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Abstract

In this paper, we prove a local in time unique existence theorem for some two phase problem
of compressible and compressible barotropic viscous fluid flow without surface tension in the L, in
time and the L, in space framework with 2 < p < co and N < ¢ < oo under the assumption that
the initial domain is a uniform W, ~1/% domain in RY (N > 2). After transforming a unknown time
dependent domain to the initial domain by the Lagrangian transformation, we solve problem by
contraction mapping principle with the maximal L,-L, regularity of the generalized Stokes operator
for the compressible viscous fluid flow with free boundary condition. The key step of our method is to
prove the existence of R-bounded solution operator to resolvent problem corresponding to linearized
problem. The R-boundedness combined with Weis’s operator valued Fourier multiplier theorem
implies the generation of analytic semigroup and the maximal L,-L, regularity theorem.

1 Introduction

In this paper, we consider some two phase problem for compressible and compressible viscous fluid flow
without surface tension. Our problem is formulated in the following: let Q4 be regions in RY (N > 2)
occupied by compressible barotropic viscous fluids. We assume that the boundaries of {2 consist of three
parts 'and I'y with Q4 =TUTL, Iy NT=0and Ty NT_ =0. Set Q = QL UTUQ_. Let Qp 4, ',
and I'; be time evolutions of 4, I'_ and I' respectively. We assume that Q4 N Q_, =0 (¢t > 0).

Our problem is described by the following system:

Op+ + div (p+04) =0 in Qg 4,
p+(0rUx + (Vg - V)Uip) — Div Sy(vp) + VPr(p1) =0  in Quy,
(5+(04) = Pr(p3) D)t |r 40
—(85- (V=) = P_(p-)D)7it|r,—0 = —mofit|r, , (1.1)
U4 |r,+0 = U-|r, -0,
(S—(v2) = P_(p-)D)ii_¢[r_, = —P_(po,— )ii— s,
U+|1"+ =0

for 0 < ¢ < T, subject to the initial condition (pi, ¥y )|t=0 = (po,+ + 00,4, ¥0,+). Here pr = pi(z,t)
and Uy = ¥x(z,t) = (ve1(z,t),..., v n(x,t)) are unknown mass density and unknown velocity field
respectively. po .+ are a positive constant describing reference mass density of Qy and (6o 4,7 +) is
the given initial data. Py(p) are pressure functions which are C'*°-functions defined on p > 0 and
satisfy P (p) > 0. ii; and 7i_ ; are the unit outward normal to I'; and I'_ ;, respectively. Let Si(v1) =
2uE D(Ts)+pi (div 7y )T, where D(u) = (Vu+7Vu)/2 is the N x N matrix called the Cauchy deformation
tensor !, I denotes the N x N identity matrix and ,uli and uét are viscosity coefficients with uli >0
and uli + ugt > 0. For N x N matrix function M = (M;;), the i-th component of Div M is defined
by ZévzlajMij. Moreover f|r,+0 and mp mean that f|r,+o0 = limy—zy e, , f(2,t) (vo € ;) and
o = Py (po,+) — P—(po,—) and T is a positive number describing time.
The kinematic condition for I'; and I"_ ; is satisfied, namely they give

Iy ={z =2 1) | £ €T}, I p={z =2t [l }, (1.2)

1T )M denotes the transposed M.
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where & = (&, t) is the solution to the Cauchy problem

dx — 5 1?_;,_ in Q+ ty
- =U Jf,t s Tlt=0 = &, V= . ’
dt (2.1) =0 =¢ {U in Q_ 4.

This fact means that the interface I'y and free surface I'_ ; consist of the same fluid particles, which
do not leave them and are not incident of them from inside Q4 , U Q_; for ¢ > 0. It is clear that
Qi,t = {J) = l‘(f,t) | f S Qi}

A free boundary problem for a viscous compressible barotrophic fluid has been studied by some
mathematicians. For the results for one phase problem, local in time unique existence of solutions to the
free ? ndary problem without surfac Jension in the multi-dimensional case was proved by Secchi and
Valli %lin Lo framework and by Tani %ﬁ the Holder sp ge, respectively. Later on, the same problem
with surface tension was studied by Solonnikov and Tani [12] in the Lo framework and Dennisova and
Solonnikov TFZ] TF%inn Holder spaces. enisova

For two phase problem of compressible and incompressible viscous fluids, Denisova ‘Fff—ﬁsﬁshowed
a local in time existence theorem with surface tension on I'; under the assumption that uj < p and
wi +ps < pf/R ith some positive constant R, and I'_ ; and I'y are empty sets. Recently Kubo,
Shibata and SogaoTFSg']g considered corresponding resolvent problem and showed the existence of its R-
bounded solution operator, which implies maximal L,-L, regularity theorem for linearlized problem and
the local in time existence theorem for two phase problem.

)
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On the other hand, for two phase problem of compressible and compressible viscous fluid, Tani )

studied a local in time existence theorem under the natural condition in Holder space framework. As far
as we know, there are no literatures concerning the L, approach to the two phase problem of compressible
and compressible viscous fluid. In this paper, we shall consider the two phase problem of compressible
and compressible fluid in L,-L, framework and proye the local in time existence theorem of our problem
in a similar way as Enomoto, Below and Shibata [5] and Kubo, Shibata and Sogal8]. As we shall explain
later, after transforming a unknown time dependent domain to the initial domain by the Lagrangian
transformation, we solve our problem by contraction mapping principle with maximal L,-L, regularity
theorem for the generalized Stokes operator for the compressible viscous fluid flow with free boundary
condition. Maximal L,-L, regularity theorem follows from the R-boundedness of solution operator to the
generalized resolvent equation corresponding to our liearized problem with the help of Weis’s operator
valued Fourier multiplier theorem. Therefore our goal of this paper is to prove the existence of R-bounded
solution operator.

We shall now go back to our approach. As we mentioned, we transfer Q4 ; to some fixed domain.
Our problem can be written as an initial boundary value problem in the given domain ). if we transfer
the Euler coordinates x € Q21 ; to Lagrange coordinates { € Q4. If velocity field @ (&,t) defined on Q4
is known as functions of the Lagrange coordinates & € 2., then this connection can be written in the
form

t
x:§+/0 U+ (&, s)ds = Xq, (€,1), (1.3)

where iy (§,t) = U4 (Xz, (&, t),t) are the velocity vector fields defined on €4 known as functions of the
Lagrange coordinates { € Q4. Let A1 be the Jacobi matrix of the transformation x = Xz, (£,t) with
element af; =0;; + fg(ﬁgj ux ;)(€, s)ds. There exists a small number ¢ such that Ay are invertible, that
is det Ay # 0 whenever

¢
~ max H/ (Oe,us i) (-, 8)ds <o 0<t<T). (1.4)

4,7=1,...,N 0 Loo(Q4)
In this case, we have V, = A7'V, = (I + Vo(f(;t Vi (€, 8)ds))Ve with V, = T(0,,,...,0.,) and
Ve ="T(0,,...,0), where Vo(wy) is a N x N matrix of C* functions with respect to wy = (w4 ;5),

Wi 55 = fot(agj i) (-, 5)ds, defined on [wy| < 20 and V4 (0) = 0. For the unit outer normal vector 7 and
7i_ to'and I'_, by (‘TZ)7 we see that the relation between (7i;,7_ ;) and (7, 7_) is given by
Al . AT

= 7’ . = ——— ]..5
A=) = AT (15)
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Since 9y (p(Xg, (&,t),t)det Ar) = (Op + div (ptis)) det Ay = 0, we see

p(Xay (§,1),1) = (po.+ + 0o +)(det Ax) ™! (1.6)
and
div @ = (det Ax) " 'div ¢ (T (cof AL )ad) (1.7)
with @(€,t) = wW(Xg, (€,1),t), wher denotes the cofactor matrix of A. Setting p(Xz, (&,1),t) =

po+ + 60,+(8) +0+(& 8, ﬁ)jgmd using ( 1_5 T? , we write dynamical system (1.1) in the Lagrangian coor-
dinate introduced by (I.3) as follows:

00+ + (po,i + Qo,i)div Uy = Fy ~ in Q4,
(po,+ + 00,4 )0ty — Div Sy (tit) + V(PL(po+ +00,+)0+) =G+ + G+ in Qy,
(Sy(ty) — Pi(po+ + bo,4)04+I)7i|r4o o
—(S_(d-) — P.(po,— + 0o, )0_1)iilr—o = h + H, (P)
U4 |r40 = U—|r—o,
(S_(ii_) = P’ (po,— +00,-)0_I)ii_|r— =h_+H_,
ﬁ+‘1“+ - O,

for 0 <t < T, subject to the initial condition (01,4 )|t=0 = (0, +). Here

= —PL(po+ + 00,+)V00 4,
=[Py (po.+ +00+) — Pr(po,+) —{P-(po,— +bo,—) — P_(po,— )},
h = (P_(po,— + 00,—) — P—(po,~))ii—

