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Abstract. We prove that for each n ≥ 1 the set of all surjective continuum-

wise injective maps from an n-dimensional continuum onto an LCn−1-continuum
with the disjoint (n−1, n)-cells property is a dense Gδ-subset of the space of all
surjective maps. This generalizes a result of Espinoza and the second author
[5].

1. Introduction

In this paper, all spaces are assumed to be metrizable and maps are continuous.
A compact metric space is called a compactum and continuum means a connected
compactum. Also, a locally connected continuum is called a Peano continuum. We
denote the closed interval [0, 1] by I. An arc is a space which is homeomorphic to
I. If X is a compactum, then 2X denotes the space of all nonempty closed subsets
of X endowed with the Hausdorff metirc and C(X) is the closed subset of 2X that
consists of the subcontinua of X. If X and Y be compacta, then C(X,Y ) denotes
the set of all continuous maps from X to Y endowed with the sup metric. Also, we
denote the set of all surjective maps from X onto Y by S(X,Y ).

A surjective continuous map f : I → X is called an arcwise increasing map if
for any two closed subintervals A and B of I such that A ⊊ B, f(A) ⊊ f(B). The
notion of arcwise increasing map was introduced in [7], by the second author, as a
generalization of Eulerian path for Peano continua (see [5, Definition 3.1]). Some
results related to arcwise increasing maps are obtained in [5].

A map f : X → Y between compacta is called a continuum-wise injective map
if for each A,B ∈ C(X) with A ̸= B and A is not a one point set, f(A) ̸= f(B).
Also, a map g : X → Y between compacta is called a hereditarily irreducible map
(see [10, p.204]) if for each A,B ∈ C(X) with A ⊊ B, f(A) ⊊ f(B). It is easy
to see that a map f : I → X is an arcwise increasing map if and only if f is a
surjective continuum-wise injective map. Note that every arcwise increasing map
and every continuum-wise injective map are hereditarily irreducible maps.

The main aim of this paper is to prove Theorem 1.1. This result generalizes a
result of Espinoza and the second author [5].

Theorem 1.1. Let n ≥ 1. Let X be a nondegenerate continuum with dimX ≤ n
and let Y be an LCn−1-continuum with the disjoint (n− 1, n)-cells property. Then,
the set of all surjective continuum-wise injective maps from X onto Y is a dense
Gδ-subset of S(X,Y ).
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2. Preliminaries

In this section we give some notations and terminologies.
Let X be a space and let A be an subarc of X. Then A is called a free arc of

X if we get an open set in X when deleting end points of A.
Let n ≥ 1. Then, a space B is called an n-cell if B is homeomorphic to In. Also,

a 0-cell means a one point set.
Let X be a space and n ≥ 0. We say that X is locally connected in dimension n

(abbreviated LCn) if for every x ∈ X and every neighborhood U of x in X there
exists a neighborhood V of x in X such that for every m ≤ n and every continuous
map f from an m-dimensional sphere to V , f is null-homotopic in U . Note that a
continuum is a Peano continuum if and only if X is an LC0-continuum.

Let X be a space and m,n ≥ 0. Then, X is said to have the disjoint (m,n)-
cells property if for every ε > 0, every m-cell Bm, every n-cell Bn and every
two maps f : Bm → X and g : Bn → X there exist maps f0 : Bm → X and
g0 : Bn → X such that ρ(f, f0) < ε, ρ(g, g0) < ε and f0(B

m) ∩ g0(B
n) = ∅. Let

m,m′, n, n′ ≥ 0, m′ ≤ m and n′ ≤ n. Then it is easy to see that the disjoint
(m,n)-cells property implies the disjoint (m′, n′)-cells property. Also, note that a
space X has the disjoint (0, 1)-cells property if and only if X contains no free arcs.

Let m ≥ 0, n ≥ 1 and m ≤ n. Note that In+m+1 is an LCn−1-continuum. In
addition, by the argument of general position, we see that In+m+1 has the disjoint
(m,n)-cells property. Also, the compactum Mn+m+1

n (see [4, p.96]) is an LCn−1-
continuum with the disjoint (m,n)-cells property (see [1]). In particular, M2n+1

n

is called the n-dimensional Menger compactum. Furthermore, if Di is a dendrite
with the dense set of end points for each i ≤ m+1, then the product space

∏m+1
i=1 Di

is an LCn−1-continuum with the disjoint (m,n)-cells property (see the proof of [2,
Theorem 2.1]).

