all i, j ∈ {1, 2, . . . , n} }.

For a given vector u, Diag(u) is the diagonal matrix with ui as the i-th diagonal element,

and vec(U) is the vector obtained by stacking columns of a given matrix U .

3.2.1 MILP formulations

We can rewrite the objective function in the problem (MD) as follows:∑
p∈T

(
4
∑

{i,j}∈E xipxjp −
∑

i∈V dixip∑
i∈V xip

)
, (3.1)

due to the definition of adjacency matrix A = (aij)ij∈V and its symmetry. The quadratic

terms xipxjp can be linearized by replacing them with new variable yijp and adding the

following Fartet inequalities [41]:

yijp ≤ xip, yijp ≤ xjp, xip + xjp ≤ yijp + 1 for p ∈ T . (3.2)

Note that the last inequality in (3.2) is redundant owing to the objective function of max-

imizing with respect to the variable yijp, hence can be omitted. Next, we introduce a

continuous variable αp defined as:

αp =
4
∑

{i,j}∈E yijp −
∑

i∈V dixip∑
i∈V xip

.
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This equality constraint can be relaxed to

αp ≤
4
∑

{i,j}∈E yijp −
∑

i∈V dixip∑
i∈V xip

, (3.3)

without overlooking an optimal solution due to the objective function. Since the denomi-

nator in (3.3) is positive, we can rewrite it as

αp

∑
i∈V

xip ≤ 4
∑

{i,j}∈E

yijp −
∑
i∈V

dixip.

Finally, to linearize the product αpxip, we then introduce a continuous variable γip to

replace αpxip and make use of the following McCormick inequalities [67]:

Lαxip ≤ γip ≤ Uαxip for i ∈ V, p ∈ T ,

αp − Uα(1− xip) ≤ γip ≤ αp − Lα(1− xip) for i ∈ V, p ∈ T ,

where Lα and Uα are lower and upper bounds of αp, respectively. From the above discus-

sion, MILP formulation is given as

(MILP1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
∑
p∈T

αp

subject to
∑
p∈T

xip = 1 (i ∈ V )

2 ≤
∑
i∈V

xip ≤ n− 2 (t− 1) (p ∈ T )

yijp ≤ xip, yijp ≤ xjp ({i, j} ∈ E, p ∈ T )∑
i∈V

γip ≤ 4
∑

{i,j}∈E

yijp −
∑
i∈V

dixip (p ∈ T )

Lαxip ≤ γip ≤ Uαxip (i ∈ V, p ∈ T )

αp − Uα(1− xip) ≤ γip ≤ αp − Lα(1− xip) (i ∈ V, p ∈ T )

xip ∈ {0, 1} (i ∈ V, p ∈ T )

yijp ∈ R ({i, j} ∈ E, p ∈ T )

Lα ≤ αp ≤ Uα (p ∈ T )

γip ∈ R (i ∈ V, p ∈ T ).

From the inequality (3.3) and Proposition 3.2, a valid lower bound on the variables αp is

attained when the corresponding community consists of only two nodes with the largest

degree, thus Lα is given as Lα = −(dmax1 +dmax2)/2 where dmax1 and dmax2 are the largest

and the second largest degrees, respectively. On the other hand, in order to obtain the
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upper bound on αp, we need to solve the following auxiliary problem:

(AP1)

∣∣∣∣∣∣∣∣∣∣∣
maximize

4
∑

{i,j}∈E xixj −
∑

i∈V dixi∑
i∈V xi

subject to 2 ≤
∑
i∈V

xi ≤ n− 2(t− 1)

xi ∈ {0, 1} (i ∈ V ).

Another MILP formulation is obtained by splitting the two terms in the numerator

of (3.1), that is, rewriting the objective function as follows:

4
∑

{i,j}∈E xipxjp∑
i∈V xip

−
∑

i∈V dixip∑
i∈V xip

.

Introducing continuous variables αp and βp in order to linearize the two terms, we have

αp ≤
∑

{i,j}∈E xipxjp∑
i∈V xip

, βp ≥
∑

i∈V dixip∑
i∈V xip

.

In the same manner as in (MILP1), we can reformulate the problem as follows:

(MILP2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
∑
p∈T

(4αp − βp)

subject to
∑
p∈T

xip = 1 (i ∈ V )

2 ≤
∑
i∈V

xip ≤ n− 2 (t− 1) (p ∈ T )

yijp ≤ xip, yijp ≤ xjp ({i, j} ∈ E, p ∈ T )∑
i∈V

γip ≤
∑

{i,j}∈E

yijp (p ∈ T )∑
i∈V

µip ≥
∑
i∈V

dixip (p ∈ T )

Lαxip ≤ γip ≤ Uαxip (i ∈ V, p ∈ T )

αp − Uα(1− xip) ≤ γip ≤ αp − Lα(1− xip) (i ∈ V, p ∈ T )

Lβxip ≤ µip ≤ Uβxip (i ∈ V, p ∈ T )

βp − Uβ(1− xip) ≤ µip ≤ βp − Lβ(1− xip) (i ∈ V, p ∈ T )

xip ∈ {0, 1} (i ∈ V, p ∈ T )

yijp ∈ R ({i, j} ∈ E, p ∈ T )

Lα ≤ αp ≤ Uα, Lβ ≤ βp ≤ Uβ (p ∈ T )

γip, µip ∈ R (i ∈ V, p ∈ T ),

where Lα (Lβ) and Uα (Uβ) are lower and upper bounds of αp (βp), respectively. As for the

upper and lower bounds on the variables βp, we can readily obtain Uβ = (dmax1 +dmax2)/2
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and Lβ = (dmin1 +dmin2)/2, where dmin1 and dmin2 are the smallest and the second smallest

degrees, respectively. From the definition of αp, we can set Lα to zero, while we need to

solve the following problem to derive the upper bound Uα.

(AP2)

∣∣∣∣∣∣∣∣∣∣∣
maximize

∑
{i,j}∈E xixj∑

i∈V xi

subject to 2 ≤
∑
i∈V

xi ≤ n− 2(t− 1)

xi ∈ {0, 1} (i ∈ V ).

The problem (AP1) as well as (AP2) is a problem of maximizing a nonlinear objec-

tive function with binary variables, thus difficult to optimize globally. Using a nonlin-

ear programming solver SCIP [1], Costa [29] solved the continuous relaxation problems

of (AP1) and (AP2). In our experiment which is done for the purpose of comparing

the solutions obtained by (MILP1) formulations and 0-1SDP formulation introduced in

Subsection 3.2.2, we solve the problem (AP1) to optimality by Dinkelbach’s parametric

algorithm to derive the upper bound Uα on αp.

3.2.2 0-1SDP reformulation

Let X denote the n× t matrix whose elements are the binary variables xip in the problem

(MD), i.e.,

X =


x11 x12 · · · x1t

x21 x22 · · · x2t

...
... . . . ...

xn1 xn2 · · · xnt

 .

The p-th column (x1p, x2p, . . . , xnp)
> of the matrix represents the incidence vector of the

community Cp. Then the constraints of (MD) are concisely expressed as follows:

Xet = en, (3.4)

X>en ≥ et, (3.5)

X ∈ {0, 1}n×t, (3.6)

where ek is the k-dimensional vector of 1’s.

For a matrix X which satisfies (3.4), (3.5) and (3.6), we define the matrix Z as

Z = (zij)i,j∈V = X(X>X)−1X>. (3.7)
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Note that the inverse of X>X exists since the matrix X>X is a nonsingular diagonal ma-

trix whose diagonal entry is the number of 1’s of each column of X by (3.4), (3.5) and (3.6).

Then we can write the objective function in (MD) as Tr((2A−D)Z) by means of the ma-

trix Z, where D is a diagonal matrix whose i-th diagonal element is the degree of node i,

i.e., D = Diag(d1, d2, . . . , dn) ∈ Rn×n. Clearly Z satisfies

Zen = ZXet = Xet = en, and Tr(Z) = t

from (3.4) and (3.7). Moreover, it is symmetric and idempotent, i.e., Z2 = Z due to (3.7),

hence Z is a orthogonal projection matrix. Now we consider the following problem,

which we call 0-1SDP

(0-1SDP)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize Tr((2A−D)Z)

subject to Zen = en

Tr(Z) = t

Z2 = Z

Z ∈ Nn.

because Peng and Xia stated “we call it 0-1SDP owing to the similarity of the constraint

Z2 = Z to the classical 0-1 requirement in integer programming” in [80].

From the discussion so far, we have seen that we can construct a feasible solution of

(0-1SDP) from a feasible solution of (MD). Furthermore, we can also construct a feasible

solution X of (MD) satisfying (3.7) from a feasible solution of (0-1SDP).

Lemma 3.3 For any feasible solution Z of (0-1SDP), we can construct a feasible solu-

tion X for (MD) which satisfies Z = X(X>X)−1X>.

