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Abstract

X-ray C-arm is an important imaging tool in interventional radiology, road-

mapping and radiation therapy because it provides accurate descriptions of

vascular anatomy and therapeutic end point. In common interventional radi-

ology, the C-arm scanner produces a set of two-dimensional (2D) X-ray pro-

jection data obtained with a detector by rotating the scanner gantry around

the patient. Unlike conventional fluoroscopic imaging, three-dimensional

(3D) C-arm computed tomography (CT) provides more accurate cross-sectional

images, which are helpful for therapy planning, guidance and evaluation in

interventional radiology. However, 3D vascular imaging using the conven-

tional C-arm fluoroscopy encounters some geometry challenges. Inspired by

the theory of compressed sensing, we developed an image reconstruction al-

gorithm for conventional angiography C-arm scanners. The main challenge
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in this image reconstruction problem is the projection data limitations. We

consider a small number of views acquired from a short rotation orbit with

offset scan geometry. The proposed method, called sparsity-constrained an-

giography (SCAN), is developed using the alternating direction method of

multipliers, and the results obtained from simulated and real data are en-

couraging. SCAN algorithm provides a framework to generate 3D vascular

images using the conventional C-arm scanners in lower cost than conventional

3D imaging scanners.

Keywords: Image reconstruction, computed tomography, C-arm

angiography, sparsity, ADMM

1. Introduction

C-arm angiography is an effective imaging tool for many different types

of physicians such as cardiologist, radiologist, surgeons, urologist, orthopedic

surgeries and neurovascular applications. It is an important tool in inter-

ventional surgery, radiation therapy, road mapping and guidance [1]. Image-

guided interventional radiology aims to provide physicians with anatomical

and physiological structure of the patient organs during minimally invasive

surgery procedures. In typical protocols for imaging blood-vessels, the pa-

tient is injected with contrast agent, and the acquired two-dimensional (2D)

images are processed through digital subtraction angiography (DSA) ap-

proach. In DSA, an image acquired before the injection of the contrast agent

is subtracted from a contrast-based image to remove surrounding complicated

structures [2]. Sample images acquired for kidney tumor vessels using the

DSA approach are shown in Fig. 1. The common challenge in this procedure
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is that 2D images are insufficient to provide required three-dimensional (3D)

information of vessel anatomy due to complicated structure and the incapa-

bility to identify overlapping vessels (Fig. 1(c)). In clinical procedures, such

as transarterial chemoemobolization (TACE), physicians usually change the

angle to acquire the image by rotating the C-arm gantry to a different view

(Fig. 1(d)) and mentally process these images to understand the 3D vessel

structure. This procedure is known to increase the patient dose of both the

x-ray and the contrast agent acquisitions. Moreover, it requires special clini-

cal experience to be processed successfully. In some applications, the C-arm

is placed close to a computed tomography (CT) scanner in order to perform

a CT scan simultaneously, which is the common way to observe the 3D struc-

ture of vessels using CT images. However, this approach also increases the

patient dose and patient is required to be moved from the surgery table to the

scanner table which is inconvenient in some cases. Three-dimensional C-arm

CT employ 2D x-ray projection data obtained with a detector by rotating

the C-arm around the patient to reconstruct CT-like images. The number

of required projections is approximately several hundred of views. Modern

multi-axis C-arm systems can provide 3D images by recording several pro-

jections around the patient and perform tomographic image reconstruction.

However, these advanced systems are expensive compared to standard C-arm

scanners [1].

In this paper, we present the experience of using conventional 2D C-arm

scanners to provide high-quality 3D vascular images. The main module in

the proposed framework is an image reconstruction algorithm from limited

projection data. We consider data limitations for a challenging geometry
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(a) Image without contrast agent (b) Image with contrast agent

(c) DSA image (d) DSA image (another view)

Figure 1: Digital subtraction angiography (DSA) technique used to visualize the arteries

of a kidney tumor. (a) and (b) are the images acquired before and after the injection of

contrast agent, respectively. (c) is the DSA image obtained by subtracting (a) from (b).

(d) is a DSA image obtained from a different view angle. Images are acquired during

transarterial embolization session in Suez Canal University Specialized Hospital.
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setup, where the projection data is only available from a small number of

projection views measured over a limited rotation orbit with non-isocenteric

C-arm scanner. Recent work presented several algorithms to tackle image

reconstruction for limitation problems discussed in this paper (e.g. [3–11]).