+
h

and Fy(04,1dy), Gy (0, ty), ﬁ(&i, i+ ) and H_ (6, @_) are nonlinear functions with respect to 61, iy
and wy = fot Vi+ (€, s)ds of the form:

Fo(fx, i)
=—0.diviy — (po,+ + 0o+ + 01)Vo(wy)diviy,
Gy(0x, 1)
= — 0404+ + Div {/ﬁVD(wi)Vﬁi + g Vaiy (ws)(Viig)}
+ Voiv (w)Div {pf (D(@4) + Vp(we ) V) + pi (div iy + Vaiy (we) Vi) }
+ Vo(w+)PL(po+ + 6o+ + 0+)V (0o, + + 0+)

1
+ V/ P:lt(p()’i + 90,:‘: + 791)(1 — 7')d7’9:2|:7
0

H(0y, i)
= — [ Vb (w)Viiy + iz (Voiv (w4 ) Vi) 117
+ 1 Vo (wo) Vi + piy (Voiy (w-) Vi )17
— Vo(w) [ (D(a4) + V(w4 )Viy) + py (divay + Vaiy (wi) (Vi) 1)
+ Vo(w )y (D(@_) + Vi (w_ )i ) + g (diva_ + Vaw (w_)(Vii_)I]ii

1
— / Pjr/(p07+ + 90’+ + 79+)(1 - T)dTaiT_L'
0

1
- / P’ (po— + 00— +70_)(1—7)dr6* 7
0

+ Vo(wi) [P+ (po+ + 0o+ +04) — P+(/)o i
— Vo(w-)[P-(po,—+0o,—+0_) — P_(po,- )],

=
(00]

@



= — (py Vp(w_)Vi_ + p5 Vaiy (w_)(diva_)I)7i_

1
+ </ P’ (po,— +6o,— +70_)(1 — T)d’l'92_> i, (1.8) | form FGH
o il

where Viiy (w+),Vp(w+) and Vpiy (w4 ) are some matrices of C*° functions with respect to wy defined
on |wy| < 20, which satisfy conditions Vi, (0) = Vp(0) = Vpiy (0) = 0 and relations: div vy =
(iizﬁi + Vaiv (wi)Vﬁi, D(ﬁi) = D(ﬁi) + VD(’wi)Vﬁi, Div KL = dlvf(l + Vbiv (wi)VI/(I with
Ky :Ki(Xﬁi(gvt)vt)' L

To state our theorem on the local well-posedness of problem (hjg), we introduce some functional spaces
and the definition of uniform W;>™*/" domain. For any domain D and 1 < ¢ < oo, Ly(D) and W;*(D)
denote the usual Lebesgue space and Sobolev space. We set Wg (D) = Lqy(D). For any Banach space X
and 1 < p < oo, Ly((a,b), X) and W]"((a,b), X) denote the usual Lebesgue space and Sobolev space of
X-valued functions defined on an interval (a,b). For 0 < # < 1 and £ = 1,2, Bg?p(D) denotes the real
interpolation space defined by B.? (D) = (Ly(D), WE(D))s,p, with real interpolation functor (-,-)g,. We

set qu = Bg,eq' - HLq(D)’ |- HWJ”(D)’ - ||Lp((a,b),X)7 [ - ||qu((a,b),X) and || - ||Bg€p(D) denote their norms.
For any functional space Y with norm | - ||y, we set Y¢ = {f = (f1,...,fa) | fi€ Y(i=1,...,d)}. For
the simplicity of notations we use | - ||y as its norm instead of || - [|y-a.

—1/r

Definition 1.1 (uniform WT2
09). We say that € is a uniform w; —ir domain, if there exist positive constants «, § and K such that

domain). Let 1 < 7 < co and let 2 be a domain in RY with boundary

for any zg = (zo1,...,Zon) € O there exist a coordinate number j, a W2'" function hE) (2 =
(331, SN 753‘]‘, ‘e ,JTN) defined on B(/X(jjo) with Ty = (1‘01, NN 7f0j, N 7ION) and ||hHW371/T(B£¥(iD)) < K
such that

QN Bg(wo) = {x € RY | 2; > h(&) (% € By (%))} N By(o),
oY N Ba(xy) = {z € RY | T = h(z) (¢ € B;(:i'o))} N Bg(zo). (1.9) |def-domain
Here (z1,...,4j,...,@N) = (¥1,...,2j-1,%j,...,2N), BL(Zo) = {& € RN | |& — #| < a} and
By(o) = o € RV | |z — ao| < 8}.
L
The following theorem is concerned with the local well-posedness of problem (%F%

‘th_LS‘ Theorem 1.2. Let N > 2, 2 < p < oo, N < g < o0 and R > 0. Let pp+ be positive constants
describing the reference mass density and let Py(p) be C* functions defined on (po+/2,2p0,+) such
that 0 < P (px) < p1,+ with certain positive constants p1 + for any px € (po,+/2,2p0,+). Let Qi be a

L

uniform WqZ*l/q domains in RN . Let 0o+ € W, (Q) and ¥+ € Bg,(plfl/p)(ﬂ)N be initial data for (

with [|6o,+[[wy (o) + ||170)i\|32<171/p)(9) < R, which satisfy the compatibility condition:
q,p
[S4(U0,4) = P (po,+ + bo,+ ) 17|40 — [S— (U0, — ) — P—(po,~ + 0o, )I]it|r—0 = —ofi|r,
00,4+ |r+0 = Yo,—|r—0, To,+|r+ =0,

[S—(Vo,—) — P—(po,— + 00— )7i_|pr_ = —P_(po,—)7i— (1.10) | compatibilit

and the range condition: ||0o +||L_(o.) < po,+/2, so that

1 3 I
=po,+ < po,+ + 0o+ < §p0,i- (1.11) ‘ range ‘

2
L
Then there exists a T > 0 depending on R such that problem (hi% admits a unique solution (01, uy) with
0 € Wy ((0,7), W, (921)), e € Wy ((0,7), Le(Q4)™) N Ly((0,T), W (Qx)™)
1.6
satisfying (‘17[) and the estimate:

10w 0,1y, W sy + Nl L, 0,1y, w2(040)) + 10kt L, ((0,1),L,04)) < Cr

with some constant Cr depending on R, po +, p1,+, ,uf, Mét, p and q.



X . ‘ trohmer L. L.
Using the argument due to Strohmer [13], we can show the W&ectlwty of the map = = Xz (§,t), so
that we have the following the local well-posedness theorem for (I.1).

Theorem 1.3. Let 2 < p < oo, N < g < oo and R > 0. AssumDeS that Q1+ are uniform qu*l/q domains.

et 0 ﬁb%ﬂ/l(ﬂi) and Uy € g?f,}*l/”) (N be initial data for (‘1_1), which satisfy compatibility condition

( .I“%, range condition (‘ A1) and (|00, +[lwz @) + ”607i||%i§_1/m(m < R. Then there exists a T > 0
(I.

DS
depending on R such that (‘1_1) with kinematic condition ) admits a unique solution (py, Uy ) with

P+ € Wpl((07 T)’ Lq(Qi,t)) N L;D((Ov T)’ qu(Qi,t))a
7 € WH(0,T), Ly(Qa.)N) N Ly((0,T), W2 (R4 )™)

Finally we introduce more symbols and functional spaces used throughout this paper. N and C
denote the sets of all natural numbers and complex numbers, respectively. We set No = N U {0}. For

1 <q<oo,let ¢ =q/(g—1). For any multi-index k = (k1,...,xx) € N, we write |k| = k1 + -+ rn
and 0% = O ... O with x = (z1,...,2zn) and 0; = 9/0x;. For the differentations of a scalar function
f and N-vector § = (¢1,...,9n), we use the following symbols:

vf:(alfavaNf)v vzf:(agf||ﬂ|:2)v

V§=(9g;|i,7=1,...,N), V%G = (0;05gx | 3,5,k =1,...,N).

We set WJ"’Z(Q) ={(/,9) | feW(Q),g¢€ WqZ(Q)N}. For Banach space X, we set

W (R, X) = {f(£) € Lpioc(R, X) | e 8] f() € Lp(R, X), (j =0,1,...,m)},
0 (R, X) = {f(t) e W7, | f(t) =0 (t <0)}

p,7,0 Y

with 07 f(t) = f(t) and set L, (R, X) = W) (R, X), Lp0(R,X) =W)_ (R, X).