Proof : Let Z be a feasible solution of (0-1SDP). Then it clearly satisfies the positive

semi-definiteness due to the idempotence constraint. Then there exists an index i1 ∈ V

which satisfies zi1i1 = max{ zij | i, j ∈ V }, which is positive owing to the non-negativity

of Z and the constraint Zen = en. Let us define the index set I1 = { j ∈ V | zi1j > 0 },
then we readily obtain the following equalities∑

j∈I1

(zi1j)
2 = zi1i1 and

∑
j∈I1

zi1j = 1,

due to the constraints Z2 = Z, Zen = en, and the symmetry of Z. Since zi1i1 is positive,

the first equality reduces to ∑
j∈I1

(
zi1j

zi1i1

)
zi1j = 1.
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By using the second equality, this yields

∑
j∈I1

(
zi1j

zi1i1

)
zi1j =

∑
j∈I1

zi1j,

which is rewritten as ∑
j∈I1

(
zi1j

zi1i1

− 1

)
zi1j = 0.

From the non-negativity of zij and the maximality of zi1i1 , we have (zi1j/zi1i1 − 1) = 0,

which implies zi1j = zi1i1 for any j ∈ I1. Then we have

zi1i1 = zi1j =
1

|I1|
for any j ∈ I1. (3.8)

For an index j ∈ I1, we consider the (i1, j) element, denoted by Z2
i1j , of the matrix Z2,

which is given as

Z2
i1j =

∑
k∈V

zi1kzkj =
∑
k∈I1

zi1kzkj = zi1i1

(∑
k∈I1

zkj

)
.

Note that the last equality is due to (3.8). The above equality, Z2 = Z and (3.8) yield

zi1i1 = zi1i1

(∑
k∈I1

zkj

)
,

which is reduced to

1 =
∑
k∈I1

zkj.

This implies that zjk = 1/|I1| for any j, k ∈ I1 owing to the maximality of zi1i1 and the

constraint Zen = en. Denote the sub-matrix (zij)i,j∈I1 by ZI1 . By permuting the rows

and columns of Z simultaneously, we obtain

P>ZP =

ZI1 O

O ZĪ1


where P is an appropriate permutation matrix, and Ī1 = V \ I1. Then it is clear that the

sub-matrix ZĪ1
satisfies the following

ZĪ1
e|Ī1| = e|Ī1|, Tr(ZĪ1

) = t− 1, Z2
Ī1

= ZĪ1
and ZĪ1

∈ N|Ī1|.
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Thus repeating the process described above, we can convert Z to a block diagonal matrix

as follows

P>ZP =


ZI1

ZI2

. . .

ZIt

 ,

where each block diagonal element ZIp is the |Ip| × |Ip| matrix whose elements are all

1/|Ip|. Now, we construct a matrix X = (xip) such that

xip =

1 when i ∈ Ip,

0 otherwise,

then X is clearly feasible for the problem (MD) and we can confirm Z = X(X>X)−1X>

by simple calculation. �

The equivalence between (MD) and (0-1SDP) directly follows the above lemma.

Theorem 3.4 Solving the problem (0-1SDP) is equivalent to finding an optimal solution

of (MD).

The size of (0-1SDP) depends on neither the number of edges nor the number of com-

munities. Moreover, we need not solve the auxiliary problem unlike the case of MILP

formulations. These features make (0-1SDP) more attractive than MILP formulations.

The objective function in (0-1SDP) is linear with respect to the matrix Z, but the idem-

potence constraint makes the problem difficult. We will discuss how to deal with this

difficult part in the next section.

3.3 Conic Programming Relaxation

As stated in Subsection 3.2.2, what makes (0-1SDP) difficult to solve is the idempotence

constraint, which imposes the condition that each eigenvalue of Z, denoted by λi, is

either 0 or 1. Then it would be a natural strategy to relax the constraint to a more tractable

constraint. The first choice is to relax the binary constraint to 0 ≤ λi ≤ 1, which is

expressed as Z ∈ S+
n and I−Z ∈ S+

n , where I is the identity matrix. The latter constraint

I − Z ∈ S+
n which represents the upper bound constraint of λi is redundant owing to the
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presence of Z ∈ Nn and Zen = en, hence can be omitted. Since the optimal number

t is unknown a priori, we further relax the constraint Tr(Z) = t. Then we obtain the

following relaxation problem over the doubly non-negative cone Nn ∩ S+
n :

(DNN)

∣∣∣∣∣∣∣∣
maximize Tr((2A−D)Z)

subject to Zen = en

Z ∈ Nn ∩ S+
n .

The optimization problems over a symmetric cone are solved efficiently, e.g., lin-

ear programming, second-order cone programming, and semidefinite programming prob-

lems. Indeed, the primal-dual-interior-point method solves the problems in polynomial

time. On the other hand, since the doubly non-negative cone is not symmetric, we cannot

directly apply the primal-dual-interior-point method to solve the problem (DNN). Rep-

resenting the doubly non-negative cone as a symmetric cone embedded in a higher di-

mension, we could apply the primal-dual-interior-point method to the embedded problem

which is described as follows:∣∣∣∣∣∣∣∣∣∣∣

maximize Tr((2A−D)Z)

subject to Zen = enZ O

O Diag(vec(Z))

 ∈ S+
n+n2 .

Although the above problem can be solved in polynomial time theoretically, we have to

solve a quite large optimization problem over the positive semidefinite cone and it is too

computationally expensive in practice. Nevertheless it is worthwhile to solve the problem

(DNN) due to the fact that the doubly non-negative relaxation often provides significantly

tight bound for some combinatorial optimization problems.

Now we introduce valid inequalities for (0-1SDP) in order to strengthen the bound

obtained by the relaxation problem. From the proof of Lemma 3.3, any feasible solution

Z of (0-1SDP) can be transformed to a block diagonal matrix. It is easy to see that the

maximum value in the i-th row of Z is located on the (i, i) element for each i ∈ V , hence

we have the following result.

Lemma 3.5 The following inequalities are valid for (0-1SDP).

zii ≥ zij for i, j ∈ V .

We denote the problem (DNN) with the above valid inequalities added by (DNN).
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3.4 Heuristics based on Dynamic Programming

In this section, we will develop an algorithm to construct a feasible solution for (MD)

from the solution obtained by solving the relaxation problem presented in Section 3.3.

The algorithm we propose is based on the combination of spectral heuristics and dynamic

programming.

3.4.1 Permutation based on spectrum

From the proof of Lemma 3.3, we have seen that an optimal solution of (0-1SDP) forms a

matrix with block diagonal structure by applying an appropriate simultaneous permutation

of the rows and columns, and each block corresponds to a community. Unless otherwise

stated, we refer to the simultaneous permutation of the rows and columns simply as a

permutation. The optimal solution of the problem (DNN) or (DNN) is not necessarily

transformed to a block diagonal matrix by any permutation since we relaxed some con-

straints in the problems. The solution however may provide a clue as to possibly a good

solution of the original problem (MD). Thus, it would be helpful to transform the solution

matrix to a matrix which is close to a block diagonal one. To this end, we exploit the

spectrum of the optimal solution.

Let λ1, λ2, . . . , λn ∈ R be the eigenvalues of an optimal solution Z∗ for the relaxation

problem and u1, u2, . . . , un ∈ Rn be their corresponding eigenvectors. We assume that

the eigenvalues are sorted in the non-increasing order, that is, 1 = λ1 ≥ λ2 ≥ · · · ≥
λn ≥ 0. Focusing on the eigenvector u2 = (u2

1, u
2
2, . . . , u

2
n)> corresponding to the second

largest eigenvalue, we permutate the rows and columns of the matrix Z∗ consistent with

the non-decreasing order of values of components of u2. Take a benchmark instance

Karate for example, we show an optimal solution Z∗ of (DNN) and the matrix obtained

in the manner described above in Figures 3.1 (a) and (b). From these figures, we observe

that the permuted matrix is considerably close to a block diagonal matrix. However, there

is no theoretical validity of using the eigenvector corresponding to the second largest

eigenvalue. Here still remains room for further research.
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(a) Original matrix (b) Permuted matrix

Figure 3.1: Comparison with two matrices

3.4.2 Dynamic programming

Next we discuss how to construct a feasible solution of (MD) from the permuted matrix.

Let V̄ be a sequence of nodes consistent with the non-decreasing order of components

of u2. For the sake of notational simplicity, we renumber the nodes in V and denote the

sequence V̄ by (1, 2, . . . , n). Now, we try to find a partition with maximum modularity

density of V̄ under the constraint that each member consists of consecutive indices of V̄ .

For this problem, we propose an algorithm using the dynamic programming. We define

q(k, l) by

q(k, l) =
2
∑l

i=k

∑l
j=k aij −

∑l
i=k di

l − (k − 1)

for k and l of V̄ with k ≤ l. The value q(k, l) represents the contribution of the community

(k, . . . , l) of V̄ to the modularity density when it is selected as a member of the partition.

For any index s of V̄ , let µ(s) be the maximum modularity density that is achieved by

partitioning the sequence (1, . . . , s) into several consecutive subsequences. If we define

µ(0) = 0 for notational convenience, then µ(s) satisfies the recursive equation

µ(s) = max{µ(h) + q(h + 1, s) | h ∈ {0, 1, . . . , s− 1} }. (3.9)

Owing to (3.9), starting from µ(1) = q(1, 1), we first obtain

µ(2) = max{ q(1, 2), µ(1) + q(2, 2) },

then obtain µ(3) by means of µ(1) and µ(2), and so on. Our algorithm is given as follows.
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Algorithm DP (Dynamic Programming)

Step 1 : Solve the relaxation problem to obtain an optimal solution Z∗.