Let f : X → Y be a map and A ⊂ X. Then f |A denotes the restriction of f
to A. If A is a subset of a space X, then ClXA denotes the closure of A in X and
IntXA denotes the interior of A in X. Also, we denote the boundary of A in X by
BdXA.

If A is a subset of a metric space (X, d) and δ > 0, then diamA denotes the
diameter of A and Ud(A, δ) denotes the set {z ∈ X | there exists a ∈ A such that
d(a, z) < δ}. If A = {x}, then we denote Ud(A, δ) by Ud(x, δ). Also, if B is a family
of subsets of X, then define meshB = sup{diamB|B ∈ B}.

IfX and Y are compacta andA andB are closed subsets ofX, then C(X,Y,A,B)
denotes the set of all maps f from X to Y such that f(A)∩ f(B) = ∅. Let N ⊂ X
and r > 0. Then we denote the set {f ∈ C(X,Y )|f−1(f(x)) = {x} for each x ∈ N}
by AN (X,Y ). If N = {a}, then we denote the set AN (X,Y ) by Aa(X,Y ). In
addition, if r > 0, then we denote the set {f ∈ C(X,Y )|diam f−1(f(x)) < r for
each x ∈ N} by AN,r(X,Y ).

If K is a simplicial complex, then |K| denotes the polyhedron of K. For each
n ≥ 0, define K(n) = {σ ∈ K|σ is at most n-dimensional}. The elements of K(0) is
called the vertices of K.

Let A is a finite family of subsets of X. By the order of A we mean the largest
integer n such that A contains n + 1 sets with non-empty intersection. The order
of A is denoted by ordA.

Finally, if A is a subset of X and U is a cover of X, then we denote the set∪
{U ∈ U|U ∩A ̸= ∅} by st(A,U).



Continuum-wise injective maps 3

3. Main Theorem

In this section we prove Theorem 1.1. First, we prove Lemma 3.1. We mention
that [3, Proposition 4.1.7] is more precise than Lemma 3.1. But in [3], there is
no proof about the proposition. Hence, for the completeness we give the proof of
Lemma 3.1.

Lemma 3.1. Let n ≥ 1. Let X be a compactum with dimX ≤ n and let Y be
an LCn−1 compactum. Then for every ε > 0, there exists δ > 0 satisfying the
following:

(⋆) If f is a map from X to Y , A is a closed subset of X and g : A → Y satisfies
ρ(f |A, g) < δ, then there exists a continuous extension g̃ : X → Y of g such that
ρ(f, g̃) < ε.

Proof. Let ε > 0. By [9, Lemma 1.1.6], we may think of Y as a subspace of a Banach
space (Z, d). Let S = {{y}|y ∈ Y } ∪ {Y }. Since Y is compact, S is a uniformly
equi-LCn−1 family of subsets of Z (as for the definition of uniformly equi-LCn,
see [8]). Hence, by [8, THEOREM 4.1] there exists δ > 0 such that if φ : X → S is
lower semi-continuous and if f : X → Z satisfies f(x) ∈ Ud(φ(x), δ) for each x ∈ X,
then there exists a continuous selection ℓ for φ such that ℓ(x) ∈ Ud(f(x), ε) (as for
the definitions of lower semi-continuous and continuous selection, see [9]). We
may assume that δ < ε.

Let f : X → Y , let A be a closed subset X and let g : A → Y be a map such
that ρ(f |A, g) < δ. Define φ : X → S by

φ(x) =

{
{g(x)} (x ∈ A)
Y (x /∈ A).

Note that φ : X → S is lower semi-continuous and f satisfies f(x) ∈ Ud(φ(x), δ)
for each x ∈ X. Hence, there there exists a continuous selection g̃ for φ such that
g̃(x) ∈ Ud(f(x), ε). Then g̃ : X → Y is a continuous extension of g such that
ρ(f, g̃) < ε. 2

Lemma 3.2. Let m ≥ 0, n ≥ 1 and m ≤ n. Let X be a compactum with dimX ≤ n
and let Y be an LCn−1-compactum with the disjoint (m,n)-cells property. Let A,B
be closed subsets of X such that A∩B = ∅. If A is an i-cell for some i ≤ m and B
is a j-cell for some j ≤ n, then C(X,Y,A,B) is a dense open subset of C(X,Y ).