Let D(R, X) and S(R, X) be the set of all X-valued C*°-functions having compact support and the
Schwartz space of rapidly decreasing X-valued functions, respectively, while S'(R, X) = L(S(R, C), X).
Given M € Ly 10c(R\ {0}, X), we define the operator Ty : F'D(R, X) — S'(R,Y) by

Ty = FHMF[y]] (Flel € D(R, X)). (1.12)

Here F,, and Fe ! denote the Fourier transform and its inversion defined by

, 1 .
_ —ix-& -1 _ ix-£
Fp©) = [ e ulayaa, 0O = g L, € Cvle
respectively. Let F,. and ]-"g, ! denote the partial Fourier transform with respect to 2’/ = (1,...,TN—-1)

and its inversion defined by

Fulul(€an) = (¢, ox) = / i€ (! Ve,

RN-1

1

Fo (€ an))(a) = @rN T

/ e (e ay)de, (1.13)
RN-1
respectively. Let £ and £~! denote the Laplace transform and its inversion, which are defined by

cinw = | T MWt = File " (1))(r),

— 0o

£ [gl() = / ) Mg(r)dr = e F g(M)](1)

=5 -
with A = v + iT € C, respectively. Given s € R and X-valued function f(t), we set

ASF(t) = LT NLIFAIN](®)-

FM
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‘th_MRl‘

The Bessel potential space of X-valued functions of order s > 0 are defined by
Hy (R, X)={f€L (R X) [ e f(t) € Ly(R, X) for any v/ > 7},
Hp o oR,X) ={feH (RX)[[f(t)=0(t<0)}

For any two Banach spaces X and Y, £(X ,Y) denotes the set of all bounded linear operators from X to
Y. Hol(U, X) denotes the set of all X-valued holomorphic functions defined on U. The letter C' denotes
generic constants and the constant C, .. depends on a, b, .... The values of constants C' and Cyp,...
may change from line to line. . h LS

Following the argument due to Enomoto, Below and Shibata ‘%ﬁ we can prove I L

traction mapping principle with the help of the maximal L,-L, results, Theorems an(ﬁ see
‘Fﬂgfor detail). Thus, this paper consists of bhe r/&?llo‘gﬁ our sectlons In Sect. 2, we present the
maximal L, L regularity theorem (Theorems and jlt
R- boun%% solutlon operator for linearized problem ( Theorem ms&seen inE %H]R%toh%elow and
Shibata [5], the maximal L,-L, regularity theorem is direct consequence of Theorem E 6 concerning the
generalized resolvent problem for the linearized equations with the help of WTtlﬁ’ Qperator galued Fourier
multiplier theorem, so that the main part of this paper is to show Theorem m, we consider
the generalized resolvent problem for the linearized problem in the half-space and we show the existence
of its R- é)gmded solution operﬁgoﬁb In d%ectall following the argumentation due to Enomoto, Below and
Shibata [5], we show Theorem 2.6.

theorem concerning the existence of
foitiathe

2 Main theorem for linear problem

th L
In order to prove Theorem 1.2, we use the contraction mapping principle based on the maximal L,-L,
regularity for solutions to the linearized problem

8t6’:t + 7 divui = fi in Q4 x (0, T),
o Eopiiy — Div Sy (1) + V(72 01) =g+ B in Q4 x (0,7),
(S (@) — 43 0 Dl o — (S () — 5 0_Dyifle_o = F,

Uy|rio = U-|r—o, B

(S_(it) 3 0-1)ii_|r_ = h_,

dylp, =0,

subject to the initial condition (64, @+)|i=0 = (o +, o +). Here ’yii = %i(a:) (i =0,1,2) are uniformly
continuous functions defined on Q4 such that

1 .
3P0+ < Yo (z) < 2po.+, 0 <~ (x) < pot (x €05, IVAE Lr9s) < P2t (2.1)

for k=1,2 and £ = 0,1, 2 with some positive constants ps + and N < r < oo. inenr
The followmg two theorems are maximal L,-L, regularity theorem for linear problem (LP). First
inear
theorem is the maximal L,-L4 regularity theorem for (;}F’) with fL =0, g+ = h=h_=0.

Theorem 2.1. Let 1 < p,q < 00 and N < r < oo. Assume that r > max(q,q’) and that Qi are
uniformly Wffl/r domains. Then there exists a positive number A1 such that the following assertion
is valid: for any initial data 6y + € W;(Qi) and Uy + € B2(1 l/p)(Qi) satisfying the compatibility
conditions:

(S4(@o,+) = ¥3 b0+ 1)itlr40 — (S—(io,—) — 3 bo,—1)iilr—o = 0,
(S—(ilo,~) = ¥g bo,~I)Ai_|r_ =0, o+ |r+o = to,—|r—0, Uo,+|r, =0,
13
problem (I}F‘ne) “admits a unique solution (0, dy) with

0 € W, 5, ((0,00), Wy (Q4)),

iy € Ly, ((0,00), W3 (Qx)™) N W, 5, ((0,00), Lg(Q2x)™)

linear



| th_MR2 |

def_R

th_Weis\

possesing the estimate:
D e (0106, 700) ||,y ((0.00). W2 (20

l=+,—

+ ) <||€ Y (B, Ytir)|| L,y ((0,00) Ly (20)) + ||€7’Ytﬁ€”Lp((O,oo),WqQ(QZ)))
=+,

<C > (Ibo.llwyon + 1ol g2-1m g, )
t=+,—

for v > Ay with some constant C. Here Ay and C depend on uli, ,ugt, q, 7, Qt, N, po.+ and pa +.
1i
Second theorem is the maximal L,-L, regularity theorem for (l]anei axfmth 0o+ =0 and %y + = 0.

Theorem 2.2. Let 1 < p,q < o0 and N < r < oo. Assume that r > max(q,q’) and that Qi are
uniformly W2_1/T domains. Then there exists a positive number Ay such that the following assertion is
(({ alid: for (fi,de) € Ly, o(R,W0(Q)) and h,h— € Ly, 0(R, wh)N )N HY? o(R, Ly ()N), problem

A
admits a unique solution (Gi,ui) with n
O € W, 5, (R, W, (Q4)), lix € Ly, (R, W2 (Qe)N) N W, 5, (R, Lg(92£)™)

possesing the estimate:

Z €™ (D8, ¥00) || 1, (w2 020y + lle ™ (Byiiy, Yite, A/ *Viig, V2iiy) || 1, =1, (02))

o=+t,—
<C Y e (e Gl 1, w0y
=+~
+C Y e (AY PR Vi AR VRO 1, 00)
=t~

for v > Ay with some constant C. Here Ay and C depend on uli, ,ugi, q, 7, Qt, N, po,+ and pa +.

14 th_MR1 th_MR2

In order to prove our main results for (I }lF’nei a( ['heorem b [ and Theorem ‘2.2 ), we introduce the eelﬁnition
of R-bounded operator family and operator valued Fourier multiplier theorem due to Weis . The
definition of R-boundedness which is the key word in our method is the following.

Definition 2.3. Let X and Y be Banach spaces. A family of operator 7 C L(X,Y) is called R-bounded
on L(X,Y), if there exist constants C' > 0 and p € [1,00) such that for any n € N, {T}}}_, C 7,

{z;}7_; C X and sequences {r;(u)}}_; of independent, symmetric, {1, 1}-valued random variables on
[0,1] there holds the inequality:

1/p 1/p

1 n
[ HZn T lfdup <04 [ 130w,
j=1

The smallest such C' is called R-bound of 7, which is denoted by R, (x,y) (7).
The following theorem is given by Weis ‘Fl%]s’

Theorem 2.4. Let X and Y be two UMD spaces and 1 < p < oo. Let M be a function in C*(R\
{0}, L(X,Y)) such that

Rexy) <{ (T%)ZM(T) |7 eR\ {0}}) <h<oo(L=0,1)

FM
with some constant k. Then the operator Ty defined by (‘1—12) may uniquely be extended to a bounded
linear operator from L,y(R,X) into L,(R,Y’). Moreover denoting this extension by T, we have

1Tmll ez, ®x)L,®Yy) < CK

for some positive constant C depending on p, X and Y.



lem_Rbound‘

_RboundOmega

The following lemma concerning the R-boundedness of the summation and composition of operator
is known (see Denk, Hieber and Prﬁﬁ‘ .