A successful experiment to modify the mobile isocenteric C-arm system to

include a flat-panel detector towards cone-beam CT imaging is presented

in [6]. Results demonstrate sufficient image quality for guidance of inter-

ventional procedures. In another study, a CT data acquisition system using

commercial C-arm system was developed [7]. The developed system was cal-

ibrated to determine geometrical parameters and FDK algorithm was used

for cone-beam image reconstruction. Ritter et al. developed a clinical pro-

totype mobile C-arm for 3D soft tissue imaging [9]. The proposed system

facilitates several interventional procedures.

The proposed approach is based on the theory of compressed sensing

(CS) [12, 13] by introducing a sparsity-constrained cost function for image

reconstruction. The image reconstruction algorithm is developed to handle

sparse objects such as blood-vessels, where most of image pixel values are

zeros or close to zeros and only small number of image pixels have non-zeros

intensities. The proposed algorithm, called sparsity-constrained angiogra-

phy (SCAN), is derived using the alternating direction method of multipliers

(ADMM) with emphasis on the sparsity nature of the angiography imaging.

ADMM is an optimization method developed in the 1970s [14]. Since then,

it has been used in several areas such as image processing, machine learning

and distributed optimization. Very recently, ADMM was used to develop a

statistical iterative algorithm for CT image reconstruction [15, 16]. The pro-
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posed method is evaluated through experimental studies including computer

simulation and real-data. Achieved result demonstrates a notable artifacts

reduction and image quality improvement compared to conventional image

reconstruction techniques such as ART.

The rest of this paper is organized as follows. In Section 2, we introduce

the scanner geometry and data acquisition for the system under study. The

proposed method is presented in Section 3 together with a brief introduction

to related mathematical concepts. Experimental studies are discussed and

analyzed in Section 4 and the paper is concluded in Section 5.

2. Scanner geometry and data acquisition

In this section, we introduce the C-arm system used in this study to-

gether with geometry configurations that limit the 3D image reconstruction

and produce challenges arising from data limitations. The device used in this

study is a clinical C-arm scanner (Ziehm Vision R, Ziehm Imaging GmbH,

Nürnberg, Germany1), installed in Suez Canal University Specialized Hospi-

tal (SCUSH). This scanner is equipped with an image intensifier with diam-

eter of 31 cm. The tube current and potential range from 1.5 to 75 mA and

40 to 120 kVp, respectively. Orbital movement range is about 115◦, source to

detector distance is 97 cm, C-arm depth is 68 cm and magnitude of detector

offset is about 13 cm. The C-arm system generates images in 1024×1024

pixel matrix with pixel size of about 0.03×0.03 cm. Unless noted other-

wise, experimental studies presented here employ the system configuration

1http://www.ziehm.com/en/products/ziehm-vision-r/
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parameters of real scanner stated above.

This system can provide 2D radiographic and fluoroscopic images for

minimal invasive surgery with manual control of gantry movement. How-

ever, 3D imaging using the scanner under study has several data limitation

problems. First, the scanner gantry is manually operated, so we can acquire

only a small number of projection views (see Fig. 2(b)). Unlike 3D systems,

where the gantry motion is automatically controlled, the manual movements

are known to be inaccurate and gantry positioning is likely to have some

displacement errors. Moreover, the manual gantry movement can produce

only a small number of projection views. Measuring only a small number of

projections possesses a great benefit to reduce the accumulated patient dose.

However, the corresponding image reconstruction problem becomes unstable

and achieving exact reconstruction is difficult. Second, the gantry rotation

orbit is limited to a range of angles less than those theoretically required

for stable CT reconstruction. The imaging system used in this work has

a rotation range limited to 115◦, which is below the normal angular range

used in CT reconstruction (see Fig. 2(c)). Third, the C-arm scanner is non-

isocenteric. Accordingly, the x-ray source and detector are shifted from the

central line that passes through the gantry isocenter as shown in Fig. 2(d).

This setup is common in C-arm scanners to increase the scanner FOV in 2D

fluoroscopy. However, it is an uncommon setup for 3D image reconstruction.

It is known that, in the offset scan geometry, the common region which can

be viewed in all projection data is rather small and thus most of projection

data suffer from data truncation. To illustrate the data limitation problems

of the imaging geometry under study, we show the imaging configuration of
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(a) Full scan (b) Small views scan

(c) Short orbit scan

(d) Non-isocentric, small views and

short orbit scan

Figure 2: Sketch of different C-arm imaging configurations. (a) Full scan with several-

hundred views, (b) scan with small number of views, (c) scan with short gantry rotation

orbit, and (d) offset scan (non-isocenteric gantry) over small views and short rotation

orbit. Area within detector FOV where the scanner gantry is located at the view angles

of 0◦ and 90◦ is shown in different configurations for comparison. The configuration in (d)

is the one considered in this study.
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(a) (b)

Figure 3: C-arm angiography system. (a) Photograph of the Ziehm Vision R scanner

installed in SCUSH with gantry position of θ = 90◦. (b) Sketch of gantry positions for C-

arm scanner with non-isocentric geometry. Initial position with solid line is at the position

angle of 90◦. Dashed lines represent the gantry positions at angles of 0◦, 15◦, 30◦, 45◦,

60◦, 75◦ and 105◦. The scanner ioscenter (center of gantry rotation) is indicated with the

”+” sign.