Proof. It is easy to see that C(X,Y,A,B) is an open subset of C(X,Y ). Hence,
we only show that C(X,Y,A,B) is a dense subset of C(X,Y ). Let ε > 0 and
f ∈ C(X,Y ). By lemma 3.1, there exists δ > 0 such that if g : A∪B → Y satisfies
ρ(f |(A ∪ B), g) < δ, then there exists a continuous extension g̃ : X → Y of g such
that ρ(f, g̃) < ε. Note that A is an i-cell for some i ≤ m and B is a j-cell for some
j ≤ n. Since Y has the disjoint (m,n)-cells property, there exists h : A ∪ B → Y
such that ρ(f |(A∪B), h) < δ and h(A)∩h(B) = ∅. Then there exists a continuous

extension h̃ : X → Y of h such that ρ(f, h̃) < ε. Clearly, h̃ ∈ C(X,Y,A,B). Hence
we see that C(X,Y,A,B) is a dense subset of C(X,Y ). 2

By Lemma 3.2 and Baire Category Theorem, we can get the next result.

Lemma 3.3. Let m ≥ 0, n ≥ 1 and m ≤ n. Let K be a simplicial complex
with dim|K| ≤ n and let Y be an LCn−1-compactum with the disjoint (m,n)-cells
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property. Let A, B be subcomplexes of K such that |A| ∩ |B| = ∅ and dim|A| ≤ m.
Then C(|K|, Y, |A|, |B|) is a dense open subset of C(|K|, Y ).

Lemma 3.4. Let m ≥ 0, n ≥ 1 and m ≤ n. Let X be a compactum with dimX ≤ n
and let Y be an LCn−1-compactum with the disjoint (m,n)-cells property. Let A,B
be closed subsets of X such that A∩B = ∅ and dimA ≤ m. Then C(X,Y,A,B) is
a dense open subset of C(X,Y ).

Proof. We only prove that C(X,Y,A,B) is a dense subset of C(X,Y ). Let ε > 0
and f ∈ C(X,Y ). Since Y is LCn−1, there exists δ > 0 such that for every simplicial
complex K with dim|K| ≤ n and every subcomplex S of K with K(0) ⊂ S, every
map h : |S| → Y with diamh(σ ∩ |S|) < δ for each σ ∈ K has a continous extension

h̃ : |K| → Y such that diamh̃(σ) < ε for each σ ∈ K (see [9, Proposition 4.2.29]).
Since dimX ≤ n, there exists an open cover U of X such that ordU ≤ n and for
each U ∈ U , diamf(st(U,U)) < min{δ, ε}.

Let A = {U ∈ U|U ∩ A ̸= ∅} and B = {U ∈ U|U ∩ B ̸= ∅}. Since dimA ≤ m
and A ∩ B = ∅, we may assume that ordA ≤ m and A ∩ B = ∅. Let N(U) be
the nerve of U and let k : X → |N(U)| be the k-function of U (see [9, p132-134]).
For each U ∈ U , choose pU ∈ f(U). Define ℓ : |N(U)(0)| → Y by ℓ(v(U)) = pU
for each U ∈ U (v(U) denotes the vertex of N(U) associated with U). Then there

exists a continuous extension ℓ̃ : |N(U)| → Y of ℓ such that diamℓ̃(σ) < ε for each

σ ∈ N(U). Note that ρ(f, k ◦ ℓ̃) < 2ε. Also, note that |N(A)| ∩ |N(B)| = ∅ (we
consider N(A) and N(B) as subcomplexes of N(U)). By Lemma 3.3, there exists

m : |N(U)| → Y such that ρ(ℓ̃,m) < ε and m(|N(A)|) ∩m(|N(B)|) = ∅. Then it
is easy to see that ρ(f, k ◦m) < 3ε and k ◦m ∈ C(X,Y,A,B). Hence, we see that
C(X,Y,A,B) is a dense subset of C(X,Y ). 2

Theorem 3.5. Let m ≥ 0, n ≥ 1 and m ≤ n. Let X be a compactum with dimX ≤
n and let Y be an LCn−1-compactum with the disjoint (m,n)-cells property. If T
is a closed subset of X such that dimT ≤ m, then AT (X,Y ) is a dense Gδ-subset
of C(X,Y ).