Step 2 : Find the eigenvector u2 corresponding to the second largest eigenvalue of Z∗.

Let V̄ = (1, 2, . . . , n) be a sequence of nodes obtained by rearranging them in

non-decreasing order of corresponding components in u2.

Step 3 : Set µ(0) := 0.

for s = 1 to n do

Compute µ(s) according to (3.9).

end-do

3.5 Computational Experiments

To evaluate the lower and upper bounds obtained by our algorithm, we conducted the

computational experiments. The experiments were performed on a computer with In-

tel Core i7, 3.70 GHz processor and 32.0 GB of memory. Using SeDuMi 1.2 as an SDP

solver, we implemented the algorithm in MATLAB 2010.

Table 3.1: Solved instances

ID name n m LB? t?

1 Strike 24 38 8.8611 4

2 Karate 34 78 7.8451 3

3 Mexico 35 117 8.7180 3

4 Sawmill 36 62 8.6233 4

5 Dolphins 62 159 12.1252 5

6 Les Misérables 77 254 24.5339 9

7 Books 105 441 21.9652 7

In the experiments, we used seven instances; Michael’s strike dataset [68], Zachary’s

karate dataset [94], Gil-Mendieta and Schmidt’s Mexico dataset [45], Michael and Massey’s
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sawmill dataset [69], Lusseau’s dolphins dataset [66], Hugo’s Les Misérables dataset [57],

and Krebs’ books dataset [58]. Details of each instance are listed in Table 3.1, where the

columns “ LB? ” and “ t? ” represent the known lower bound and the corresponding num-

ber of communities, respectively. Since the first four instances in the table were solved

to optimality in Costa [29], the optimal values and the optimal numbers of communities

are listed. For the remaining instances, we list the lower bounds and the number of com-

munities reported in Costa et al. [30] since the instances were not solved so far to our

knowledge.

Table 3.2 shows the computational results of the algorithm described in Subsection 3.4.2,

where the columns “UB”, “LB”, “gap” and “time” represent the optimal value of the re-

laxation problem, the lower bound obtained by the algorithm DP, the duality gap defined

by 100(UB − LB)/LB, and the computation time in seconds, respectively. For each in-

stance, we observed that the predominant portion of the computation time was spent for

solving a relaxation problem, and the remaining parts of the algorithm require a fraction

of time, specifically less than one second.

Table 3.2: Computational results of our algorithm

ID (DNN) (DNN)

UB LB gap(%) time(sec.) UB LB gap(%) time(sec.)

1 9.5808 8.8611 8.122 1.05 9.3049 8.8611 5.008 3.54

2 8.9548 7.8424 14.184 5.83 8.4141 7.8451 7.253 36.04

3 10.3151 8.5580 20.532 7.64 9.9570 8.5227 16.829 43.48

4 10.5048 7.0486 49.034 7.75 10.0311 7.3587 36.316 54.21

5 15.0218 9.8286 52.838 316.61 14.3552 11.4610 25.253 1681.81

6 28.0957 22.2680 35.279 658.28 27.4276 23.3416 17.505 7018.03

7 26.5387 20.2470 31.075 4626.11 24.7749 20.3150 21.953 60437.45

From Table 3.2, we observe that the upper bounds UB provided by (DNN) are tighter

than those provided by (DNN) for all instances, which indicates the effectiveness of the

valid inequalities in Lemma 3.5. Moreover, we also confirm that the lower bounds ob-

tained for (DNN) are equal to or larger than those obtained for (DNN) for all instances
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except Mexico (ID=3). However, solving the problem (DNN) requires a rather long com-

putation time compared with solving (DNN) as the instance size grows. To be specific, for

the instance Books (ID=7), (DNN) takes approximately 4600 seconds, whereas (DNN)

takes over 60000 seconds, approximately 16 hours.

Table 3.3: Computational results of the branch-and-bound algorithm for (MILP1)

ID (MILP1)

UB LB gap(%) time(sec.)

1 8.8611 8.8611 0 0.50

2 7.8451 7.8451 0 0.74

3 8.7180 8.7180 0 7.84

4 8.6233 8.6233 0 6.10

5 13.8466 12.1252 14.196 86400.00

6 61.6302 24.5339 151.204 86400.00

7 54.6234 21.6803 151.949 86400.00

Next, we solve the problem (MILP1) by branch-and-bound algorithm in Gurobi 6.0.0

to compare the quality of the solutions obtained by our algorithm for 0-1SDP formula-

tion. The computational results are given in Table 3.3. In our experiments, we impose a

time limit of 86400 seconds, 24 hours, on the computation time of the branch-and-bound

algorithm.

In Table 3.3, we see that the first four instances are solved to optimality within a

short computation time, while the remaining instances cannot be solved within the time

limit. Especially, for the instances Les Misérables (ID=6) and Books (ID=7), a quite

large duality gap remains. Figures 3.2 (a) and (b) show the upper and lower bounds vs.

the elapsed time. From the figures, we observe the following behavior: (i) the branch-

and-bound algorithm gives a good lower bound in early stage, and (ii) the improvement

of upper bound rarely occurs throughout the computation. Owing to the latter of these,

the duality gap still remains large even though a good feasible solution has been found.

This suggests that deriving a tight upper bound enables us to estimate the accuracy of an

incumbent solution obtained by the branch-and-bound algorithm more precisely.
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Figure 3.2: The upper and lower bounds vs. elapsed time in the branch-and-bound
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Chapter 4

Ranking Problem

4.1 Introduction

We are concerned with a multi-class classification problem of n objects, each of which

is endowed with an m-dimensional attribute vector xi = (xi
1, x

i
2, . . . , x

i
m)> ∈ Rm and

a label `i. The underlying statistical model assumes that object i receives label k, i.e.,

`i = k, when latent variable yi determined by

yi = w>xi + εi

falls between two thresholds pk and pk+1, where εi represents a random noise whose prob-

abilistic property is not known. Namely, attribute vectors of objects are loosely separated

by hyperplanes H(w, pk) = {x ∈ Rm | w>x = pk } for k = 1, 2, . . . , l which share

a common normal vector w, then each object is given a label according to the layer it is

located in. Note that neither yi’s, wj’s nor pk’s are observable. Our problem is to find

the vector w ∈ Rm as well as the thresholds p1, p2, . . . , pl that best fit the input data

{ (xi, `i) | i = 1, 2, . . . , n }.
This problem is known as the ranking problem and frequently arises in social sciences

and operations research. See, for instance Crammer and Singer [31], Herbrich et al. [54],

Liu [64], Shashua and Levin [83] and Chapter 8 of Shawe-Taylor and Cristianini [84]. It is

a variation of the multi-class classification problem, for which several learning algorithms

of the support vector machine (SVM for short) have been proposed. We refer the reader

to Chapters 4.1.2 and 7.1.3 of Bishop [15], Chapter 10.10 of Vapnik [90] and Tatsumi et

al. [87] and references therein. What distinguishes the problem from other multi-class
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classification problems is that the identical normal vector should be shared by all the

separating hyperplanes. In this chapter, based on the formulation fixed margin strategy by

Shashua and Levin [83], we propose a row and column generation algorithm to maximize

the minimum margin for the ranking problems.

4.1.1 Definitions and notation

Throughout this chapter, N = {1, 2, . . . , i, . . . , n} denotes the set of n objects and xi =

(xi
1, x

i
2, . . . , x

i
m)> ∈ Rm denotes the attribute vector of object i. The predetermined set

of labels is L = {0, 1, . . . , k, . . . , l} and the label assigned to object i is denoted by `i.

Let N(k) = { i ∈ N | `i = k } be the set of objects with label k ∈ L, and for notational

convenience we write n(k) = |N(k)| for k ∈ L, and N(k..k′) = N(k) ∪ N(k + 1) ∪
· · · ∪N(k′) for k, k′ ∈ L such that k < k′. We can assume that i < j holds when `i < `j

for i, j ∈ N , by rearranging the objects if necessary, hence N(0) = { 1, 2, . . . , n(0) },
N(1) = {n(0) + 1, . . . , n(0) + n(1) }, and so forth. For succinct notation we define

X =

 · · · xi · · ·


i∈N

∈ Rm×n (4.1)

XW =

 · · · xi · · ·


i∈W

∈ Rm×|W |

for W ⊆ N , and the corresponding Gram matrices

K = X>X ∈ Rn×n, (4.2)

KW = X>
W XW ∈ R|W |×|W |.

We denote the k-dimensional zero vector and the k-dimensional vector of 1’s by 0k and

1k, respectively. Given a subset W ⊆ N and a vector α = (αi)i∈W we use the notation

(αW ,0N\W ) to denote the n-dimensional vector ᾱ such that

ᾱi =

αi when i ∈ W

0 otherwise.
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4.2 Maximization of Minimum Margin for Separable Case

4.2.1 Primal of hard margin problem

Henceforth we assume that N(k) 6= ∅ for all k ∈ L for the sake of simplicity, and adopt

the notational convention that p0 = −∞ and pl+1 = +∞. We say that an instance

{ (xi, `i) | i ∈ N } is separable if there exist w ∈ Rm and p = (p1, p2, . . . , pl)
> ∈ Rl

such that

p`i
< w>xi < p`i+1 for i ∈ N .