9



XY -plane XZ-plane Y Z-plane

F
it

to
C

O
R

S
h
if

te
d

fr
om

C
O

R

Figure 4: Orthogonal slices representing the number of projection rays passing through

the image pixels. Data are acquired using commercial scanner geometry with 8 projection

views indicated in Fig. 3(b). Top values are generated by locating the image center

aligned to the scanner center of rotation. Bottom values are generated by shifting the

image position in YZ plane (with value of 9.2 cm) to maximize the number of rays passing

through image pixels. Results shown in experimental studies below are computed using

the shifted position shown in the bottom row. Grey scale is [0, 8].
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the commercial C-arm scanner used in this work in Fig. 3. To study the

effect of non-isocentric geometry on data acquisition, we have counted the

number of projection rays passing through each image pixel. We consider 8

projection views acquired from angular positions shown in Fig. 3(b). Simu-

lation results are shown in Fig. 4. When the object is located at the center of

rotation, large portion of object is likely located outside the FOV, however,

this problem can be mitigated by shifting the object slightly in the YZ plane

as shown in Fig. 4.

The combination of data limitation problems, described above, produces a

challenging imaging system for which it is theoretically impossible to develop

an accurate image reconstruction algorithm with stable solution. Alterna-

tively, approximation methods are being used.

3. Methods

3.1. Problem formulation

In this section, we propose an image reconstruction algorithm devoted

to the blood-vessel reconstruction problem from a limited number of projec-

tion data (possibly with limited angular coverage) as described in Section 2.

Generally, image reconstruction from projection data can be formulated as

solving a linear equation expressed as

Ax = b, (1)

where x = (x1, . . . , xJ)> is a J-dimensional vector consisting of image pixel

values to be reconstructed, b = (b1, b2, . . . , bI)
> is an I-dimensional vector

consisting of measured projection data, and A = {aij} is an I × J matrix
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called the system matrix which relates x to b. When the number of mea-

sured projection data I is small, Eq. (1) becomes an underdetermined linear

equation having many solutions because I < J . In such a case, it is common

to formulate image reconstruction as the following constrained optimization

problem.

min
x
f(x) subject to Ax = b, (2)

where f(x) is the cost function to pick up a reasonable image x with less

artifacts from a set of feasible solutions satisfying Eq. (1). For this purpose,

many cost functions have been proposed in the literature such as Gibbs prior

[17], Total Variation (TV) [18], median root prior [19], and image sparsity

prior [4]. In this work, we use the image sparsity prior first proposed by

Li et al. [4] for the blood-vessel reconstruction and investigated by others

[11, 20, 21], because the most significant feature of blood-vessel image is

that the image itself has considerable sparsity in the sense that only a small

number of pixels have non-zero values. In this prior, the cost function f(x)

is the `1-norm of x defined as

f(x) = ‖x‖11 ≡
J∑
j=1

|xj|. (3)

In the literature of CS (e.g. [22–24]), it is well-known that the value of Eq. (3)

becomes small when x is sparse and its power to find a sparse solution is

surprisingly strong in contrast to the ordinary `2-norm of x. This property

allows accurate reconstruction even from a limited number of projection data

as demonstrated in [10, 25] by using the `1-norm of x as the cost function.

The optimization problem of Eq. (2) with Eq. (3) is named LASSO (least
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absolute shrinkage and selection operator) in the CS and machine learning

fields, and there exist a variety of computational algorithms to find a solution

[26]. However, these algorithms are not necessarily sufficient for the purpose

of image reconstruction from the following point of view. Historically, in to-

mographic image reconstruction field, popular iterative algorithms employed

in image reconstruction are ART (algebraic reconstruction technique), SART

(simultaneous ART), and SIRT (simultaneous iterative reconstruction tech-

nique) [27]. These algorithms have attractive features such as simplicity of

implementation and storage efficiency. Furthermore, it is known that ART

can be converged very fast with few iterations by using some special data

access order [28]. This behavior is due to the increase of the orthogonality

among projections at each iteration and is confirmed by several later studies

(e.g. [4, 29–31]). Therefore, there exists a strong demand in developing a

class of iterative algorithms having the similar structure to ART or using

ART as a major building block. For the problem of Eq. (2) with Eq. (3),

such an iterative algorithm has been already proposed and implemented by

Li et al. [4]. In this paper, we propose and implement an alternative iter-

ative algorithm derived from the optimization method called ADMM which

is attracting a lot of attention recently.