Proof. Let k ∈ N and g ∈ C(X,Y ). Let C be a countable closed cover of X
such that mesh{st(C, C)|C ∈ C} < 1/k and if C ∈ C satisfies C ∩ T ̸= ∅, then
C ⊂ T . Let (D1, D

′
1), (D2, D

′
2), (D3, D

′
3), ... be a sequence of all pairs of members

of C such that for every i ∈ N, Di ⊂ T and Di ∩ D′
i = ∅. By Lemma 3.4,

C(X,Y,Di, D
′
i) is an open dense subset of C(X,Y ) for each i ∈ N. Hence, by Baire

Category Theorem
∩

i∈N C(X,Y,Di, D
′
i) is a dense Gδ-subset of C(X,Y ). Note

that
∩

i∈N C(X,Y,Di, D
′
i) ⊂ AT,1/k(X,Y ). Hence, AT,1/k(X,Y ) is a dense subset

of C(X,Y ).
By [12, Lemma 2.3], AT,1/k(X,Y ) is an open subset of C(X,Y ). Hence, by

Baire Category Theorem AT (X,Y ) =
∩

k∈N AT,1/k(X,Y ) is a dense Gδ-subset of
C(X,Y ). 2

Corollary 3.6. Let m ≥ 0, n ≥ 1 and m ≤ n. Let X be a compactum with
dimX ≤ n and let Y be an LCn−1 compactum with the disjoint (m,n)-cells property.
If F = {Fi}i∈N is a family of closed subsets of X such that dimFi ≤ m for each
i ∈ N, then A∪

F (X,Y ) is a dense Gδ-subset of C(X,Y ).

Theorem 3.7. Let m ≥ 0, n ≥ 1 and m ≤ n. Let X be a continuum with dimX ≤
n and Y be an LCn−1 continuum with the disjoint (m,n)-cells property. If T is a
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nowhere dense closed subset of X such that dimT ≤ m, then S(X,Y ) ∩ AT (X,Y )
is a dense Gδ-subset of S(X,Y ).

Proof. Let ε > 0, k ∈ N and f ∈ S(X,Y ). Then for ε > 0, by Lemma 3.1, there
exists δ > 0 satisfying (⋆).

Take a finite family of closed subsets C = {C}ℓi=1 of Y such that meshC < δ,

Y =
∪ℓ

i=1 Ci and Y ̸=
∪

i∈{1,2,...,ℓ}\{j} Ci for each j ≤ ℓ. Since f is surjective,

by Theorem 3.5 there exists g1 ∈ AT (X,Y ) such that ρ(f, g1) < min{δ, ε} and
g1(X) ∩ IntY Ci ̸= ∅ for each i ≤ ℓ. Since g1 ∈ AT (X,Y ) and T is nowhere dense
in X, for each i ≤ ℓ there exists a point ci ∈ (g1(X) \ g1(T )) ∩ IntY Ci. Let W
be an open neighborhood of g1(T ) in Y such that ClY W ∩ {c1, c2, ..., cℓ} = ∅. For
each i ≤ ℓ, take di ∈ g−1

1 (ci). Note that g1 ∈ AT,1/k(X,Y ). Hence, by [12, Lemma
2.3] there exists δ1 > 0 such that if g′ ∈ C(X,Y ) satisfies ρ(g1, g

′) < δ1, then
g′ ∈ AT,1/k(X,Y ). Then for δ1 > 0, by Lemma 3.1, there exists δ2 > 0 satisfying
(⋆).