Lemma 2.5. (1) Let X and Y be Banach spaces, and let T and S be R-bounded families in L(X,Y).
ThenT+S={T+S|TeT,SeS} is also an R-bounded family in L(X,Y) and

RL(X,Y) (T + S) < Rﬁ(X’Y) (T) + Rc(XyY) (S)

(2) Let X, Y and Z be Banach spaces, and let T and S be R-bounded families in L(X,Y) and L(Y, Z),
respectively. Then ST = {ST |T € T,S € S} is also an R-bounded family in L(X,Z) and

Rex,2)(ST) S Rexyvy(T)Rey,z)(S).

th_Wei
In order to prove the maximal L,-L, regularity theorem with the help of Theorem ‘2.1, SWe need the
R-boundedness for solution operator to the following generalized resolvent problem:

My 4 yiEdiviy = fu in Oy,
Yo AMiiy — Div Su(iix) + V(7501) = §+ _ inQy,
(S4(i4) =75 04 Do — (S—(i-) — 75 0-1)it|r—o = h,
- . - (RP)
Uy |ryo —U_|r—o =k, .
(S_(d_) =7y 0_I)ii_lp_ = hi_,
11+‘F+ =0,
The resolvent parameter A varies in A, x, = 3¢z, N K, where
Ee={AeC\{0} ||argA| <m—e}, B\, ={AEX|]A] = Ao},
K. = {A € C | (ReA+ym + €)% + (ImA)? > (1 + 5)2} (2.2)

with ~,, = Rl N V2
it = max (su su Lz )
Tm pzes.Lr PR Prea_ P, . ecolvent
We can show the existence of the R-bounded solution operator to (RP) as follows:

Theorem 2.6. Let 1 < ¢ <00, 0<e<m/2 and N <r < oo. Assume that r > max(q,q’). Let Qi be
—1/r . . |set:
are uniform W, Y7 domains. Let Ac 5, be the set defined in (2.2). Set

Xq = {(f+,f7,g+,§7,ﬁ7ﬁ,,lg) ‘
fr € Wi(Qs), e € Le(Qx)™, hyho e WHQN, ke W2 ()N},
Xq = {(FO-F?FO—’F1+;F1—3F27F37F2—3F3—aF47F57F6) |
F():t S qu(Qi),Fli S Lq(Qi)N7
Fy, Fy_ F5 € LN, Fy, Fs_ Fs € L ()N, Fy e LN}
Then, there exist operator families
Pr(\) € Hol(A: ng, L(Xy, WHQ4))), Us (M) € Hol(Ac . £(Xy, WE(QL)Y))
such that for any (f+,f,,§+,§,,ﬁ7ﬁ,,g) € Xy and X € A¢ y,,
P+ = P:I:()‘)(f+7 f*? §+7 g:, VI_ia )‘1/2]_7:7 VH77 )\1/257, VQE, Al/QVE? )‘];/:)7 (23)
Ty =UsN)(fr fos Gor G VR, AR, Vo N2 0 N2k N2V E,NE) (2.4)
resolvent
solve problem (RP) uniquely. Moreover, there exists a constant C depending on €, Ao, ¢ and N such that
R, wir@yn{T0){ANPLN} [A€Ax D) <O (£=0,1),
RL(XQ,LQ(RQ)NﬂN?HN)({(Tar)e(GAzji()\)) IAEAND) <C (£=0,1),

where Gau = (Mu, yu, \Y?Vu, V2u) and X\ = v +it.

‘resolvent

‘set:2‘

‘sol—rho‘

sol-u



Let B be the linear operator defined by
B(9+,6_,1I+7ﬁ_)
— (= diviiy, —yp divi_,
(%) 7' Div Sy (@1) — (v9) 7 V(3 04), (79 )" Div S_(d-) — () 7' V(73 6-))
for (04,0_,1;,1_) € Dy(B), where
DQ(B) = {(0+79*7ﬁ+’ﬁ*) |

0r € WH(Qy), dix € W)Y,
(S (4) = 72 04 )iilr10 — (S—(d-) — 75 0-D)it|r—o = O,
(S,(’EL‘,) - ’7270*1)77]:*“‘_ = 07 ﬁ+|F+0 = ﬁ,|p,0, ﬁ+|r+ = 0}

Since Definition ‘ i Rgmt 1 implies that the boundedness of the operator family 7, it fol-
oundUmega

lows from Theorem 2. - Ao is contained in the resolvent set of B and for any A € A, and
SO

S 1-rh
(f+, f=, G+, G-, h,h_ k) € Xq, (p+,U+) given by (bSOIS)raﬁd (‘2 ZI)usatlsﬁes the estimate:

> (Wlloellwy oo + 1A, A2V, V230) 1,01 )

b=+,
<C Z (H(fg, g’g)Hqu,o(m) + ||()\1/2};, Vﬁ, Al/Qﬁ_, VE_7 VZE, )\1/2V]€, )\E)”Lq(ﬂ)) (2.5) |resolvent_es
(=+,—
1 - S
for 1 < g < co. By (‘QrGSSOi \Xlelfntﬁ h = h_ =0, we have the following theorem:

th_semigroup‘ Theorem 2.7. Let 1 < g < 00 and N < r < oco. Assume that r > max(q,q’). Let Qi be uniform
W2 domains. Then the operator B generates an analytic semigroup {T(t)}1>0 on Wi’%(ﬂ), where
Wig(Q) ={(04,0_, 1y, i) | (0+,dx) € WO (Q)}. Moreover there exists constant A3 > 0 and M > 0

such that for any ¥ = (f1,f-,§y,G-) € WLa(Q), (p+(t), p-(t), i1 (t),i(t) = T()F satisfies the
following estimate:

> (Weellwpan + el on + 1721V el 100 + V2Tl 00)
f=+,—

Ast
< M| Fllyro q)
fort > 0. Here A3 and M depend solely on uli, MQi, q, 7, Qtr, N, o, po,+ and pa +.

Following the argument due to Enomoto, ﬁ)lgboun% Shibata ‘FSE we caph (&}Dtaln Theorem 2 I nd

Theorem direct consequence of Theorem 2.6 with the ho hel ofM’l%Flhe oreover we can prove
Theorem y contraction mapping pri %iRI]Rel with Theorf E [ and for detail). Thus

. tvl% RboundOmega
omit the proof of Theorem 2 [heorem and Theorem 2.2 and show the proof of only Theorem b.G
in this paper.

‘th RboundOmega _1 + 1. o 3
In order 30 shlow ;Fheorem 2.6, suBsﬁlfu%lng the relation GE = f\v eng fr —~idiviy) given by the first

equation in e second, third and fifth equations in ( , we have

Vo Mix — Div Si( ) AWV (virddivig) = ¢, in Qu,
(S+(u+) + '71 '72 ( VU+) )ﬁ |F+O .

—(S_ (@) + 775 AN (diva_ ) D)7 |[r_o= I,
U 2.6) [2.8
Uy|r4o — U-|r—o =0, . (2.6) [2.8]
(S_(T_) + 7y A Hdiva_))ii_|p_ = h'_
ﬁ+|1—‘+ = Oa

where g_7i = gy — ANV fy, W =h ?éyf“y;)\_l(ﬁr[)mpro — v Ye AN (f-D)fi|r—o and W_ = h_+
Y1 V5 AH(f-I)fi—|r—. We shall solve (2.6) by constructing of parametrix in the similar way to Enomoto,



B
Below and Shibata ‘FS]E To this end, we need the R-bounded solution operator of the following four

problems:
+y\ 7 i > -1 RN = S ST
Yo My —DivSy (i) —A7'V(yp o diviy) =g+ in Qg
(S (@4) + 71 v A7H(div @ ) 1) [r+o . (RP1) [me1]
(S (@) + 1 7 A Meliv @)D o= F
Uy|ryo —U—|r—0 =0,
yo ) 2N AT (AT A7) — 2
{ AT, = DivS(@) = A0 div ) =5 in &Pz (5
+\ - . — —1 - 1. - — .
Yo AU— —DivS_(d_) = A"'V(y; g divi_) =g- in _, —
- P
koY WAt (RP3) [res)
and
YEMI_ —DivS_(i7_) — A 'V (yfyddivi ) = gy in RV, (RP4) |rpa|

. . . RP2 E%% L . ‘ BS . . .
Since the existence of R-bounded solution operators to @2)—( 4) is given in FSE it is sufficient to prove
the existence of the R-bounded solution operator of (RP1). For this purpose, we shall first prove the
existence of R-bounded solution operator to the following generalized resolvent problem in half-spaces:

AENIy — Div Sy (tdy) + 0V (diviy) = g in RY,
ﬁ+|1N:0+ — ’L_L‘,|IN:0, =k on Rév, (27)
(S (@) = 6(div @ ) )7 |04 —(S—(d-) = (divi_)I)7i [sy=0-=h on Ry,

(]

where 7 = (0,...,0,—1) is the unit outer normal to R™ and ’yzi(z = 0,1,2) are constants satisfying
'755 > po,+/2, &f[ and 7y2i > 0. Rf , RY and R}’ denote the upper half-space, the lower half-space and
their boundary defined by RY = {z = (z1,...,2x) € RY | £zx > 0} and RY = {z = (21,...,7n) €
RY | 2y = 0}. Let 6 and X satisfy one of the following conditions:

(C1) 6 =477 /X and X € B\, N K,

(C2) ¢ € 3, with Re § < 0 and A € C with |A| > A\p and Re A > |Re §/Im §||Im A|,
(C3) ¢ € 3. with Re § > 0 and A € C with |A] > Ag and Re A > Ag|Im A

for 0 < e < m/2 and A\g > 0. We denote I', », by

Yo, N K. in case of (C1),
oo = {A€C|A > X, Re A > |Re §/Im J|[Im A|} in case of (C2), (2.8)
{AeC| A > X Re A > Ag|Im A|} in case of (C3).