3.2. Brief review of ADMM

We begin by a brief review of ADMM in the form appropriate for our

algorithm derivation. We refer [32] for a rigorous and detailed review of

ADMM. Let us consider the constrained optimization problem formulated as

min
(x,z)

f(x) + g(z) subject to Ax +Bz = c, (4)
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where x = (x1, x2, . . . , xJ1)
> and z = (z1, z2, . . . , zJ2)

> are J1-dimensional

vectors and J2 dimensional vector, respectively, c is an I-dimensional vector,

A = {aij} and B = {bij} are I×J1 matrix and I×J2 matrix, respectively, and

we assume that both f(x) and g(z) are (possibly non-differentiable ) convex

functions. In Eq. (4), the two variables x and z are coupled only through the

linear constraint Ax + Bz = c. In ADMM, the iterative algorithm to solve

this problem is constructed according to the following procedure. First, we

define the augmented Lagrangian function corresponding to the problem of

Eq. (4) by

Lρ(x, z,λ) = f(x) + g(z) + λ>(Ax +Bz− c) +
ρ

2
‖Ax +Bz− c‖22, (5)

where λ is an I-dimensional vector called the dual vector or the Lagrange

multiplier vector and ρ > 0 is the weighting parameter of the second-order

penalty term. Using Eq. (5), the iterative algorithm of ADMM is expressed

as the following three-step procedure (with k as the iteration number).

[x minimization]

x(k+1) = arg min
x
Lρ(x, z

(k),λ(k)) (6)

[z minimization]

z(k+1) = arg min
z
Lρ(x

(k+1), z,λ(k)) (7)

[Multiplier λ update]

λ(k+1) = λ(k) + ρ(Ax(k+1) +Bz(k+1) − c) (8)
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In each iteration, this iterative algorithm minimizes Lρ(x, z,λ) with respect

to x and z alternately followed by updating the multiplier λ in the ascent

direction of Lρ(x, z,λ). The attractive feature of ADMM is that the mini-

mization of f(x) + g(z) can be split into the sequence of two separate min-

imizations with respect to f(x) and g(z). This is a powerful framework in

many instances of optimization including the constrained optimization and

the optimization where at least either f(x) and g(z) is non-differentiable.

Finally, we remark how ADMM differs from the classical method of mul-

tipliers to solve the constrained optimization. In the classical method of

multipliers, instead of the augmented Lagrangian Lρ(x, z,λ), the ordinary

Lagrangian function defined by the following equation is used.

L(x, z,λ) = f(x) + g(z) + λ>(Ax +Bz− c) (9)

The principle difference between Eq. (5) and Eq. (9) is that the second-order

penalty term is missing in Eq. (9). Without the second-order term, the

minimization problem in Eq. (6) or Eq. (7) may not admit a unique solution

in the case where f(x) or g(z) is not strongly convex (such as the case where

f(x) or g(z) is an characteristic function or a non-strongly convex function).

In such a case, the classical method of multipliers fails in generating a valid

iterates of x and z, but ADMM is still valid thanks to the existence of

strongly convex additional second-order penalty term. As described later,

in our problem of Eq. (2) with Eq. (3), f(x) is the `1-norm of x and g(z)

is the characteristic function of affine subspace Az = b, both of which are

not strongly convex. For this reason, using ADMM instead of the method of

multipliers is absolutely necessary to derive the proposed algorithm.
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3.3. Derivation of proposed algorithm

Next, we explain how ADMM is used to derive an iterative algorithm to

solve the problem of Eq. (2) with the cost function given by Eq. (3). First,

by introducing the new variable z, this problem can be reformulated into the

following form.

min
(x,z)

f(x) + g(z) subject to x− z = 0, (10)

where f(x) and g(z) are defined by

f(x) = ‖x‖11 (11)

g(z) =

 0 (if Az = b)

∞ (otherwise)
, (12)

We note that g(z) is the characteristic function corresponding to the affine

subspace Az = b [33]. It can be easily checked that the solution to Eqs. (10)-

(12) coincides with the solution to Eq. (2) with Eq. (3). Furthermore,

Eqs. (10)-(12) is a special case of Eq. (4), i.e. J1 = J2 = J , A = E, B = −E,

and c = 0 in Eq. (4) (E is an identity matrix), to which ADMM can be ap-

plied to construct an iterative algorithm. Applying ADMM to the problem

of Eqs. (10)-(12), we obtain the following three-step iterative algorithm.