Since T is a nowhere dense closed subset of X, there exists a closed subset H
of X and h1 : T ∪ H → Y such that H is sufficiently near to T with respect to
the Hausdorff metric on 2X , (T ∪ {d1, d2, ..., dℓ})∩H = ∅, h1|T = g1|T , h1(H) is a
closed neighborhood of g1(T ), h1(H) ⊂ W and ρ(g1|(T ∪H), h1) < min{δ, δ2}. Let
M = T ∪H ∪ {d1, d2, ..., dℓ}. Define h2 : M → Y by h2(x) = h1(x) if x ∈ T ∪H,
and h2(x) = ci if x = di for some i ≤ ℓ.

Note that ρ(g1|M,h2) < min{δ, δ2}. Hence, there exists a continuous extension
g2 : X → Y of h2 such that ρ(g1, g2) < min{ε, δ1}. Note that di ∈ g−1

2 (IntY Ci) \
g−1
2 (ClY W ) for each i ≤ ℓ. In particular, g−1

2 (IntY Ci)\g−1
2 (ClY W ) ̸= ∅ for each i ≤

ℓ. Hence, for each i ≤ ℓ there exists a Cantor set Ei ⊂ g−1
2 (IntY Ci) \ g−1

2 (ClY W ).
We may assume that Ei∩Ej = ∅ whenever i ̸= j. For each i ≤ ℓ, take a continuous

surjection ki : Ei → ClY (Ci \ g2(H)). Let D = (
∪ℓ

i=1 Ei) ∪ g−1
2 (ClY W ). Define

h3 : D → Y by

h3(x) =

{
g2(x) (x ∈ g−1

2 (ClY W )
ki(x) (x ∈ Ei for some i ≤ ℓ).

Note that ρ(g2|D,h3) < δ. Hence, there exists a continuous extension g3 : X →
Y of h3 such that ρ(g2, g3) < ε.

Note that for each x ∈ T , diam(g−1
3 (g3(x))∩ g−1

2 (ClY W )) < 1/k. Hence, by [12,
Lemma 2.3] there exists δ3 > 0 such that if g′ ∈ C(X,Y ) satisfies ρ(g3, g

′) < δ3,
then diam(g′−1(g′(x)) ∩ g−1

2 (ClY W )) < 1/k for each x ∈ T . Let r = d(g3(T ), Y \
IntY g3(H)). Let U be an open neighborhood of

∪ℓ
i=1 Ei in X such that if x ∈ U ,

then g3(x) /∈ B(g3(T ), 2r/3).
For min{r/3, δ3, ε}, by lemma 3.1, there exists δ4 > 0 satisfying (⋆). Let J =

(X \ (U ∪ g−1
2 (W )) ∪ T . By Lemma 3.4 there exists h4 : J → Y such that h4((X \

(U ∪ g−1
2 (W )))∩ h4(T ) = ∅ and ρ(g3|J, h4) < δ4. Let F = J ∪H ∪

∪ℓ
i=1 Ei. Define

h′
4 : F → Y by

h′
4(x) =

{
g3(x) (x ∈ H ∪

∪ℓ
i=1 Ei)

h4(x) (x ∈ J).

Then ρ(g3|F, h′
4) < δ4. Hence, there exists a continuous extension g4 : X → Y

of h′
4 such that ρ(g3, g4) < min{r/3, δ3, ε}.
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Then it is easy to see that g4 is surjective and ρ(f, g4) ≤ ρ(f, g1) + ρ(g1, g2) +
ρ(g2, g3) + ρ(g3, g4) < ε+ ε+ ε+ ε = 4ε. Also, we can see that ρ(g3, g4) < δ3 and
g−1
4 (g4(x)) = g−1

4 (g4(x)) ∩ g−1
2 (ClY W ) for each x ∈ T . Hence, diamg−1

4 (g4(x)) <
1/k for each x ∈ T . Consequently, g4 ∈ S(X,Y ) ∩ AT,1/k(X,Y ). Therefore,
S(X,Y ) ∩AT,1/k(X,Y ) is a dense subset of S(X,Y ).