P
The case (C1) is used to prove the existence of R-bounded solution operator to (b?) and the cases
(C2) and (C3) are used for some g{{r}gg@g%gg&q%%gﬁain proving the exponential sta.mbility of analytic
semigroup in a bounded domain ([6] and [I1] in the nonslip condition cases for detail.) In case (C1),
6] = 3575 /IM < 545 Ag ! and in cases of (C2) and (C3), we assume that |§| < dy for some §y > 0.
Therefore we see

6] < max(3;95 A5 " do).- (2.9)
Then we obtain the following theorem on existence of R-bounded solution operators to (‘5.7):
th_TundH‘ Theorem 2.8. Let 1 < g < o0, 0<e<m/2 and A\g > 0. Set
Yy ={(@. 3.1 F) | G € LRY)Y, he WiRM)Y, ke WiRMM},
Vo ={(Frs, Fr—, F», F3, Fy, F5, F) |
Fie € LyRY)N, Fo, Fs € LyRM)Y", Fy, Fs € LyRM)N, Fy € LRV}

10



Then, there exist operator family Us(\) € Hol(Tc y,) such that
@y =Us(N)(Fy, G, Vi, \YV20,V2E, N2V E, NE)

P - -
solve problem (b?) uniquely for any (§+, G-, h, k) € Yy, and X € T ,. Moreover, there exists a constant
C depending on €, \g, q and N such that

Rﬁ(yq7Lq(Ri])N3+N2+2N)({(TaT)‘e(G)\Z/_{’i()\)) | A€ Fa,)\o}) <C (f =0, 1), (210)

where Gau = (Mu, yu, \Y2Vu, V2u) and X\ = v + it.

[2.2]

. . ‘ B, ith_RboundH . ‘th RboundOmega
Following the argument in Fﬂ% by Theorem 2. awt aRgha%%%eog variables, we can prove Theorem 2.6.
m 2.6 fo

oun %
T detall.

In section 4, we shall describe the proof of Theore

3 R-bounded solution operators for model problem

3.1 model problem and its solution formula
th_RboundH

P
In order to prove Theorem ‘2.8, we first reduce problem (‘2.7) to the following problem:
FENTy — Div So(01) + 6V(divay) =0 in RY,
Utlan=04 — U-|oy=0— =k _on RY, (3.1)
(S4(74) — 8(div T )T layos —(S_(7-) — 8(div T ) D) |oyeo- = on RY,

Given function fi defined on RY, f$¢ and f¢ denote their even extension and odd extension to RY,
respectively, that is

e _ f+<$) zn >0, ° B f+<$) zny >0,
+He) = {f+(ﬂc',—xN) ry <0’ fie) = {—f+(x’,—x1v) TN <0
. ) fo@, —2n) N >0, o ) —f-@,—zNy) N >0,
f_(w){f_(x) ry <0’ f_(z){f_(x xy < 0.

Let §o = (94155 9+,n5) € Lg(RY)N and set Gy = (9515, 9% N_1,9% n)- Let So(A) be the solution
operator to o Ail — Div S(@) — 6Y(Ediv @) = ¢ in RY and let S ()\) be an operator defined by S1(\)gs =
— lpata —
So(A)G4. Gotz and Shibata [7] showed that Uy = S1(N\)gys satisfies the equation
AENTy — DivS(Us) — 6V(divUy) = gp  in RY,
6NUN,i = O on R(I)V

with ﬁi = (U:I:,ly ey U:I:,N) and
R,z ({(70:) GASL(A) [ A €T }) < C (£=0,1) (3:2)

with A = v + i7 and some constant C, where Gyu = (Au, yu, \1/2Vu, V2u). Set iy = Us + ¥4 in the
equation (b.?), and then vy satisfies the equation (%1), replacing k by k — U |gy—o04 + U—|zx—0—, hj by
hyj =i (DNUy 5+ DUy n) + 1y (DNU—j + D;U— ) and hy by hy = (5 +6) X775 0,04 + (5 +
J) Z;V;ll 0;U_ ;. Thus it is sufficient to consider the problem (p. ). -

In the second step, applying the partial Fourier transform defined by (‘ITI?)), we derive a solution
formula of the problem (3.1). We consider the following generalized resolvent problem:

AENTy — Div [2uF D(g) + (43 +6) (diviy)I] =0 in RY, (3.3)
vy g —v_g=ky on RYY, (3.4)
1 (Dnvyj + Djvy n) = py (Dnv-j + Djvn) = hy on Ry, (3.5)
2u Dyvy N + (p3 +0) divoy — (2u7 Dyv— n + (pg +6)divi_) = hy on RY. (3.6)

11
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Here and hereafter, j and J run 1f1r01rn 1 through N —1 and N.
Applying the divergence to (3.3), we have [’yoi/\ - (Q,uli + ;Lg[ + 5) A] div ¥+ = 0, which implies that

[N — (205 + 13 +0) A] (35 — pf A)de = 0. (3.7)

P
Applying the partial Fourier transform to b 3)- b 6) and (%re? iaree obtain

FENTT — i [<D2 € P)T + i€V | — (uf +0) igdivEy =0,

AENTT N — i [( €27 + Dndiv m] — (uf +0) Dndive, =0, .
ﬁm, : [ — P +¢gj<m] — (g +0)ig;divi. =0, '
EN N - up [( —¢'?)v_ N—i—DNdlvv}—(u;—i—é)DNm:O
and
[0 A+ (205 + 3 +0) (€' = DR)] [To A+ wz (1€'2 = DX)] o5 = 0. (3.9)
P 2 6
By (b.rge ,a we see that the characteristic roots of (bS) are
1 1
Av=y/Cuvug+0) A+ AT Ba= /() a4 An A=l
6
By using By, we rewrite (bS) as follows:
ui (BY — D}y — (ul +u2 + ) ig;div 7y =0,
pi (B — /_‘_7\N (i + 13 +9) DNdIVU+ =0, (3.10)
py (B2 = D3)0_; — (uy + pa +96) zgjdlvv =0,
uy (B2 — ’U/\N (1 +pg +9) DNle’U_ = 0.
From now, we shall find the solution v1 ; to b (3.8) of the forms:
T = (e oA g e B, 3.11)
vy = aj(eP-TN — A=ty 4 greBoTN, (3.12)

We see that (B3 — D3)ox.y = (A3 — B3 )aFeT4+2~ and

div T = (€' - ol +i€ - B — Ba(afy + BE)e N + (Ao — i€ - al)em 4o,

divi_ = (i€ -’ +i€ - B+ B_(ay + By))eP~"N — (A_ay +if o’ )et-*N, (3.13)
where Oé:t 5 aré/zrl (ﬂl a"'aﬂN 1)
Substltutmg ‘ into E’)—IO and equating the coefficients of eFB+*N and eT4+*N | we have
ig' oy i ff — B (o + fy) =0,
i ol 4 6’ —|—B_(o@+ﬁ;,) =0
N’f (A2 32 ) _7 (lu’l + /‘LQ ) Z'gj (A+aN - Zgl Oé+) - Oa (314)
pi (A% = B)ay + (4 +pg +0) A (Apaf — i’ - o) =0,
pi (A2 = B2)ag + (g + py +0)i&5(A_ay +i€' -al) =0,
py (A% — )a;v+(u +py +6)A_(A_af +i¢ ol ) =0.
Since pi (A% — B2) + (i + pg +6) AL = (uf 4+ pud +6) A2, the fourth equation in ( L‘Tlél ) implies that
of)\} = A"2A,4¢ - a’,. By the first equation in ( %14 , we have
P R R +—7A B. 8% 3.15
i o = A B, A2 (i€"- By — B4BN)s AN = A.B — (25 ﬁ+ +ON)- (3.15)

Prepare

Prepare2

‘Prepare4

[ure

[ure
-
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Similarly, by the sixth equation and the second equation in (b.—lél), we obtain

, A? : _ _ —A
ZE’ . O/_ = m(zg’ . ﬁ/_ +B_5N)7 aN = m(’tg ﬁ + B_ ﬁN) (316)

Ne t we consider the boundary condition ‘3 4)- bG Applying the partial Fourier transform to
‘3 4)-(3.6), we obtain

ks =63 - 57, (3.17)
hi

= pi (Ar=By)af = BuBf +ig;85) —py (B-—A)ay + BB +i;8y) (3.18)
hy

=20 (Ay = Bi)ay — 2u By By + (s +90) (i€ - 5 — BLS% + (A —Bi)ay)