x(k+1) = arg min
x

[
f(x) + λ(k)>(x− z(k)) +

ρ

2
‖x− z(k)‖22

]
(13)

z(k+1) = arg min
z

[
g(z) + λ(k)>(x(k+1) − z) +

ρ

2
‖x(k+1) − z‖22

]
(14)
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λ(k+1) = λ(k) + ρ(x(k+1) − z(k+1)) (15)

The algorithm expressed by Eqs. (13)-(15) still does not have a concrete

implementable form. So, we further simplify Eqs. (13)-(15) below. First,

since the cost function in Eq. (13) is the sum of `1-norm of x and the quadratic

term, which frequently appears in the CS literature, the x minimization in

Eq. (13) can be solved in closed form. The solution is given by

x(k+1) = SoftThre(z(k) − λ(k)/ρ), (16)

where the operator SoftThre(.) is defined by

SoftThre(y) = (Th(y1), Th(y2), . . . , Th(yJ))>

Th(y) =


y − 1/ρ (if y > 1/ρ)

y + 1/ρ (if y < −1/ρ)

0 (otherwise)

. (17)

We note that SoftThre(.) is the so-called soft-thresholding operator used in

the CS field [34], which sets vector components having small absolute values

to zeros and moving other components toward zeros by an amount of 1/ρ.

Next, we describe how to solve the z minimization of Eq. (14). Since g(z)

is the characteristic function corresponding to Az = b, the solution z(k+1)

to this problem can be achieved by solving the following linearly constrained

optimization [32].

min
z
‖z− (x(k+1) + λ(k)/ρ)‖22 subject to Az = b (18)
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Since Eq. (18) is the standard Euclidean distance minimization subject to a

linear equality constraint, a variety of methods in the linear algebra field can

be used to solve it. However, the problem size is so large that we need to

adopt a storage efficient method. In this work, we use ART iterative method

with the initial vector x(k+1) +λ(k)/ρ, which is known to be efficient and easy

to implement. The detailed algorithm for the z minimization using ART can

be summarized in the following form.

Algorithm 1: ART method to solve the sub-problem of Eq. (18)

1 Initialization: y(0) = x(k+1) + λ(k)/ρ

2 for s = 0, 1, . . . , Smax − 1 do

y(s,0) = y(s)

for i = 1, 2, . . . , I do

y(s,i+1) = y(s,i) +
bi − a>i y

(s,i)

‖ai‖22
a>i

end

y(s+1) = y(s,I+1)

end

3 Solution z∗ = y(Smax)

where ai = (ai1, ai2, . . . , ain)> is the i-th row of system matrix A and s is

the iteration number. With respect to the convergence of the above ART

iteration, the following theorem is well-known [35, 36]. We write it without

the proof.

Theorem 1. Assume that there exist z satisfying the linear equation Az =

b, i.e. Az = b is feasible. Then, the solution to problem of Eq. (18) is

unique and the above ART method converges to z∗ = y(∞) which minimizes

the distance ‖z − y(0)‖22 with y(0) = x(k+1) + λ(k)/ρ among all z satisfying

18



Az = b.

For convenience, we express the above ART iteration as

z∗ = ART(x(k+1) + λ(k)/ρ). (19)

In tomographic image reconstruction, the so-called non-negativity con-

straint x = 0 is often used, which dramatically improves image quality in

some applications. We expect that the blood-vessel reconstruction is one of

such applications, because values of most background image pixels are zeros

or close to zeros. The non-negativity constraint can be incorporated into

the proposed algorithm by modifying the algorithm derivation described in

Section 3.3 as follows. First, by incorporating x = 0 into the cost function

f(x), the original problem Eq. (3) is modified to

f(x) =

 ‖x‖11 (if x ≥ 0)

∞ (otherwise)
. (20)

The infinite value in Eq. (20) is added to exclude the negative vales of x

from the set of feasible solutions of the minimization problem. Then, we can

follow the same algorithm derivation as in Section 3.3. The only necessary

change appears in solving the sub-problem of Eq. (13), in which we need to

take x = 0 into account. The resulting soft-thresholding operation under

x = 0 is obtained as

x(k+1) = SoftThre(z(k) − λ(k)/ρ),

SoftThre(y) = (Th(y1), Th(y2), . . . , Th(yJ))>

19



(a) (b)

Figure 5: Illustration of soft-thresholding functions corresponding to (a) Eq. (17) and (b)

Eq. (21).

Th(y) =

 y − 1/ρ (if y > 1/ρ)

0 (otherwise)
. (21)

The comparison between Eq. (17) and Eq. (21) shows that all negative values

must be set to zeros together with small positive values in the SoftThre(.)

operation when using the non-negativity constraint. The difference between

the soft-thresholding in Eq. (17) and that in Eq. (21) is shown in Fig. 5.