Clearly an instance is separable if and only if there are w and p such that

p`i
+ 1 ≤ w>xi ≤ p`i+1 − 1 for i ∈ N.

For each k ∈ L \ {0} we see that

max
i∈N(k−1)

(w)>xi ≤ pk − 1 < pk < pk + 1 ≤ min
j∈N(k)

(w)>xj,

implying

min
j∈N(k)

w>

‖w‖
xj − max

i∈N(k−1)

w>

‖w‖
xi ≥ 2

‖w‖
.

Then the margin between {xi | i ∈ N(k − 1) } and {xj | j ∈ N(k) } is at least 2/‖w‖
for k = 2, . . . , l. Hence the maximization of the minimum margin is formulated as the

quadratic programming∣∣∣∣∣∣ minimize
1

2
‖w‖2

subject to p`i
+ 1 ≤ (xi)>w ≤ p`i+1 − 1 (i ∈ N),

more explicitly with the notation introduced in Section 4.1

(H)

∣∣∣∣∣∣∣∣∣
minimize

1

2
‖w‖2

subject to 1− (xi)>w + p`i
≤ 0 ( i ∈ N(1..l))

1 + (xi)>w − p`i+1 ≤ 0 ( i ∈ N(0..l − 1)).

The constraints therein are called hard margin constraints, and we name this problem

(H). The leading coefficient 1/2 of the objective function is for the sake of notational

simplicity in further discussion.
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4.2.2 Dual of hard margin problem

Applying the kernel technique to the problem (H) in later discussion, we give the dual

problem of (H) in this subsection. The Lagrangian function for the hard margin problem

(H) introduced in the previous subsection is

L(w, p, α,β) =
1

2
‖w‖2+

∑
i∈N(1..l)

αi(1−(xi)>w+p`i
)+

∑
i∈N(0..l−1)

βi(1+(xi)>w−p`i+1),

where αi and βi are nonnegative Lagrangian multipliers. Denoting

α = (αi, . . . , αn)> ∈ Rn and β = (βi, . . . , βn)> ∈ Rn

with the convention that

αi = 0 for all i ∈ N(0) and βi = 0 for all i ∈ N(l),

the Lagrangian function is compactly written as

L(w,p,α, β) =
1

2
w>w − (X(α− β))>w + (Aα−Bβ)>p + α>1n + β>1n,

where the matrix X is defined in (4.1), and

A =


0>

n(0) 1>
n(1)

1>
n(2)

. . .

1>
n(l)

 ∈ Rl×n,

B =


1>

n(0)

1>
n(1)

. . .

1>
n(l−1) 0

>
n(l)

 ∈ Rl×n.

Let

ω(α,β) = min{L(w, p,α,β) | (w,p) ∈ Rm+l },

then the Lagrangian dual of the hard margin problem is

(dH)

∣∣∣∣∣∣ minimize ω(α,β)

subject to (α,β) ≥ 02n.
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Since L is a convex function with respect to (w, p), a point (w∗,p∗) attains the minimum

ω(α,β) for a given (α, β) if and only if the partial derivatives of L with respect to (w,p)

vanish at (w∗,p∗), i.e.,
∂L

∂(w, p)
(w∗,p∗,α, β) = 0n+l.

This condition reduces to

w∗ −X(α− β) = 0n

and

Aα−Bβ = 0l. (4.3)

Plugging these equalities into L, we obtain

ω(α, β) = −
(

1

2
(α− β)>K(α− β)− 1>

n (α + β)

)
,

where the matrix K is defined in (4.2). Note that the variable p disappears due to the

equality condition (4.3). Deleting the leading negative coefficient −1, the Lagrangian

dual of the hard margin problem is given as

(dH)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1

2
(α− β)>K(α− β)− 1>

n (α + β)

subject to Aα−Bβ = 0l

αN(0) = 0n(0)

βN(l) = 0n(l)

α ≥ 0n

β ≥ 0n,

where αN(0) is a vector of αi’s for i ∈ N(0) and βN(l) is a vector of βi’s for i ∈ N(l). This

is a convex quadratic minimization problem since the matrix K is nonnegative definite.

Let (α∗,β∗) denote an optimal solution of (dH). Then an optimal normal vector w∗ and

an optimum threshold vector p∗ of the primal problem are given by

w∗ = X(α∗ − β∗),

p∗k =
1

2

(
max

i∈N(k−1)
(w∗)>xi + min

i∈N(k)
(w∗)>xi

)
for k ∈ L \ {0} . (4.4)
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4.2.3 Kernel technique for hard margin problem

The matrix K of the Lagrangian dual of the hard margin problem (dH) is composed of

the inner products (xi)>xj for i, j ∈ N , which enables us to apply the kernel technique

simply by replacing them by κ(xi,xj) for some appropriate kernel function κ.

Let φ : Rm → F be a function, possibly unknown, from Rm to some higher dimen-

sional inner product space F, so-called the feature space such that

κ(x, y) = 〈φ(x), φ(y)〉

holds for x, y ∈ Rm, where 〈·, ·〉 is the inner product defined on F. In the sequel, we

denote x̃ = φ(x). The kernel technique considers the vectors x̃i ∈ F instead of xi ∈ Rm,

and finds the normal vector w̃ ∈ F and thresholds p1, . . . , pl. Therefore the matrices X

and K should be replaced by X̃ consisting of vectors x̃i and K̃ = X̃>X̃ , respectively.

Note that the latter matrix is given as

K̃ =

κ(xi,xj)


i,j∈N

∈ Rn×n

by the kernel function κ. Then the kernel version of the hard margin problem is given as

(dH̃)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1

2
(α− β)>K̃(α− β)− 1>

n (α + β)

subject to Aα−Bβ = 0l

αN(0) = 0n(0)

βN(l) = 0n(l)

α ≥ 0n

β ≥ 0n.

Solving the kernel hard margin problem (dH̃) to find (α∗, β∗), the optimal normal vector

w̃∗ ∈ F of the primal problem would be given as

w̃∗ =
∑
i∈N

(α∗
i − β∗

i )x̃
i,

which is in general not available due to the absence of an explicit representation of x̃.

However the value of 〈w̃∗, x̃j〉 necessary to compute the thresholds p∗k according to (4.4)
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is obtained as the inner product of α∗ − β∗ and the j-th column of K̃. In fact

〈w̃∗, x̃j〉 = 〈
∑
i∈N

(α∗
i − β∗

i )x̃
i, x̃j〉 =

∑
i∈N

(α∗
i − β∗

i )〈x̃i, x̃j〉

= (α∗ − β∗)>


...

〈x̃i, x̃j〉
...

 = (α∗ − β∗)>


...

κ(xi,xj)
...

 .

Suppose we are given a newly arrived object with attribute vector x ∈ Rm to assign a

label. In the same way as above we have

〈w̃∗, x̃〉 = (α∗ − β∗)>


...

κ(xi,xj)
...

 .

Then by locating the threshold interval into which this value falls, we can assign a label

to the newly arrived object.

4.3 Maximization of Minimum Margin for Non-Separable

Case

4.3.1 Primal of soft margin problem

Similarly to the binary SVM, introducing nonnegative slack variables ξ−i and ξ+i for

i ∈ N relaxes the hard margin constraints to soft margin constraints:

p`i
+ 1− ξ−i ≤ w>xi ≤ p`i+1 − 1 + ξ+i for i ∈ N.

Positive values of variables ξ−i and ξ+i mean misclassification, hence they should be as

small as possible. If we penalize positive ξ−i and ξ+i by adding
∑

i∈N(ξ−i + ξ+i) to

the objective function, we have the following primal soft margin problem with 1-norm

penalty.

(S1)

∣∣∣∣∣∣∣∣∣
minimize

1

2
‖w‖2 +

1

2
c1>

n (ξ− + ξ+)

subject to p`i
+ 1− ξ−i ≤ (xi)>w ≤ p`i+1 − 1 + ξ+i ( i ∈ N)

ξ−, ξ+ ≥ 0n,

75



where ξ− = (ξ−1, . . . , ξ−n), ξ+ = (ξ+1, . . . , ξ+n) and c is a penalty parameter. When

2-norm penalty is employed, we have

(S2)

∣∣∣∣∣∣∣∣∣
minimize

1

2
‖w‖2 +

1

2
c (‖ξ−‖2 + ‖ξ+‖2)

subject to p`i
+ 1− ξ−i ≤ (xi)>w ≤ p`i+1 − 1 + ξ+i ( i ∈ N)

ξ−, ξ+ ≥ 0n,

Lemma 4.1 The non-negativity constraints on variables ξ−i and ξ+i of problem (S2) are

redundant.