By [12, Lemma 2.3] it is easy to see that S(X,Y ) ∩ AT,1/k(X,Y ) is an open
subset of S(X,Y ). Hence by the Baire Category Theorem S(X,Y ) ∩ AT (X,Y ) =∩

k∈N(S(X,Y ) ∩AT,1/k(X,Y )) is a dense Gδ-subset of S(X,Y ). 2

Corollary 3.8. Let m ≥ 0, n ≥ 1 and m ≤ n. Let X be a continuum with dimX ≤
n and let Y be an LCn−1 continuum with the disjoint (m,n)-cells property. If
F = {Fi}i∈N is a family of nowhere dense closed subsets of X such that dimFi ≤ m
for each i ∈ N, then S(X,Y ) ∩A∪

F (X,Y ) is a dense Gδ-subset of S(X,Y ).

Before Theorem 3.9, we give a notation. If X and Y are compacta, then we
denote the set of all continuum-wise injective maps from X to Y by CI(X,Y ).

Theorem 3.9. Let X,Y be compacta. Then CI(X,Y ) is a Gδ-subset of C(X,Y ).

Proof. Let d be an admissible metric on X and let Hd be the Hausdorff metric
on 2X induced by d. For each n ∈ N, Let In be the set of all maps f ∈ C(X,Y )
satisfying the next condition:

(♯) If K,L ∈ C(X) satisfy diamK ≥ 1/n and Hd(K,L) ≥ 1/n, then f(K) ̸=
f(L).

We claim that

(A) In is an open subset of C(X,Y ), and

(B) CI(X,Y ) =
∩

n∈N In.

First, we prove (A). We prove that C(X,Y ) \ In is a closed subset of C(X,Y ).
Note that C(X,Y ) \ In is the set of all maps f ∈ C(X,Y ) satisfying the next
condition:

(♯♯) There exist K,L ∈ C(X) such that diamK ≥ 1/n, Hd(K,L) ≥ 1/n and
f(K) = f(L)

Let f ∈ ClC(X,Y )(C(X,Y )\In). Then there exists a sequence of maps {fi}i∈N ⊂
C(X,Y ) \ In such that limfi = f . For each i ∈ N there exist Ki, Li ∈ C(X) such
that diamKi ≥ 1/n, Hd(Ki, Li) ≥ 1/n and fi(Ki) = fi(Li). We may assume that
{Ki}i∈N converges to K0 ∈ C(X) and {Li}i∈N converge to L0 ∈ C(X) respectively.
Then it is easy to see that diamK0 ≥ 1/n, Hd(K0, L0) ≥ 1/n and f(K0) = f(L0).
Hence, f ∈ C(X,Y ) \ In. Therefore C(X,Y ) \ In is a closed subset of C(X,Y ).
This completes the proof of (A).

Next we prove (B). It is easy to see that CI(X,Y ) ⊂
∩

n∈N In. So we only prove
that

∩
n∈N In ⊂ CI(X,Y ). Let f ∈

∩
n∈N In and let K,L ⊂ X be subcontinua of

X such that K is not a one point set and K ̸= L. Then, there exists n0 ∈ N such
that diamK ≥ 1/n0 and Hd(K,L) ≥ 1/n0. Since f ∈ In0

, f(K) ̸= f(L). Hence,
f ∈ CI(X,Y ) and we see that

∩
n∈N In ⊂ CI(X,Y ). This completes the proof. 2

If X and Y are compacta, then we denote the set of all hereditarily irreducible
maps from X to Y by HI(X,Y ).

The proof of Theorem 3.10 is similar to the proof of Theorem 3.9. For the
completeness, we give the proof.
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Theorem 3.10. Let X,Y be compacta. Then HI(X,Y ) is a Gδ-subset of C(X,Y ).

Proof. Let d be an admissible metric on X and let Hd be the Hausdorff metric on
2X induced by d. For each n ∈ N, Let Hn be the set of all maps f ∈ C(X,Y )
satisfying the next condition:

(♯) If K,L ∈ C(X) satisfy K ⊂ L and Hd(K,L) ≥ 1/n, then f(K) ⊊ f(L).

We claim that

(A) Hn is an open subset of C(X,Y ), and

(B) HI(X,Y ) =
∩

n∈N Hn.

First, we prove (A). We prove that C(X,Y ) \Hn is a closed subset of C(X,Y ).
Note that C(X,Y ) \ Hn is the set of all maps f ∈ C(X,Y ) satisfying the next
condition:

(♯♯) There exist K,L ∈ C(X) such that K ⊂ L, diamHd(K,L) ≥ 1/n and
f(K) = f(L).