This is the only change required to impose the non-negativity constraint,

which seems to be minimum. Finally, we note that it is also possible to

incorporate z = 0 into the g(z) term instead of incorporating x = 0 into the

f(x) term. However, in this case, a large modification is required in the inner

ART iteration (we omit the details). So, we believe that applying ADMM

to the formulation of Eq. (20) is the better method of choice to handle the

non-negativity constraint.
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3.4. Summary of proposed algorithm

Basically, the proposed algorithm is given by Eqs. (13)-(15), in which we

showed that the x minimization in Eq. (13) reduces to the soft-thresholding

and the z minimization in Eq. (14) can be performed using the inner ART

iteration. The final algorithm can be summarized in the following form.

Algorithm 2: Proposed algorithm (SCAN)

1 Initialization: x(0) = z(0) = (0, 0, . . . , 0)>, λ(0) = (0, 0, . . . , 0)>

2 for k = 0, 1, . . . , Kmax − 1 do

x(k+1) = SoftThre(z(k) − λ(k)/ρ) (x minimization)

z(k+1) = ART(x(k+1) + λ(k)/ρ) (z minimization)

λ(k+1) = λ(k) + ρ(x(k+1) − z(k+1)) (Multiplier λ update)

end

3 Solution z∗ = z(Kmax)

where we remark that the operations SoftThre(.) and ART(.) are specified

in Section 3.3.

The SCAN algorithm possesses a nice structure in the sense that its ma-

jor operations consist of the soft thresholding and the ART iteration, both

of which are popular in recent research of tomographic image reconstruc-

tion. One drawback of the proposed algorithm is that it has a double-loop

(second-order) structure so that the convergence to the true solution may

not be guaranteed if the inner ART iteration is terminated after only a small

number of iterations. Of course, to save computational time, we would like to

terminate the inner iteration as early as possible. Therefore, it is a practically

important issue to investigate how many iterations are necessary in the inner

ART iteration. In our simulation studies, by using the special data access or-

der of ART proposed in [28], we observed that only a single inner iteration of
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(a) 3D phantom (b) Central 2D slice

Figure 6: (a) Volume rendering of the digital phantom object and (b) central 2D cross-

sectional slice.

ART is sufficient to obtain satisfactory reconstructed images (i.e. Smax = 1).

Therefore, the proposed algorithm possesses fewer parameters to adjust in

practical implementation. However, at present, we do not have a theoreti-

cal convergence proof of the proposed algorithm implemented with a finite

number of inner ART iterations. Finally, we write a convergence property of

the proposed algorithm proved from the known convergence result of ADMM

[32].

Theorem 2. Assume that the original problem of Eq. (2) with Eq. (3) has a

unique solution. Then, under the assumption that the number of inner ART

iteration is infinite, the proposed algorithm converges to z∗ = z(∞) which

solves the original problem of Eq. (2) with Eq. (3).
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4. Results and Discussion

4.1. Simulated data

A computer simulation study was performed to evaluate the proposed

method. A digital phantom (FORBILD lung phantom2) representing a

vessel-like sparse structure, shown in Fig. 6, was used in this study. This

phantom was originally created to represent lung bronchial airways. How-

ever, it is also used in several studies to represent blood-vessels structures

[4, 11]. The phantom volume was of 256×256×256 pixels with binary at-

tenuation formats (i.e. vessel pixels are 1’s and background pixels are 0’s).

Mono-energetic cone-beam projection data were simulated at 6, 8, 12 and 24

views with rotation angle spacing of 20◦, 15◦, 10◦ and 5◦, respectively, over

the gantry rotation arc of 115◦. The scanner geometry parameters were set

to real parameters of the Ziehm Vision R C-arm scanner detailed in Section 2

with tube voltage of 100 kV. For simplicity, we did not consider scatter and

noise effects. Due to the scanner geometry settings, the scanner FOV that is

visible in all view angles, is rather small. Consequently, all projection views

suffer from the data truncation.

To demonstrate the effect of offset scan due to the scanner non-isocenteric

geometry, we show the projection images acquired from different view an-

gles θ in the cases of isocenteric and non-isocenteric configurations in Fig. 7.

System configuration parameters for isocentric and non-isocentric experi-

ments are shown in table 1. It is clear from Fig. 7, that for the isocentric

scanner geometry, the phantom is located almost completely inside the scan-

2http://www.imp.uni-erlangen.de/forbild/english/results/index.htm
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Figure 7: Projection images of the digital phantom corresponding to different view angles θ

with the isocenteric and non-isocenteric scanner configurations.
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Table 1: Simulation parameters used to compute projection data shown in Fig. 7.