Proof : Let (w, ξ−, ξ+) be a feasible solution of (S2) with the non-negativity constraints

removed. If ξ−i < 0 for some i ∈ N , replacing it with zero will reduce the objective

function value. Therefore ξ− and ξ+ are nonnegative at any optimum solution of (S2). �

Thus our problem with 2-norm penalty reduces to

(S2)

∣∣∣∣∣∣ minimize
1

2
‖w‖2 +

1

2
c (‖ξ−‖2 + ‖ξ+‖2)

subject to p`i
+ 1− ξ−i ≤ (xi)>w ≤ p`i+1 − 1 + ξ+i ( i ∈ N).

Naturally, we could add the constraints

pk′ + 1− ξ−i ≤ w>xi ≤ pk′′ − 1 + ξ+i (k′, k′′ ∈ L; k′ ≤ k < k′′)

to each of the above formulations. It would, however, inflate the problem size and most

of those constraints would be likely redundant. Therefore we will not discuss this formu-

lation.

4.3.2 Dual of soft margin problem

In this subsection we will make the Lagrangian dual of the soft margin problems.

We begin by looking at the soft margin problem with 1-norm penalty (S1). The La-

grangian function for (S1) is

L(w,p, ξ−, ξ+,α, β, λ,µ) =
1

2
w>w −X((α− β))>w + (Aα−Bβ)>p

+ α>1n + β>1n + (c1n −α)>ξ− + (c1n − β)>ξ+

− λ>ξ− − µ>ξ+,
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and the Lagrangian relaxation problem for a given nonnegative multiplier vector (α,β,λ,µ) ∈
R4n

+ is ∣∣∣∣∣∣ minimize L(w,p, ξ−, ξ+, α,β,λ,µ)

subject to (w,p, ξ−, ξ+) ∈ Rm+l+2n.

Thank to the convexity of the problem, the optimality condition of (w∗,p∗, ξ∗
−, ξ∗

+) is

simply given as

∂L

∂(w, p)
(w∗,p∗, ξ∗

−, ξ∗
+,α,β,λ,µ) = 0n+l,

∂L

∂(ξ−, ξ+)
(w∗, p∗, ξ∗

−, ξ∗
+,α, β, λ,µ) = 02n,

each of which reduces to

w∗ = X(α− β) (4.5)

Aα−Bβ = 0l (4.6)

α ≤ c1n (4.7)

β ≤ c1n (4.8)

by virtue of the non-negativity of λ and µ. The complementarity condition

(c1n −α∗)>ξ∗
− = (c1n − β∗)>ξ∗

+ = 0 (4.9)

holds for a primal optimal solution (ξ∗
−, ξ∗

+) and a dual optimal solution (α∗,β∗). Denot-

ing the optimum objective function value of the above relaxation problem by ω(α, β, λ,µ)

the Lagrangian dual of the soft margin problem is∣∣∣∣∣∣ maximize ω(α,β,λ, µ)

subject to (α, β,λ, µ) ≥ 04n.

Plugging (4.5), (4.6) and (4.9) into the Lagrangian function, the Lagrangian dual problem

is rewritten as

(dS1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1

2
(α− β)>K(α− β)− 1>

n (α + β)

subject to Aα−Bβ = 0l

αN(0) = 0n(0)

βN(l) = 0n(l)

0n ≤ α ≤ c1n

0n ≤ β ≤ c1n,
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This differs from the dual of the hard margin problem (dH) only in the additional upper

bound constraints (4.7) and (4.8) of α and β. From the complementarity condition (4.9),

we have

α∗
i < 1 implies ξ∗−i = 0, i.e., p∗`i

+ 1 ≤ (w∗)>xi

β∗
i < 1 implies ξ∗+i = 0, i.e., (w∗)>xi ≤ p∗`i+1 − 1,

hence an optimum normal vector w∗ and an optimum thresholds vector p∗ of the primal

problem (S1) are given as follows:

w∗ = X(α∗ − β∗)

p∗k =
1

2

(
max

i∈N(k−1);β∗
i <1

(w∗)>xi + min
i∈N(k);α∗

i <1
(w∗)>xi

)
for k ∈ L \ {0}.

First equation follows from (4.5).

Next we consider the dual of the soft margin problem with 2-norm penalty (S2). Since

the derivation of the optimality condition and the dual problem is technical, we defer the

complete derivation to Appendix A. The dual of (S2) is

(dS2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1

2
(α− β)>K(α− β) +

1

2c
(α>α + β>β)− 1>

n (α + β)

subject to Aα−Bβ = 0l

αN(0) = 0n(0)

βN(l) = 0n(l)

α ≥ 0n

β ≥ 0n.

With the quadratic term (α>α + β>β) added, the objective function becomes strictly

convex, which may lighten the computational burden. Furthermore,

c ξ∗
− = α∗ and c ξ∗

+ = β∗ (4.10)

hold between a pair of primal and dual optimum solutions. From (4.10), we have

α∗
i = 0 implies p∗`i

+ 1 ≤ (w∗)>xi

β∗
i = 0 implies (w∗)>xi ≤ p∗`i+1 − 1.

Therefore the optimal threshold p∗ of the primal problem (S2) is determined by

p∗k =
1

2

(
max

i∈N(k−1); β∗
i =0

(w∗)>xi + min
i∈N(k); α∗

i =0
(w∗)>xi

)
.
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4.3.3 Kernel technique for soft margin problem

Kernel technique can apply to the soft margin problems in the same way as discussed in

the hard margin problem. Take the primal soft margin problem (S1), then kernel version

of the problem is given by the dual problems (dS1) in the previous subsection with K

replaced by K̃. Namely, the problem to solve is

(dS̃1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1

2
(α− β)>K̃(α− β)− 1>

n (α + β)

subject to Aα−Bβ = 0l

αN(0) = 0n(0)

βN(l) = 0n(l)

0n ≤ α ≤ c1n

0n ≤ β ≤ c1n.

For an optimal solution (α∗, β∗) of the problem (dS̃1), the optimum thresholds vector p∗

should be determined by

p∗k =
1

2

(
max

i∈N(k−1);β∗
i <1
〈w̃∗, x̃i〉+ min

i∈N(k);α∗
i <1
〈w̃∗, x̃i〉

)
for k ∈ L \ {0}.

In the same manner as in the hard margin problem, we have

〈w̃∗, x̃〉 = (α∗ − β∗)>


...

κ(xi,x)
...


for x ∈ Rm. Thus p∗k’s can be obtained without knowing w̃∗.

4.4 Reformulations based on Dual Representation

4.4.1 Dual representation for hard margin problem

A close look at the primal problem (H) shows that the following property holds for an op-

timum solution w∗. See, for example Chapter 6 of Bishop [15], Shashua and Levin [83],

and Theorem 1 in Scholkopf et al. [82].

Lemma 4.2 Let (w∗, p∗) ∈ Rm+l be an optimum solution of (H). Then w∗ lies in the

range space of X , i.e., w∗ = Xλ for some λ ∈ Rn.
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Proof : Let wi be the orthogonal projection of w∗ onto the range space of X and let

w2 = w∗ −w1. Then we obtain

(xi)>w∗ = (xi)>(w1 + w2) = (xi)>w1 for i ∈ N,

meaning that (w1, p
∗) is feasible to (H), and

1

2
‖w∗‖2 =

1

2
(‖w1‖2 + ‖w2‖2) ≥

1

2
‖w1‖2.

Hence by the optimality of w∗, we conclude that w2 = 0m. �

The representation w = Xλ is called the dual representation of the normal vector.

Substituting Xλ for w yields another formulation of the primal hard margin problem

(H̄):

(H̄)

∣∣∣∣∣∣ minimize
1

2
λ>Kλ

subject to p`i
+ 1 ≤ (ki)>λ ≤ p`i+1 − 1 (i ∈ N),

where (ki)> = ((xi)>x1, (xi)>x2, . . . , (xi)>xn) is the ith row of the matrix K. Since

n is typically by far larger than m, problem (H̄) might be less interesting than problem

(H). However the fact that this formulation only requires the matrix K will enable an

application of the kernel technique to the problem.

Next we apply the kernel technique to the hard margin problem (H̄) with the dual

representation. The matrix K in the problem (H̄) is composed of the inner products

(xi)>xj for i, j ∈ N . This enables us to apply the kernel technique simply by replacing

it by K̃. Denote the ith row of the matrix K̃ by (k̃i)>, then the problem to solve is

(H̃)

∣∣∣∣∣∣ minimize
1

2
λ>K̃λ

subject to p`i
+ 1 ≤ (k̃i)>λ ≤ p`i+1 − 1 (i ∈ N).

Solving (H̃) to find λ∗, an optimal normal vector w̃∗ ∈ F would be given as

w̃∗ =
∑
i∈N

λ∗
i x̃

i,

which is not available in general due to the absence of an explicit representation of x̃i’s.

However, the value of 〈w̃∗, x̃〉 can be computed for the attribute vector x ∈ Rn of a

newly-arrived object in the following way:

〈w̃∗, x̃〉 = 〈
∑
i∈N

λ∗
i x̃

i, x̃〉 =
∑
i∈N

λ∗
i 〈x̃i, x̃〉 =

∑
i∈N

λ∗
i 〈φ(xi), φ(x)〉 =

∑
i∈N

λ∗
i κ(xi,x).