—2uy (Bo—A_)ay —2uy B_By — (pg +0) (i€’ - B + BBy + (B_—A_)ay). (3.19)

y (%—15) and (‘KIG), we have
ie' R
=i ((Ay = By)ig' - oy — Byi€'- B, — A?pY)
—py (B-—AL)ig' o’ + B_ig' - . — A*By)

A%(A
it (gD o~ B - B, — 425 )

A2(B_ — A
+u1‘(()(€ B. + B_By) + B_i - 3. A25;V>

A_B_
_ 7t A+(A2 — Bi)if/ . 5/ _ A2(2A+B+ _ + _ Az)ﬂJr
M\"A, B, — a2 + A B, _ A N
_(A(B2 A?) 5 L A2 B2 - 24 B)
m\ o A_B_ A2 N

and

—

hn
= (207 +p3 +06) (A — By)ay — (2uf +p3 +08) BLB% + (13 +0) i€ - Bl
— (27 + 15 +6) (B- — A )ay + (247 +py +6) BBy + (5 +0)i¢ - 5]
A
_ uf + 1 +0) y( € -8, — B A7)
— (2n +pz +9) Bwfv + (u3 +0)ig" - By

A_(A_ —
—(2u1‘+u;+6)%(§ B+ B_By)

— (2pu7 4+ py +0) B_By — (ng +96) i - p-

1 .
= A B, —A? 2uf (A% — Ay By ) + (u3 +96) (AT — A%)]ic"- B,
A2 A2 g2

A2
ot T e —
— (2uf + 3 +9) m3+ﬂ§ — (2u7 + 3 +9) mB—ﬁw

- ﬁ [2u7 (A2 — A_B_) + (py +0) (A2 — A%)]i¢’ - B_.

13
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— 3° ~ —
Substituting the relation ,6’} = 3] + k; given by d‘Tl?) into the formula of i¢’ - A’ and hy, we obtain

LA (A2 B2) A2(2A, By — B2 — A?) ~

A g, —ar &R A, B, — A N+
_ +A+(B~2F_A2) M—A*(BE_A% if/-ﬂ/
1 A,B, — A2 1 A_B_— A2 -
2A. By — B? — A? 2A_B_ — A* - pB?
_AZ T +2+ + o - -
M B, — A2 M a g —ar | PN
and
1 o~
T AB, A2 201 (A% — A By) + (g +0) (A3 — A*)]ig' - K/
A7 — A2 —~ o~
+ (2p1 + 13 +9) m3+kN +hy
1 .
= m [QMT(AEF —A4By) + (H; + 5) (Ai - A2)} i€’ Bl
“ A5 A 207 (A2 — A_B_) + (uy +9) (A2 — A%)] i€’ - -
142 __142 142 __142
+ 4+ + - - - - -
Here setting
L:I: _ _/JJ:I:Ai(B:%: B AQ)
1 DALBy - A2
2A.B, — A*—-B
Lfé ::iF/sz42 1 — 2 i,
T +B1 (3.20)
+ + + 2 2
Ly = m [2M1 Ai(Aﬂ: - Bﬁ:) + (N2 + 5) (Aj: - A )] ’
LE = — (2uf + uf +9) A=A g
22 = H1 T Mg A B, — A2 %
_ Ly L .
and L;; = Lj'j + L;;, L= <L; L;i)’ we obtain
Yy, PV YR = P AR A
L <’5 _ﬁ) = (M LIS K Lighy ) (3.21)
By hy — L3i€" - k' — Liyky
If det L # 0, the inverse of L exists and we see
(z‘f’ -6’_) _ 1 ( Lo —L12> i€’ I = Lfi¢ - K — Lizkn ) (3.22)
By det L \=L21 L1 hy — L3i€" - K — Likn

In this section, we assume det L # 0 and continue to obtain the solution formula. We shall prove
det L # 0 when A € I'; 5, in next section. By (llTZ?), we obtain

. 1 o~ _ —~ _
ig'-pL = det L [25/ ’ h/(L2+2 + Lap) — hN(L1+2 + Liy)

—ig! B(L5LH + Lt — LhLE — LpLd) — kv (Ll - LoLG)|
1 . ~ _ —~ _
~ detL {_%/ ~h'(L3; + Lyy) + hn (LY + L7,)
+i&" - k' (Ly Ly, — Ly, L3y) + kn (L3 Ly + Loy L, — L Ly, — L171L§r2} .

BN

14
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Setting

and

we see

i _
Mlh,j = _X](ng + L22)A,
AJ?QV::‘L15'+ Ly,
i&; - _
Mﬁj = _X](LQJrzLTl + L22L;r1 - LBL; - L12L;1)A’

Mf,N = _(L52L1+2 - szLérz)

i§
Mgy = =2 (Lay + Ly A,
M2,N = _(Ln + Ll_l)v
IS _
M2k,j = ZJ(LzlLﬂ - L11L2+1)A>

Mzk,N - L2+1L1+2 + L2_1LT2 - LEL% - L1_1L3_2),

i§’ - Bl =

N
det Z My JhJ “"Mlk,Jk'J(O))a

N
BN det ZMth ) + M5 sk (0)).
J=1

Moreover we have

. N
o —1§; 1 h BN k kN
at j = ALBy—AZdet L ng ((MI,J + BiMz,J)hJ(O)+ (M1,J3FBiM2,J)kJ(O)) )
Al R
- h ho\T k kAT
O = By e O (M~ BMEDR O+ (EME 5 = B )R 0)
and
B-;
B 1
py By + iy B-

(—z’@uf(m ~-By) 1

ho hoN\T ko k \7.0
B detL;(Wu B M )Ry (0) + (M ;=B M )F5(0))

i (Ao —B-)

N
1 —~ —
W R TRy DD ((atl s + BoMS R (0) + (M +B_MS ks (0)

4+

-\ N
T IT) (0 75 0) + ME T (0) 1 (1T (0) = By 5 0) + 5 0)
J=1

Summing up, we obtain the following representation formula of solutions:

N
75y = BiMs(zy) (Qi’,lzhe(O) + R ke(0))
(=

N
+ ByeTBsry Z +Ri Zk‘g( )
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N
+ ByeTBren Z( i’ihz(@) + Ri’ik@(@)),

=1
where we have set

g1 —i€ By — Ay M+ B

T AL B — A2 BidetL( 1e F BLMy,),

Js1 _ _iff Bi — Ai Mk B Mk

£ ALB. — A% B2 det L (M, F B Myy),

; +

g2 _ =& py(Ay = By) 1 b g

Qi’é Ay By — A2 M1+3+ +p; B- By detL( 1,£ + 276)
i&(nf —p7) 1 N

M.
i By +puy B_ BydetL 2,6

—i&  m(A--B) 1

M, + B_ M}
A_B_ — A% 7B, +u; B_ By detL( Le T 2.6);

+

j —i AL -By) 1
RI2 — 3] Hq ( + + ko gLk
=t Ay By — A? M1+B+ + py B_ By detL( 1,£ + 276)
el —p) 1
pi By +py B- BidetL 2,6
i pmp(A--B_) 1 . i
MF,+ B_M.
TAB A ui By +uy B_ By oL Mie F 2.0);
; 1 ,
7,3 (6 _ 7,3 3
= =3), QF,=0(#j),
=L (uf By +p~B_)By +.¢
+ .
R} ::Fu—l_ (€=j), RY, = S (£ =N),
B U By B =Y (W By +p~B_)Bz

RS, =0 (0#j,N),
—Ai Bi — Ai

N,1 _ h h

Q:l:,[ - A:EB:I: _ A2 B:2|: det L (iMl,é - BiMZ,E)?
—A By —A
N,1 + + + k k
= +M7y, — By M.