Let f ∈ ClC(X,Y )(C(X,Y )\Hn). Then there exists a sequence of maps {fi}i∈N ⊂
C(X,Y ) \Hn such that limfi = f . For each i ∈ N there exist Ki, Li ∈ C(X) such
that Ki ⊂ Li, Hd(Ki, Li) ≥ 1/n and fi(Ki) = fi(Li). We may assume that
{Ki}i∈N converges to K ∈ C(X) and {Li}i∈N converge to L ∈ C(X) respectively.
Then it is easy to see that K ⊂ L, Hd(K,L) ≥ 1/n and f(K) = f(L). Hence,
f ∈ C(X,Y ) \Hn. This completes the proof of (A).

Next we prove (B). It is easy to see that HI(X,Y ) ⊂
∩

n∈N Hn. So we only prove
that

∩
n∈N Hn ⊂ HI(X,Y ). Let f ∈

∩
n∈N Hn and let K,L ⊂ X be subcontinua

of X such that K ⊊ L. Then, there exists n0 ∈ N such that Hd(K,L) ≥ 1/n0.
Since f ∈ Hn0 , f(K) ⊊ f(L). Hence, f ∈ HI(X,Y ) and we see that

∩
n∈N Hn ⊂

HI(X,Y ). This completes the proof. 2

Now we prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 3.9 it is sufficient to show that CI(X,Y ) ∩
S(X,Y ) is dense in S(X,Y ). Since dimX ≤ n, there exists a countable base U =
{Ui}i∈N of X such that dimBdXUi ≤ n − 1 for each i ∈ N. Let T =

∪
i∈N BdXUi.

Note that BdXUi is a nowhere dense closed subset of X for each i ∈ N. Hence,
by Corollary 3.8 AT (X,Y ) ∩ S(X,Y ) is a dense Gδ-subset of S(X,Y ). Note that
AT (X,Y )∩S(X,Y ) ⊂ CI(X,Y )∩S(X,Y ). Hence we see that CI(X,Y )∩S(X,Y )
is dense in S(X,Y ). This completes the proof. 2

By using Corollary 3.6 and Theorem 3.9 we can get the next result. The proof
of the next result is similar to the proof of Theorem 1.1. Hence, we omit the proof.

Theorem 3.11. Let n ≥ 1. Let X be a compactum with dimX ≤ n and let Y be
an LCn−1 compactum with the disjoint (n − 1, n)-cells property. Then, CI(X,Y )
is a dense Gδ-subset of C(X,Y ).

Clearly, every continuum-wise injective map is a hereditarily irreducible map.
Hence, by Theorem 1.1 and 3.10 we get the next result.

Theorem 3.12. Let n ≥ 1. Let X be a continuum with dimX ≤ n and let Y be
an LCn−1 continuum with the disjoint (n− 1, n)-cells property. Then, HI(X,Y )∩
S(X,Y ) is a dense Gδ-subset of S(X,Y ).
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Also, by Theorem 3.10 and 3.11 we get the next result.

Theorem 3.13. Let n ≥ 1. Let X be a compactum with dimX ≤ n and let Y be
an LCn−1 compactum with the disjoint (n − 1, n)-cells property. Then, HI(X,Y )
is a dense Gδ-subset of C(X,Y ).

Next example shows that there exist a 2-dimensional continuum X and an
LC1 continuum Y with the disjoint (1, 1)-cells property such that HI(X,Y ) and
HI(X,Y ) ∩ S(X,Y ) are not dense in C(X,Y ) and S(X,Y ) respectively.

Example 3.14. Let A = [0, 1/3] × I, B = [2/3, 1] × I be subspaces of I2. Let
f ′ : A ∪ B → I3 be the map defined by f ′(x, y) = (1/2, 3x, y) if (x, y) ∈ A and
f ′(x, y) = (3(x−2/3), 1/2, y) if (x, y) ∈ B. If f : I2 → I3 is a continuous extension
of f ′ and g : I2 → I3 is sufficiently near to f , then g is not a hereditarily irreducible
map.