Then by locating the threshold interval determined by p∗ into which this value falls, we

can assign a label to the new object.
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4.4.2 Dual representation for soft margin problem

Obviously we can replace ‖w‖2 and (xi)>w in the primal problem given in the preceding

subsection by λ>Kλ and (ki)>λ, respectively, to obtain the primal problem with the dual

representation of the normal vector. Take (S1) for instance, and we have

(S̄1)

∣∣∣∣∣∣∣∣∣
maximize

1

2
λ>Kλ +

1

2
c1>

n (ξ− + ξ+)

subject to p`i
+ 1− ξ−i ≤ (ki)>λ ≤ p`i+1 − 1 + ξ+i (i ∈ N)

ξ−, ξ+ ≥ 0n.

The kernel technique can apply to the soft margin problems in the same way as dis-

cussed in Subsection 4.4.1. For the kernel version of soft margin problems with the dual

representation of the normal vector, we have only to replace K by K̃ given by some kernel

function κ. Then the kernel version of (S̄1) is given as

(S̃1)

∣∣∣∣∣∣∣∣∣
minimize

1

2
λ>K̃λ +

1

2
c1>

n (ξ− + ξ+)

subject to p`i
+ 1− ξ−i ≤ (k̃i)>λ ≤ p`i+1 − 1 + ξ+i (i ∈ N)

ξ−, ξ+ ≥ 0n.

Since the reformulation with the dual representation as well as the kernel technique

can apply to the soft margin problem (S2) with 2-norm penalty in the same manner as the

above discussions, we omit the description of the problem (S2).

4.5 Row and Column Generation Algorithms

4.5.1 Algorithms for hard margin problem

We start with proposing an algorithm for the problem (H̄) arising from separable in-

stances. Note that the separability makes (H̄) feasible. Since the dimension m of the

attribute vector is much smaller than the number n of objects, we need a small number of

attribute vectors for the dual representation, that is, a small number of λi’s are positive in

the dual representation w = Xλ. Furthermore it is likely that most of the constraints are

redundant at an optimal solution of the problem, i.e., a small number of support vectors is

expected. Then we propose to start the algorithm with a small number of attribute vectors
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as W and then increment it as the computation goes on. The sub-problem to solve is

(H̄(W ))

∣∣∣∣∣∣ minimize
1

2
λ>

W KW λW

subject to p`i
+ 1 ≤ (ki

W )>λW ≤ p`i+1 − 1 (i ∈ W ),

where (ki
W )> is the row vector consisting (xi)>xj for j ∈ W . Note that the dimension

of λW varies when the size of W changes as the computation goes on.

Algorithm RCH̄ (Row and Column Generation Algorithm for (H̄))

Step 1 : Let W 0 be an initial working set, and let ν = 0.

Step 2 : Solve (H̄(W ν)) to obtain λW ν and pν .

Step 3 : Let ∆ = { i ∈ N \W ν | (λW ν , pν) violates p`i
+1 ≤ (ki

W ν )>λW ≤ p`i+1− 1 }.

Step 4 : If ∆ = ∅, terminate.

Step 5 : Otherwise choose ∆ν ⊆ ∆, let W ν+1 = W ν ∪ ∆ν , increment ν by 1 and go to

Step 2.

The following lemma shows that Algorithm RCH̄ solves problem (H̄) upon termina-

tion.

Lemma 4.3 Let (λ̂W , p̂) ∈ R|W |+l be an optimum solution of (H̄(W )). If

p̂`i
+ 1 ≤ (ki

W )>λ̂W ≤ p̂`i+1 − 1 for all i ∈ N \W , (4.11)

then (λ̂W ,0N\W ) ∈ Rn together with p̂ forms an optimum solution of (H̄).

Proof : Note that ((λ̂W ,0N\W ), p̂) is a feasible solution of (H̄) since (ki)>

 λ̂W

0N\W

 =

(ki
W )>λ̂W , (λ̂W , p̂) is feasible to (H̄(W )) and satisfies (4.11).

For an optimum solution (λ∗, p∗) of (H̄) let w∗ = Xλ∗, w1 be its orthogonal pro-

jection onto the range space of XW and w2 = w∗ − w1. Then w1 = XW µ∗
W for some

µ∗
W ∈ R|W | and

1

2
(λ∗)>Kλ∗ =

1

2
‖w∗‖2 ≥ 1

2
‖w1‖2 =

1

2
(µ∗

W )>KW µ∗
W (4.12)
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by the orthogonality between w1 and w2. For i ∈ N ∩W it holds that

(ki
W )>µ∗

W = (xi)>XW µ∗
W = (xi)>w1 = (xi)>(w1 + w2)

= (xi)>w∗ = (xi)>Xλ∗ = (ki)>λ∗,

which is between p∗`i
+ 1 and p∗`i+1 − 1 since (λ∗, p∗) is feasible to (H̄). Then (µ∗

W ,p∗)

is feasible to (H̄(W )). This and the optimality of λ̂W yield the inequality

1

2
(µ∗

W )>KW µ∗
W ≥

1

2
λ̂>

W KW λ̂W =
1

2

 λ̂W

0N\W

>

K

 λ̂W

0N\W

 . (4.13)

The two inequalities (4.12) and (4.13) prove the optimality of ((λ̂W ,0N\W ), p̂). �

Theorem 4.4 follows directly from the above lemma.

Theorem 4.4 The Algorithm RCH̄ solves problem (H̄).

Next we present the algorithm for the kernel version of the problem (H̄). In the same

way as for the hard margin problem (H̄) we consider the sub-problem

(H̃(W ))

∣∣∣∣∣∣ minimize
1

2
λ>

W K̃W λW

subject to p`i
+ 1 ≤ (k̃i

W )>λW ≤ p`i+1 − 1 (i ∈ W ),

where K̃W is the sub-matrix consisting of the rows and columns of K̃ with indices in W ,

and (k̃i
W )> is the row vector of κ(xi,xj) for j ∈ W .

Algorithm RCH̃ (Row and Column Generation Algorithm for (H̃))

Step 1 : Let W 0 be an initial working set, and let ν = 0.

Step 2 : Solve (H̃(W ν)) to obtain λW ν and pν .

Step 3 : Let ∆ = { i ∈ N \W ν | (λW ν , pν) violates p`i
+1 ≤ (k̃i

W ν )>λW ≤ p`i+1− 1 }.

Step 4 : If ∆ = ∅, terminate.

Step 5 : Otherwise choose ∆ν ⊆ ∆, let W ν+1 = W ν ∪ ∆ν , increment ν by 1 and go to

Step 2.

The validity of the algorithm is straightforward from the following lemma, which is

proved in exactly the same way as Lemma 4.3
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Lemma 4.5 Let (λ̂W , p̂) ∈ R|W |+l be an optimum solution of (H̃(W )). If

p̂`i
+ 1 ≤ (k̃i

W )>λ̂W ≤ p̂`i+1 − 1 for all i ∈ N \W ,

then (λ̂W ,0N\W ) ∈ Rn together with p̂ forms an optimum solution of (H̃).

Theorem 4.6 The Algorithm RCH̃ solves problem (H̃).

4.5.2 Algorithms for soft margin problem

The algorithms for the soft margin problems may not differ substantially from those for

the hard margin problems. The sub-problem (S̄1(W )) of (S̄1) for the working set W ⊆ N

is

(S̄1(W ))

∣∣∣∣∣∣∣∣∣
minimize

1

2
λ>

W KW λW +
1

2
c1>

|W |(ξ−W + ξ+W )

subject to p`i
+ 1− ξ−i ≤ (ki

W )>λW ≤ p`i+1 − 1 + ξ+i (i ∈ W )

ξ−W , ξ+W ≥ 0|W |.

Algorithm RCS̄ (Row and Column Generation Algorithm for (S̄))

Step 1 : Let W 0 be an initial working set, and let ν = 0.

Step 2 : Solve (S̄(W ν)) to obtain (λW ν , pν , ξ−W ν , ξ+W ν ).

Step 3 : Let ∆ = { i ∈ N\W ν | (λW ν ,pν) violates p`i
+ 1 ≤ (ki

W ν )>λW ≤ p`i+1 − 1 }.

Step 4 : If ∆ = ∅, terminate.

Step 5 : Otherwise choose ∆ν ⊆ ∆, let W ν+1 = W ν ∪ ∆ν , increment ν by 1 and go to

Step 2.

Lemma 4.7 Let (λ̂W , p̂, ξ̂−W , ξ̂+W ) be an optimum solution of (S̄(W )). If

p̂`i
+ 1 ≤ (ki

W )>λ̂W ≤ p̂`i+1 − 1 for all i ∈ N \W ,

then ((λ̂W ,0N\W ), p̂, (ξν
−W ,0N\W ), (ξν

+W ,0N\W )) is an optimum solution of (S̄).
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Proof : First note that ((λ̂W ,0N\W ), p̂, (ξ̂−W ,0N\W ), (ξ̂+W ,0N\W )) is feasible to (S̄).

Let (λ∗, p∗, ξ∗
−W , ξ∗

+W ) be an optimum solution of (S̄), let w∗ = Xλ∗ and w1 be its

orthogonal projection onto the range space of XW . Then we see that the coefficient vector

µ∗
W such that w1 = XW µ∗

W together with (p∗, ξ∗
−W , ξ∗

+W ) forms a feasible solution of

(S̄(W )), and
1

2
‖w∗‖ ≥ 1

2
‖w1‖.