R:t,[ ALBy — A2 Bi det L ( 1,0 + 2,@)7

N,2 1 h N,3
Qui = pgap e Qe =0

N2 1 N3 N3
Ril:BidetLMQkZ’ Riezl(gzN), Ri,e:0(57éN)

By the Volevich trick:

o )b(0) = — /0 (o + u)buw) + ey + un)b (o) by
0
- / {d(n + yw)bluw) + alen + yn )b (yw) by

and the identity: 1= \/pf B2 — S0 "1 (i€,) (i€m) /B2, we define v s as follows:

(3.25)

(3.26) ‘ formQR ‘

m=1
V4,J
oo al J,1 J,1 Al/?
=F ‘7:5,1 BiM:I:(l’N"‘yN)Z Q£7£f5/[3Nhg(yN)] +R£*ZBTff5/[A1/28NkZ(yN)] dyN
0 (=1 +M1
+oo N N-1 Ri’lﬂfm
+ Fo' | BiMa(on +yn) Y D — o Fer[0mOnke] | dyn

2
0 B:I:
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S—

H_

S— oo

H_

S—

H_

S—

_H

S—

H_

S—

_H

S—

H_

S

H_

S—

H_

S—

J:2
\L/2
ByeFBelntun) Z ( i, 2 FerlOnhe(yn)] + ililBi Fer [)\1/23Nke(yN)]>] dyn
=1
! Rl
BiﬁBi(waN);mz::l 52 Fer [OmOnke(yn ]dyz\r
R73 )
BeFhelonton) Z (Qi v Fer[Onhe(yn)] + iif 2 ff’ [Al/Zang(yN)]>] dyn
~ pi B

N N—
Bie:FBi(wN"ryN)Z Z BQ

( FB4(zn+yn) —|—AiMi(xN +yN Biz
(eiFBi(wN'H/N) +AiM:|:((EN+yN B:I:Z
(eIBi(zN-‘ryN) +AiMi(l‘N+yN Biz

(e:FBi(wN+yN) + AL My(xn +yn))By Z

(=1 m=1

(=1

l=1
N

{=1
N

{=1

Bil

Fer[OmOnke(yn ] dyn

Qi ot &m
By

N-1
(m_l

J,1
’g: ]:g/ [)\k[(
Bipq

J1

= Ri, 2
3 Biivfg, 02, ke (yn )]
m=1

Z H i&m

5/ 32 ké])] dyn
j:
Qi 1t&m

N—-1 J2 A 1/2
Bie$Bi(xN+yN) 7]:5/ [A /Qhé yN
; Bipy m=1
N-1 RJ2 Nl R
Bie:FBi(:rNerN) Z ‘/':'5/ )\kg yN Z
— Bim m=1
N-1 Q
By eFBe(entun) Z i J-'g/ [Al/Qhe(yN)] Z
— 125 B m=1
N-1 RIS N— 1
Bi€$Bi(a:N+yN) ,7-"5/ )\kg yN Z
— m=1 B:t

]—“g’ [Al/zhz(yN)}] dyn

——F [Om e (?m)]) ‘| dyn

o

.7:5/ 8 hg])] dyN

yN)]] dyn

B ¢ Wmhé])] o

o)

dyn .

Let Fyg, Faje, Fiag, Fsjo and Fgjmg be corresponding variables to AY/2hy, 0k, Mke, A/28;ky and 9;0mky

respectively. For Fy = (Fyy,...,
N) and F6 - (FGWLjZ | j7

ml=1,...,

Tj:,J(F27F3aF4aF57F6)

G l=1,...,
+oo
=7
0
+oo
+
0
+oo
:F
0
+oo
+
0
+oo
:F

0

Fot
Fo'
Fot
Fo'

-1
‘Fgl

Fon), By = (Fae | g, € =1,...,

N),Fy = (Fa,. ..,
N), we define operators 71 j(\) by

Fyn), Fs = (Fsj0 |

N
)\1/2
BiMi($N+yN) ( j:éff,[FgNl]—'_Rj:eBQ if([FSN[])] dyN
=1
N N-1 Rilﬂfm
BiMi(xN +yN)Z Z B2 ff/[FﬁmNé] dyn
=1 m=1
x R
Bie:FBi(IN+yN) Z (Qi o Fer [Fsne) + i‘iBz}—E' [F5N£}>‘| dyn
=y M1y B
N N-1 Ri2ﬂ§m
Bie:FBi(xN"!‘yN) Z Z B2 Fer [Fomne] | dyn
/=1 m=1
o & R
BieTBx(@ntyn) Z Qi 5-7:6/ [Fane] + iiBsz' [Fsnel | | dyn
(=1
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Lem5.1 |

N —

oo Z m
:|:/ -7:5/ Bie:FBi TN+YN) Z :I: Z 13 }—g/ [Fsmn] ] dyn
0 ¢{=1 m=1
+oo I N
+ ~7:§71 (eIBi(xN'i‘yN) + AL My(zNy +yn)) Z .7:5' [Fae] | dyn
o —
+oo I N i i
-1 FB+(zNn+yn)
+ O Fol | (eFPENTN) 4 Ay My (zy + yn)) Z <mz_ By .7:5/ FBmF])] dyn
+o0 [ al i
+ ]_-gl ( FBi(zn+yn) + Aj:M:t(l'N + yN Z Boy :i:]:E’ FM] dyn
0 I _ Ky
+o0 I N 1
v Fot [(eFPelantun) 4 Ay My (2y + yn)) Z ( fs/ F6mme]>] dyn
0 =1
+oo i N-1 J2 /2 =
+ i fgl Bie:FBi TN+YN) ( fg/ FQZ Z ‘/Tg, F3m2]>‘| dyN
i =1 m=
+o00 I N-1 RJ2 i J2
+ ]_——1 Bie$Bi(be+yN) ]—' ,[F ] f/[F ] d
” I 3 a0 3 6mmit YN
0 I =1 Lt =1
o - 1 QJ3)\1/2 N-
+ ]igl lgi(fFBi(zN‘¥yN ( ilg ]%’-PEZ j{: J%/_Fénﬂ])} dyhf
0 L /=1 H1 + m=1
+o0 [ Nl RT p 1Ri
+ .7:571 Bi€¥Bi(xN+yN) ( ié ]:€’ [FM] - B [FGmm€]>‘| dyn. (3'27)
0 I —1 \M1 P+ m=1 %

3.2 Anaylsis of Lopatinski determinant

In order to analyze Lopatinski determinant, we shall prove the following lemma, which is one of the
essential steps in this paper.

£
Lemma 3.1. Let L be the matriz defined in (k}??rlmii. Then, there exists a positive constant w depending
on ,uli, uzi, g, Ao and dy such that

|det L| > w(|\|Y/2 + A)? (3.28)
for any X € T 5, and & € RN=1\{0}. Moreover, the following inequality holds:
067 {(70r)" (det L)'} < Cur (A + 4) 71+ (3.29)
for £ =0,1 and any multi-index k' € N) 1, X € T 5, and £ € RN-1\{0}.
lem5.1 2 lem5.1_1
Proof. Since we can prove (&3.29) by using (‘3.28) with Leibniz rule and the Bell formula
||
O S9N = D) D T k@59 (0 g(€) (3.30)
=1 Ry detr) =
AR
lem5.1_1
with f(t) =1/t and g&g = det L, it is sufficient to prove (beZmS)
Before proving (b 28, bettlng 5= max (3o, YA Ay 1), we recall that § € 3., || < § and
(sin 5) (spd +w3) < lspit + i + 01 < s + w5 +3 (331)

lem5 1 1
with s =0, 1,2. In order to prove (\3?2m8 , we consider the three cases: (i) Ri|\|}/2 < A, (i) R2A < |A\|/2,
(iif) Ry '[A\|V/? < A < Ry|\|Y/? for large Ry and R.
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First we consider the case: R;|\|[}/? < A with large R; > 1. In this case, we notice that there exists
a very small positive constant d; such that

(1 + sapis +0) AENAT] < (sin(e/2)) " (sani + sopd) R < 6,

for s1,s2 € R. Therefore we have Ay = A(1+ O(61)) and By = A(1+ O(d1)) as small d;. Since

1 (267 + py +0)pt : —
_ Pi() &), 3.32) [formp
AiBy — A% (3uf +py +0)F5 A (0,6 (3.32) [ formp |
Ay By + A?
Pi()‘ag/): I :it = At ) (3.33)
Bui +uy +0)" 1A+ A
we see that Pr()\, &) =2+ O(d;) and
1 _ w1 s+ o) 21 0(6)
ALBr — A2 (3ui + 15 +0)35 A
Therefore we can obtain
tio £ ok
2uy +py +9)
L:I: _ _/1’1 ( 1 2 A2+ 0(5 ,
T S e SR CRRCILY)
2(p1)?
Li =7 L A*(1+ 0(61)),
T3y oy 46
2(p1)?
Li = 1 1+ 0(5,)),
h= ¥t (1 0)
220 + it +8)(u) I
Li =— L -2 LLA(1 4 0(6y)), 3.34 t_Lop_1
22 30+ 46 (14 0(61)) (3.34) ‘eS—OP—

which imply that

det I — <u++ i (e +u5+5)> (u?(uf+u2++5)

+ur | A2(4+ O(6y)).
LB oy 40 Uy + g +0 “1)( (1))

. + + + ‘base .
Taking the fact: pi” > 0, pui” + pz > 0 and (3.31) into account, we see

+  A1f(pf +p3 +0)
T E
3uy +pg +0
‘ 1

E (1t Bud +p3) + uf (uf +pd) +0(pt + MT))’

€ 1
Z(sin7>7 F6uF + pud) + uf (uf +pd)) > 0.
5 3uf+u§(“1(“1 ud) + pf (uf + p3))