Proof. Let g ∈ C(I2, I3) be a map sufficiently near to f . Then we can see that
there exists 0 < t < 1/2 such that g(A) ∩ (I × [t, 1− t]× [t, 1− t]) is a partition in
I×[t, 1−t]×[t, 1−t] between {0}×[t, 1−t]×[t, 1−t] and {1}×[t, 1−t]×[t, 1−t]. Then,
it is easy to see that there exists 0 < s < 1/2 such that g([2/3, 1]×[1/2−s, 1/2+s]) ⊂
I × [t, 1− t]× [t, 1− t]. We may assume that g(A) ∩ g([2/3, 1]× [1/2− s, 1/2 + s])
is a partition in g([2/3, 1]× [1/2− s, 1/2+ s]) between g({2/3}× [1/2− s, 1/2+ s])
and g({1} × [1/2 − s, 1/2 + s]). Then, g−1(g(A) ∩ g([2/3, 1] × [1/2 − s, 1/2 + s]))
is a partition in [2/3, 1]× [1/2− s, 1/2 + s] between {2/3} × [1/2− s, 1/2 + s] and
{1}× [1/2− s, 1/2 + s]. Hence, by [4, Lemma 1.8.15], there exists a nondegenerate
continuum L ⊂ g−1(g(A)∩ g([2/3, 1]× [1/2− s, 1/2+ s])). Then, g(L) ⊂ g(A). Let
J be an arc in I2 such that both J ∩ A and J ∩ L are one point sets. Then we
can see that A ∪ J ⊊ A ∪ J ∪ L and g(A ∪ J) = g(A ∪ J ∪ L). Hence g is not a
hereditarily irreducible map. 2

4. Final remarks

In this section we give some results which are related to the previous section.
First we prove next result.

Proposition 4.1. Let m ≥ 0, n ≥ 1 and m ≤ n. If X is an n-dimensional
continuum and Y is an LCn−1-continuum with the disjoint (m,n)-cells property,
then there exists a surjective map f : X → Y such that for each subcontinua
A,B ⊂ X with dim(A \B) ≥ n−m, f(A) ̸= f(B).

Proof. Let Fn = X and let Bn be a countable base for Fn such that for each B ∈ Bn,
dimBdFnB ≤ n−1. Also, let Fn−1 =

∪
B∈Bn

BdFnB and Bn−1 be a countable base
for Fn−1 such that for each B ∈ Bn−1, dimBdFn−1

B ≤ n− 2.
By induction, we obtain{Fn, Fn−1, ..., Fm} and {Bn,Bn−1, ...,Bm} such that for

each k ∈ N with m ≤ k ≤ n−1, Fk =
∪

B∈Bk+1
BdFk+1

B and Bk is a countable base

for Fk such that for each B ∈ Bk, dimBdFk
B ≤ k−1. Note that dim(Fk \Fk−1) ≤ 0

for each k ∈ N with m + 1 ≤ k ≤ n. Since X \ Fm =
∪n

k=m+1(Fk \ Fk−1), by [4,
Theorem 1.5.10], dim(X \ Fm) ≤ n−m− 1.

By Corollary 3.8, there exists f ∈ S(X,Y ) ∩ AFm(X,Y ). Let A,B ⊂ X be
subcontinua such that dim(A \ B) ≥ n − m. Then, there exists an (n − m)-
dimensional subcontinuum E ⊂ A \ B. If E ⊂ X \ Fm, then dimE ≤ n −m − 1.
This is a contradiction. Therefore, E ∩ Fm ̸= ∅. Since f ∈ AFm(X,Y ), we can
easily see that f(A) ̸= f(B). 2
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Theorem 4.2. Let m ≥ 0, n ≥ 1 and m < n. If Y is an LCn−1-compactum with
the disjoint (m,n)-cells property, then dimY ≥ m+ 1.

Proof. By Proposition 4.1 there exists f : In → Y such that for each subcontinua
A,B ⊂ X with dim(A \ B) ≥ n − m, f(A) ̸= f(B). Then, we can easily see
that dimf−1(y) ≤ n −m − 1 for each y ∈ Y . By [4, Theorem 1.12.4], we see that
n = dimIn ≤ dimY +supy∈Y dimf−1(y) ≤ dimY +n−m−1. Hence, dimY ≥ m+1.

2
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