Therefore in the same manner as Lemma 4.3, we obtain the desired result. �

The validity of the algorithm directly follows the above lemma.

Theorem 4.8 The Algorithm RCS̄ solves problem (S̄).

Similarly to the hard margin problem, we present the algorithm for the kernel version

of the problem (S̄1). In the same way as in the previous subsection we consider the

sub-problem of (S̃1),which is given as

(S̃1(W )

∣∣∣∣∣∣∣∣∣
minimize

1

2
λ>

W K̃W λW +
1

2
c1>

|W |(ξ−W + ξ+W )

subject to p`i
+ 1− ξ−i ≤ (k̃i

W )>λW ≤ p`i+1 − 1 + ξ+i (i ∈ W )

ξ−W , ξ+W ≥ 0|W |.

Algorithm RCS̃ (Row and Column Generation Algorithm for (S̃))

Step 1 : Let W 0 be an initial working set, and let ν = 0.

Step 2 : Solve (S̃(W ν)) to obtain (λW ν , pν , ξ−W ν , ξ+W ν ).

Step 3 : Let ∆ = { i ∈ N\W ν | (λW ν ,pν) violates p`i
+ 1 ≤ (k̃i

W ν )>λW ≤ p`i+1 − 1 }.

Step 4 : If ∆ = ∅, terminate.

Step 5 : Otherwise choose ∆ν ⊆ ∆, let W ν+1 = W ν ∪ ∆ν , increment ν by 1 and go to

Step 2.

Theorem 4.9 The Algorithm RCS̃ solves problem (S̃).
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4.6 Illustrative Example

We show with a small instance how different models result in different classifications.

The instance is the grades in calculus of 44 undergraduates. Each student is given one of

the four possible grades A,B, C and D according to his/her total score of mid-term exam,

end-of-term exam and a number of in-class quizzes. We take the scores of student’s mid-

term and end-of-term exams to form the attribute vector, and his/her grade as the label.

Since the score of quizzes is not considered as an attribute, the instance is not sepa-

rable, hence the hard margin problem (H) is infeasible. The solution of the soft margin

problem (S) with c = 15 is given in Figure 4.1, where the students of different grades are

loosely separated by three straight lines. Each value on the lines in the figure represents

the corresponding threshold pk.
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Figure 4.1: Classification by (S)

Using the following two kernel functions defined as

κ(x, y) = exp

(
− 1

2σ2
‖x− y‖2

)
(Gaussian kernel),

κ(x, y) = (1 + x>y)d (Polynomial kernel)

with several different values of σ and d, we solved (S̃). The result of the Gaussian kernel

with c = 10 and σ = 0.5 is given in Figure 4.2, where one can observe that the problem

(S̃) with the Gaussian kernel is exposed to the risk of over-fitting. This issue will be

discussed in Section 4.8. The result of the polynomial kernel with c = 15 and d = 4 is
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given in Figure 4.3. From Figure 4.3, we observe that the students of different grades are

separated by three gentle curves.
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Figure 4.2: Classification by (S̃) with the Gaussian kernel

0.0 0.2 0.4 0.6 0.8 1.0
the score of mid-term exam

0.0

0.2

0.4

0.6

0.8

1.0

th
e
 s

co
re

 o
f 

e
n
d
-o

f-
te

rm
 e

x
a
m

2.154
4.733

6.489

A
B
C
D

Figure 4.3: Classification by (S̃) with the polynomial kernel

4.7 Computational Experiments

We report on the computational experiments with our proposed algorithms. Implement-

ing the algorithms in Python 2.7, using Gurobi 6.0.0 as a QP solver, we performed the
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experiments on a PC with Intel Core i7, 3.70 GHz processor and 32.0 GB of memory.

The instances we tested were randomly generated and fall into two types: separable

instances and non-separable instances. First, we generate n attribute vectors xi = (xi
1, x

i
2)

of two dimension, each component of which is drawn uniformly from the unit interval

[0, 1]. Then object i is assigned the label `i defined as

`i = max
`∈L
{ ` ∈ L | xi

1 + xi
2 > p` }

for the fixed thresholds (p0, p1, p2, p3) = (−∞, 0.5, 1.0, 1.5). The instances thus gener-

ated are of the first type, i.e., separable. Non-separable instances are generated by altering

the labels of objects. Namely, adding a random noise to each element of the attribute vec-

tor to make a perturbed attribute vector (xi
1 + εi

1, x
i
2 + εi

2), where εi
1 and εi

2 follow the

normal distribution with a zero mean and a standard deviation of 0.03, we give the label `i

to object i according to the sum xi
1 + εi

1 + xi
2 + εi

2 instead of xi
1 + xi

2. Due to the presence

of the random noise, the instances thus generated are not necessarily separable.

We generate five datasets for each instance with several different numbers of objects

since the results may change owing to the random variables used in the instance genera-

tion. We name the separable type dataset (resp., the non-separable dataset) “S.n.q” (resp.,

“NS.n.q”), where n is the number of objects and q is the dataset ID.

We solved the separable instances by the algorithm RCH̃ and the non-separable in-

stances by RCS̃ with c = 10. In all experiments we used the polynomial kernel with

d = 4. To make the initial working set W 0, we collect three objects for each label that

have the highest, the lowest and the median values of xi
1 + xi

2 among the objects assigned

the same label. At Step 5 in the algorithms, we add to the current working set W ν at most

two objects corresponding to the most violated constraints at (λW ν ,pν), more precisely,

we add the objects i and j ∈ N \W ν such that

i = argmax
{

1− (k̃i
W ν )>λW ν + pν

`i
> 0 | i ∈ N \W ν

}
,

j = argmax
{

1 + (k̃i
W ν )>λW ν − pν

`i+1 > 0 | i ∈ N \W ν
}

.

Table 4.1 shows the computational results of applying RCH̃ (resp., RCS̃) to separable

instances (resp., non-separable instances), where the columns “# iter.”, “# added obj.”

and “time” represent the number of sub-problems solved, the number of added objects

and the computation time in seconds, respectively. In order to assess the efficiency of
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our algorithm, we added the column “GRB” showing the computation time when the

whole problems (H̃) and (S̃) were directly input and solved by Gurobi, and the column

“PRank” showing the computation time of applying PRank algorithm [31], which is an

on-line learning algorithm motivated by the perceptron. The entries “ave.” and “st.dev.”

show the average and the standard deviation across the five datasets.

We begin by looking at the results for the separable instances. From Table 4.1, we ob-

serve that the number of added objects is much smaller than that of the original problem.

Specifically, only from 0.4% to 8.6% of the whole set of variables of the problems suffices

in order to obtain an optimal solution. Thus RCH̃ requires a small memory capacity, and

it helps RCH̃ be applicable to further larger instances. Gurobi Optimizer for solving (H̃)

requires a rather long computation time as the instance size grows. To be specific, Gurobi

takes over 10,000 seconds, approximately 2.8 hours, on average to solve the instances

with n = 10,000, while our algorithm takes less than 300 seconds on average. Concern-

ing PRank algorithm, it also requires a long computation time for large instances since

the algorithm needs to compute and store an n-dimensional row vector of K̃ at every iter-

ation. From these observations, RCH̃ is superior to applying Gurobi and PRank directly

to the whole problem in terms of both computation time and memory consumption.

Turning now to the results for the non-separable instances, we observe that the number

of iterations as well as the number of added objects is larger than that for the separable

instances. Nevertheless the number of added objects is approximately 20% of the whole

set of variables, that is, RCS̃ also requires a small memory capacity. In contrast, RCS̃

takes much longer computation time than applying Gurobi and PRank directly to the

whole problem. This drawback is due to the way of our implementation. Whenever a

working set W is updated in our algorithm, we generate a sub-problem corresponding

to W by adding not only constraints but also variables as well. The vast majority of

computation time was spent for Gurobi to carry out sub-problem generation repeatedly

every time when the working set was updated. Take “NS.1000.5” for instance, we give

a breakdown of the computation time at each iteration in Figure 4.4. The legends in the

figure are as follows: “GenTime” is the time of generating a sub-problem, “RunTime”

is the time of solving a sub-problem, and “FeasTime” is the time required for searching

violated constraints at Step 3. We observe that the predominant portion of the computation

time was devoted to the problem generation and the run time and feasibility checking time
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Figure 4.4: Breakdown of the computation time for “NS.1000.5”

together are fringe. This suggests that a finely tuned application of a QP solver could

dramatically reduce the total computation time. This would merit further research.

Next, we compare our algorithms with PRank algorithm with respect to the accuracy

of solutions. We use the following average rank loss as a measure of accuracy:

1

n

∑
i∈N

|ˆ̀i − `i|,

where ˆ̀
i is a label predicted from the solution (λ∗,p∗) obtained by the algorithms. Namely,

ˆ̀
i = max`∈L{ ` ∈ L |

∑
j∈N λ∗

jκ(xi, xj) > p∗` }. Since a positive value of the average

rank loss indicates misclassification, it is preferable to be close to zero. Table 4.2 sum-

marizing the average rank losses of our algorithms and PRank algorithm shows that our

algorithms outperform PRank algorithm in all instances. As a matter of course, we con-

firm that the average rank losses obtained by our algorithm are zero for the separable

instances.