Parameter Description Value (cm)

isocenteric non-isocenteric

SDD Source to detector distance 97.0 97.0

DCOR Detector to center-of-rotation (COR) 18.0 36.43

DO Detector offset N/A 13.0

OCOR Object to COR (x,y,z) (0,0,0) (0,9.2,9.2)

ner FOV. However, the projection data measured using the non-isocentric

geometry suffer from data truncation with different degrees. Moreover, the

object appears in different magnification scales in each view angle as the dis-

tance between the scanned object and the scanner detector varies dependent

on the view angle. The data incompleteness in each projection view produces

a challenge in image reconstruction in addition to that of the small number

of projection views.

The SCAN algorithm was implemented with parameters of ρ = 20, Smax =

1 and Kmax = 20 to reconstruct 3D volumes from 6, 8, 12 and 24 projection

views. We consider both isocenteric and non-isocenteric scanner geometry.

Reconstruction results are shown in Fig. 8 and the corresponding transverse

cross-sectional slices are shown in Fig. 9. We also calculate the relative root

mean square error (RRME) as similarity-based metric. RRME is calculated

using the following formula:

RRME(x) =

√√√√ J∑
j=1

(xj − x̃j)2/
J∑
j=1

(x̃j)2 (22)

where x̃ = (x̃1, . . . , x̃J) is the true phantom. For convenience, RRME value is
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Figure 8: Three-dimensional volume rendering of SCAN reconstruction with different

projection views using true phantom shown in Fig. (6). Top and bottom rows are cor-

responding to isocenteric and non-isocentric scanner configurations, respectively. Mark

circle indicates peripheral vessel reconstructed in different quality corresponding to the

number of projection views.
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shown at the top left corner of each image. Supplementary materials associ-

ated to this paper includes a 360◦ rotation of the rendered 3D reconstructed

image shown in Fig. 8(d) for non-isocenteric geometry. From these results,

it can be observed that the proposed method can reconstruct an appropriate

image even with only 8 projection views. Appropriate image can be defined

as image in which vessel branches and connections can be defined correctly to

guide road-mapping of the catheter. However, it is obvious that blood-vessels

with small size located in peripheral regions are difficult to be observed when

the number of projection views is highly down-sampled. As shown in Fig. 8,

small vessels marked with circle cannot be observed with 6 views and visual

observation is gradually improved with higher number of views. To compare

the proposed algorithm with the conventional ART algorithm, cross-sectional

slices obtained from images reconstruction using same number of iterations

(20 iterations) are shown in Fig. 9. Due to strong streak artifacts in ART

images, it was impossible to achieve volume rendered images to be compared

with those in Fig. 8. While the images obtained by the proposed method are

very close to the true object, even for small size vessels, the ART reconstruc-

tion suffers from strong streak artifacts tangent to the boundaries of vessels.

Comparison quantitative results using RRME as quality measure is shown

in Fig. 10. The 3D reconstruction using ART and SCAN algorithms were

implemented in C programming language and evaluated using PC (Intel (R)

Core (TM) i7 @ 2.4 GHz, Memory: 8.0 GB) and single iteration computation

time is shown in Table 2. It is clear that time difference is small as the time

used for thresholding operation and multiplier update in SCAN algorithm is

rather small compared to ART image update step.
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Table 2: Computation time in seconds for single iteration of 3D reconstruction using ART

and SCAN algorithms.

# of views Algorithm 1 (ART) Algorithm 2 (SCAN)

Smax = 1 Kmax = 1 & Smax = 1

6 14.1 15.0

8 18.3 19.1

12 27.3 27.9

24 52.8 53.1

6 views 8 views 12 views 24 views

A
R

T
S
C

A
N

Figure 9: Single corresponding cross-sectional slices of reconstructed images from different

projection views using ART (Smax = 20) and SCAN (Kmax = 20, Smax = 1 and ρ = 20).

Bottom row is a 2D slice of the 3D images shown in Fig. 8 with non-isocenteric geometry.

RRME value is shown in the top left corner of each image.
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It is important to study the performance of the SCAN algorithm with

different image reconstruction parameters such as Kmax, Smax and ρ. A

comparison study was used to demonstrate the effect of each parameter to

the quality of the reconstructed image. We consider 24 projection views

obtained using non-isocenteric scanner geometry. Images are reconstructed

with different values of Kmax = {1, 5, 10, 20}, Smax = {1, 5, 10, 20} and ρ =

{0.1, 1.0, 10.0, 20.0, 100.0}. First, we set ρ = 20 and reconstruct images with

different values of Kmax and Smax. Central cross-sectional slices are shown in

Fig. 11. From these results, we can observe that increasing the value of Smax

has relatively small contribution to the image quality compared to the value

of Kmax. This observation is useful in practical implementation as we can

set the value of Smax to single iteration. Second, we set Smax = 1 and obtain

results with variant values of Kmax and ρ. Achieved comparison results are

shown in Fig. 12. It is observed that the value of ρ is important factor in

image quality. For example, image quality improves very slowly when we

iterate with ρ = 0.1. However, with higher value of weighting parameter

of the second-order penalty (i.e. ρ = 10.0), we observe a relatively large

improvement in image quality after only few iterations (Kmax = 5).

4.2. Real data

A real data experiment was performed for the assessment of the proposed

method. A metal wire was used to simulate human segmental hepatic arterial

system imaged with the DSA approach. The metal object is a 6mm electric-

ity cable of 7 internal copper wires covered with a plastic shield. Peripheral

region is unshielded and copper wires are adjusted to simulate hepatic arter-

ies by expert radiologist as shown in Fig. 14(a). The metal wire was imaged
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Figure 10: RRME value computed with different iterations using ART and SCAN algo-

rithms for images reconstructed from different projection views. Results are associated

with images shown in Fig. 9.
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Figure 11: Central slices of SCAN reconstructions with fixed ρ = 20 and different Kmax,

Smax combinations. RRME value is shown in the top left corner of each image.
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Figure 12: Central slices of SCAN reconstructions with fixed Smax = 1 and different Kmax,

ρ combinations. RRME value is shown in the top left corner of each image.
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(a) θ = 0◦ (b) θ = 10◦ (c) θ = 20◦ (d) θ = 30◦

(e) θ = 40◦ (f) θ = 50◦ (g) θ = 60◦ (h) θ = 70◦

(i) θ = 80◦ (j) θ = 90◦ (k) θ = 100◦ (l) θ = 110◦

Figure 13: Real projection data acquired from metal wire phantom shown in Fig. 14(a)

measured by the C-arm detector in different view angles θ.
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using C-arm scanner shown in Fig. 3(a). The scanner gantry was adjusted

manually to acquire 24 projection views with angle spacing of 5◦. Angle

scale label attached to the scanner gantry is used to manually adjust gantry

angulation with error around ±0.1◦. The wire phantom was located within

approximate distance of 9.2 cm from the scanner center of rotation in both or-

thogonal Cartesian coordinates. This position was selected such that largest

region of the object can be viewed in different scanner view angles as a result

of the scanner geometry analysis shown in Fig. 4. Examples of acquired de-

tector measurements, extracted in DICOM image format, are shown in Fig.

13. Projection data were calculated using blank scan measurements and im-

age reconstruction was performed using the proposed algorithm with ρ = 10,

Smax = 1 and Kmax = 25. Volume rendering of the reconstructed image to-

gether with a photograph of the wire object are shown in Fig. 14. A video

represents a 360◦ rotation of the rendered 3D image is submitted as a sup-

plementary material associated to this paper. Weak artifacts are observed

in the image reconstructed from the real data. However, it is still in the

acceptable quality for minimal invasive surgery procedures, where the most

important task in these applications is to identify the 3D structure of the

blood-vessels that is enough for catheter road-mapping in TACE procedure.

5. Conclusion

We proposed an iterative image reconstruction algorithm for 3D vascular

imaging using a C-arm scanner. The developed algorithm was designed to

overcome data limitation problems in this imaging modality including lim-

ited views, short orbit and offset scan geometries. This framework aims to
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(a) Real object (b) Reconstructed 3D image

Figure 14: (a) Metal wire object used to simulate human segmental hepatic arterial system

enhanced with contrast agent. (b) Three-dimensional volume rendering of reconstructed

image of the metal wire from 24 projection views.

provide an effective 3D imaging using conventional C-arm scanners which are

originally designed to generate 2D fluoroscopy images. The proposed imaging

and reconstruction technique has several benefits: (1) it provides 3D images

using conventional inexpensive equipments and (2) it improves the image

quality obtained from highly down-sampled projection data, which is asso-

ciated with patient dose level, interventional procedure time and amount of

injected contrast agent. This work is an initial study and preliminary results

using simulated and real data are encouraging. Future studies will include

implementation of automatic data acquisition system and more accurate ge-

ometry calibration. In automatic data acquisition system, we are planning

to automatically transfer the projection data from the scanner storage unit

to the processing unit for 3D image reconstruction. In the current stage, the
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projection data are transferred manually. The target equipment was initially

designed for 2D image acquisition rather than 3D. It is important to conduct

a comprehensive analysis of the gantry rotation error and perform system

calibration for higher quality 3D reconstruction.
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