4.8 Monotonicity Issue

In some situations it would be desirable that the separating curves have some monotonic-

ity property, namely an object with attribute vector x be ranked higher than an object with

y such that y ≤ x.
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Let P be a hyperplane in F defined by

P = { x̃ ∈ F | 〈w̃∗, x̃〉 = b }

for some constant b ∈ R and let C denote its inverse image under the unknown function

φ, i.e.,

C = {x ∈ Rm | φ(x) ∈ P }.

Then x ∈ C if and only if 〈w̃∗, φ(x)〉 = b. Since w̃∗ =
∑

i∈N λ∗
i x̃

i =
∑

i∈N λ∗
i φ(xi),

we obtain

〈
∑
i∈N

λ∗
i φ(xi), φ(x)〉 = b.

Due to the bi-linearity of the inner product 〈·, ·〉, we have

〈
∑
i∈N

λ∗
i φ(xi), φ(x)〉 =

∑
i∈N

λ∗
i 〈φ(xi), φ(x)〉 =

∑
i∈N

λ∗
i κ(xi,x),

and then an expression of the inverse image

C = {x ∈ Rm |
∑
i∈N

λ∗
i κ(xi,x) = b }

by the kernel function κ.

Suppose that the kernel function κ(xi, ·) is nondecreasing for i ∈ N , in the sense that

x ≤ x′ ⇒ κ(xi,x) ≤ κ(xi,x′),

and λ∗
i ≥ 0 for i ∈ N . Then

∑
i∈N λ∗

i κ(xi,x) is nondecreasing as a whole.

Lemma 4.10 The kernel function κ(xi, ·) is nondecreasing and λ∗
i ≥ 0 for i ∈ N . Then

the contours are nondecreasing.

The polynomial kernel

κ(xi,x) = (1 + (xi)>x)d

is nondecreasing with respect to x if xi ≥ 0 for i ∈ N . Therefore it would be appropriate

to use the polynomial kernel when all the attribute vectors are nonnegative including those
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of potential objects, and the monotonicity is desirable. In this case the kernel hard margin

problem (H̃) should be added non-negativity constraints of variables λi’s:

(H̃+)

∣∣∣∣∣∣∣∣∣
minimize

1

2
λ>K̃λ

subject to p`i
+ 1 ≤ (k̃i)>λ ≤ p`i+1 − 1 (i ∈ N)

λ ≥ 0.

The problem remains an ordinary convex quadratic optimization, and the additional non-

negativity constraints do not make it more difficult to solve.
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Chapter 5

Concluding Remarks

In this thesis, we have considered three problems in data mining: the modularity maxi-

mization, the modularity density maximization, and the ranking problem. When we are

faced with difficult optimization problems, it would be an effective way to consider their

relaxation problems. Relaxation technique contributes not only to ease inherent difficul-

ties of the problems but also to reduce memory consumption. With this intention, we have

proposed solution methods based on relaxation for the three problems. We summarize the

results obtained and point out further possible studies for each problem.

5.1 Modularity Maximization

Based on the set partitioning formulation of the modularity maximization, we proposed

the algorithms: LP relaxation-based and Lagrangian relaxation-based. In order to allevi-

ate the computational burden, we applied a cutting plane method and a column generation

method to both of LP and Lagrangian relaxation problems. One of the advantages of the

algorithms is that they are able to provide the upper bounds on the optimal modularity by

solving a small sub-problem of the original problem. This bounding procedure enables

us to evaluate the quality of the optimal value of the sub-problem at every iteration of the

algorithm.

Through the computational experiments, we observed that the Lagrangian relaxation-

based algorithm required much fewer iterations than the LP relaxation-based algorithm.

The method of multiple cuts or multiple columns that we proposed also performs fairly

well. This method could apply to other clustering problems of finding a partition of a
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given set, however, it should need further investigation from both theoretical and com-

putational viewpoints. The computational results also showed that both upper bound and

lower bound obtained by our algorithms were significantly close to the optimal value.

Indeed, the algorithms solved most of the instances we tested to optimality, which was

proved by the vanishing gap between the upper and lower bounds.

A direction of further research is to incorporate a heuristics providing an initial parti-

tion into our algorithms. The exact algorithm [3], for the modularity maximization, first

finds a partition by Noack and Rotta’s heuristics [79] before starting the column genera-

tion process, and uses members of the partition as an initial set of columns. This scheme

would be expected to reduce the number of iterations of our algorithms.

5.2 Modularity Density Maximization

In Chapter 3, for the modularity density maximization problem, we presented 0-1SDP

formulation which was originally introduced by Peng and Xia [80] for minimum sum-

of-squares clustering problem. We showed that 0-1SDP is equivalent to the modularity

density maximization, and proposed to solve a doubly non-negative relaxation of the prob-

lem 0-1SDP in order to obtain an upper bound on the modularity density. The advantage

of the relaxation problem is twofold: the problem does not require the optimal number

of communities be known in advance, and the size of the problem depends on neither the

number of communities nor the number of edges of the underlying network. In addition,

we developed a lower bounding algorithm based on the combination of spectral heuristics

and dynamic programming. Our formulation was numerically compared to MILP formu-

lation, with the results that it provides upper bounds competitive with MILP formulation.

The future work addresses the following two issues. The first issue is how to strengthen

the upper bound obtained by the relaxation problem. To this end, one of the possible ways

is to add valid inequalities. It is well known that the triangle inequalities are effective as

the valid inequalities for several clustering problems, while the number of them grows

rapidly with the number of nodes. Since most of the inequalities however would be likely

redundant at an optimal solution, we need only a small number of them. Hence, it should

need a well-organized strategy of selecting a small fraction of inequalities via a prepro-

cessing which utilizes information obtained from the original network.
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The second issue arises from the phase of permuting the rows and columns of the solu-

tion matrix. We observed that the solution matrix showed a block-diagonal-like structure

when its rows and columns are rearranged simultaneously in accordance with the magni-

tude of the components of the eigenvector corresponding to the second largest eigenvalue.

Theoretical study should be carried out about whether this procedure functions effectively,

and why if it does. The alternative to form a block-diagonal-like matrix is to develop a

heuristics based on the numerical linear algebraic computation such as the algorithms of

Sargent and Westerberg [81], and Tarjan [86].

5.3 Ranking Problem

In Chapter 4, we proposed to apply the dual representation of the normal vector to the

ranking problem based on the fixed margin strategy by Shashua and Levin [83]. The prob-

lem obtained has the drawback that it has the number of variables as well as constraints

being proportional to the number of objects unlike the case of the original formulation by

Shashua and Levin [83]. However it enables an application of the kernel technique, which

outweighs the drawback. We proposed a row and column generation algorithm in order

to alleviate the computational burden. Furthermore, we showed that the algorithm solves

the problem to optimality within a finite number of iterations.

Through some preliminary experiments, the number of both variables and constraints

added in our proposed algorithm are much smaller than those of original problem, thus

our algorithm requires a small memory capacity. However it should need further research

such as the setting of the initial working set and the choice of variables and constraints

to add at every iteration of the algorithm since a clever choice of these may enhance the

efficiency of the algorithm. In addition, we should clarify the class of kernel functions

which satisfies the nondecreasing property discussed in Section 4.8.
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Appendix

A Dual of Soft Margin Problem (S2)

The Lagrangian function for the problem (S2) is

L(w,p, ξ−, ξ+,α,β) =
1

2
ww> − (X(α− β))>w + (Aα−Bβ)>p

+ α>1n + β>1n + (
1

2
c ξ− −α)>ξ− + (

1

2
c ξ+ − β)>ξ+,

and the Lagrangian relaxation problem for a given (α, β) ∈ R2n
+ is∣∣∣∣∣∣ minimize L(w,p, ξ−, ξ+, α,β)

subject to (w,p, ξ−, ξ+) ∈ Rm+l+2n.

Since L is a convex function with respect to (w,p, ξ−, ξ+), the optimality condition of

(w∗,p∗, ξ∗
−, ξ∗

+) for a given Lagrangian multiplier vector (α,β) is

∂L

∂(w, p, ξ−, ξ+)
(w∗,p∗, ξ∗

−, ξ∗
+) = 0m+l+2n,

which reduces to

w∗ = X(α− β), (5.1)

Aα−Bβ = 0l, (5.2)

c ξ∗
− −α = c ξ∗

+ − β = 0n. (5.3)

Substituting (5.1), (5.2) and (5.3) for L, we obtain the optimal value ω(α,β) of the

Lagrangian relaxation problem

ω(α, β) = −
(

1

2
(α− β)>K(α− β)− 1>

n (α + β) +
1

2c
(α>α + β>β)

)
.
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Then the Lagrangian dual problem of (S2) forms the following (dS2):

(dS2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1

2
(α− β)>K(α− β) +

1

2c
(α>α + β>β)− 1>

n (α + β)

subject to Aα−Bβ = 0l

αN(0) = 0n(0)

αN(l) = 0n(l)

α ≥ 0n

β ≥ 0n.
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