Summing up, we can show that there exists a positive constant w such that | det L| > wA?.
Secondly we shall consider the case RoA < \)\|1/ 2 for large Ry. In this case, we notice that there
exists a very small positive constant o such that |(s;uf + sous + )5 A~ 1A% < 6. Therefore we see

that
Ax = 2uy + 3 +6) 720NV (14 0(62)),
Bx = (u) P (35) P2 (1 4+ 0(62))

U2y )R ()

(1+0(62))
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as small Jo. By these relation, we obtain

LY = —(3gui) 2 AV2 (1 + 0(52)),
(n)Y2(2uf —u2 —9)

L = A2(1 4 0(3)),
” :Fz(lh V2 4 (2uF + s + 6)1/2 ( (62))
—2piE (i + pf + ) s
S 1/2< Eet + 2 1+ 0(82)),
N v (2uy +py +6)+ (D)2 (2u) + pg + 6)/2 ( (62))
L, = =YY 2us + pf 4+ 0)Y2 ()~ V2(1 + 0(8,)), o) [

which imply that

| det L) (3.36)
Qul g +6  2uy 4 puy +6
‘((v*u*)m (3 u0)"?) < = A1+ 0(62))- (3.37)
Yo M1 Yo M1

. + + + ﬁéﬁ . .
Since pi > 0,47 4+ u3 > 0 and (3.31), there exists a positive constant w such that | det L| > w|A|.
Thirdly, we consider the case Ry |A|Y/2 < A < Ry|A\'2. Set A = A\/(|A\[*/? + A)? and

- A - \/ W s F =~ _ A%, g
A= Ar = 0 X4 A2 Bi= Xt A2
A2+ A 2y + 1y +6 i

and

D(Ry,R2) = {(\, 4) |
(1 + R1)72 < ‘X| < R%(l + R2)2, (1 + RQ)il < g < Rl(]. + Rl)il}.

We remark (X, A) € D(Ry, Ry) if (A, ;&) satisfies the condition Ry INV2< AL R1|/\\1/2 We also define
L;; by replacing Ay, A and By by Ai, A and B respectively. And we set det L = L11L22 - L12L21 and
then we have det L = (|]\|*/2 + A)2 det L.

First we shall prove that det L # 0 provided that (X, A) € D(Ry, Rs), A ELZ by contradiction. To
this end, we assume that det L= 0, namely det L = 0. In this case, in view of (3.21) we may assume that
there exists a Wi (zx) = (Wi 1(zn), ..., we n(zy)) # 0 satisfying (b 8) and b—l %419 with 727(0) = 0
and k 7(0) = 0, that is Wy satisfy the following homogeneous equations:

N-1
Fodws; — i Y i€e(i&w e + iy ;)
=1
— uF Dy (i&jwe n + Dywa ;) — (3 + 8)i&; (i€’ - w'y + Dywg n) = 0, (3.38) [w.1]
N-1
Yo Mwsn — pif > i&(Dyws g + i§ws n)
=1
—2ufD3we v — (5 +8) Dy (i€ - w'. + Dyws n) = 0, (3.39) [w 2]
i (Dnwy j +i&ws N)|ex=0 — by (DNw— j + i€ N)|oy=0 = 0, (3.40) w3
2p7 Dnwy x4 (p3 +0) (i€ - w'y + Dywy n)|ey=0
- (Z/LIDN'IU,’N + (,u; + 6)(25, cw' DNH),’N)) (341) ‘ w_4 ‘
Let
+oo
(a,b)x = :I:/ alzn)b(xy)dzy, llall+ = V(a,a)+.
0
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w_1 w_2
Multipling (lB?S) by wx,; and (L‘TSQ) by wx n and by integration by parts, we obtain

N-1
Vo Mws 13 + 67D ((ewa o, i&5we 5)+ + [[i&ows 51|3)
=1

+ pi (iGwe v, Dywe j)+ + py || Dyws 5|3
+ (3 +0) (i - wh,igw s + (Dyws N, i§we ;)1 ) =0

and

N—1
Yo Mwe |3+ w5 (Dnws g, i&we n)+ + [[i€ws n||3) + 207 | Dvwe |13

1
+ (15 +0) ((i€' - wl, Dxws n)x + | Dywa n|3) =0,

) N-1. .
where we set i& - w!, =), i{w+ ¢. Summing up, we see

N N—-1
FoAD w13 + p e whil % + 6t D ligows ;1%
i=1 €j=1
N-1 N-1
+pi Y (i€ws n, Dnwa j)x + i7 Y [[Dnvwa 4|7
j=1 j=1
N-1
11 Y (Dywe g, i&we N2 + [i§ews v |2) + 207 | Dvwe v |[2

/=1
+ (uy +0)[|i€ - wl|3 + (13 + 6)(i€ - wl, Dywe )+
+ (13 + 6)(Dnwa v, i€ wh ) s + (15 + 0)|Dywe n |3 = 0.

Since
(iws N, Dnws )+ + [|[Dvws |13 + (Dyvws j,i&we n)+ + [|i&we v12
= |ligw j + Dyw= ;1|3

and
lig" - w |3 + (i€ - wh, Dyws n)+ + (Dnws n, i€ - wh)s + | Dywe v||2
= [li¢" - w’ + Dyw= I3,

we obtain

N N-1
TN w5113 + i g - wl % + 3 > Nigews ;113 + 207 [|IDyvws v 1%

j=1 £,j=1
N-—-1

+ui Y ligwe n + Dywa ;|13 + (3 + 0)[li€’ - wh + Dywe n||3 = 0.
j=1

. . . . w—eSt . .
Taking the real part and the imaginary part in (k}.ZIZi and using the relation:

N-1

i€ - wh % + > lli&ws ;1% + 2 Dvws I3 > 2 (1€ - whl|Z + | Dywe v 13)
0,5=1

> |li¢’ - wly + Dyws N2,
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we have

FE(ImA) K 4 (Imé) Ky = 0, (3.44)
N—-1

3o (ReA) Ky + (uy + 3 +Re 0)Ka + i Y [[i€wa j + Dyws ;)% <0, (3.45)
j=1

where we set K7 = Z;V:I |lws ;|3 and Ko = [|i€’ - w)y + Dywy |3
First we consider the case. 6 = 0. In the case where Im A # 0 and where Im A = 0 and Re A > 0, we
have Ky = 0, that is @4 = 0 In the case where Im A = 0 and Re A\ < 0, Ft folléjws from A € 3. that

A =0. Choosing &’ > 0 as uf 4+ uf —&' >0, by (mwmh)\—é—Oand (343), we have
N-1
pE Y lligwe v + Dyws |12
j=1
N-1
+e | lig" - whlZ + Y lli€wa 513 + 21 Dywe ]l | <O
£j=1

Therefore we see that ||Dywy n||l+ = 0 and ||DNwij +i§;we N|l+ = 0. Since wy j(zn) — 0 as
+ay — oo for J =1,...,N, we obtain @y = 0. Summing up, in the case 6 = 0, we obtain Wy = 0,
which contradicts to u’)’i 7£ 0. Thus we have det L # 0 when § = 0, which implies that

= inf{|det L| | (A\, A) € D(R1,Ry), X € 3,6 =0} > 0.

Since A = \/(2}1% + 1y + 5)*1'7(?X + A2 4+ O(|8]), there exists a 65 > 0 such that

inf{|det L| | (\, A) € D(Ry, R2), A € e, |6] < 65} > ¢1/2,

which implies that | det L| > w(|A|'/2 4+ A)? with some positive number w provide that Ro|\|['/? < A <
RyYAIY? and A € C with [§] < d5.

Finally, we con81der the case where d5 < |6| < 5. First we cor’mmder the case gCl)7 that is § = 535 /.
Since Re § = 475 ReA/|A|? and Im § = —7] VQiIm)\/|/\\2 by (3-44) and ( , we have

~t~t
(Im)\) (ﬁgtKl N7 K2> =0,

[A]2
i 7a (Red)
BE

FE(ReA) K + (u;—“ +pz + ) Ky <0. (3.46)
In the case Im\ = 0, it follows that Re A > o from A € X ,. Since pi +p3 > 0 and 335 > 0, we see

K, = K, = 0, which implies @4 = 0. In the case Im A # 0, by ( bZIG) we have 75 K1 = 3775 Ko /| A2
and

A
( |1A|22 (2Re A) + (ui + u§)> K, <0.

Since
~t~t + + ~+ 4 2 ~+ 4
RN 722 gt = M +2u2 <R PN 72i> +<ImA)2_< % ) ,
Al RY i+ p 1wy

w_esti

the condition A € K, ), implies K1 = Ky = 0, namely W4 = 0 by ( ‘3 44), which contradict to @y # 0.
Therefore we see that there exists a positive C%ns‘[sa{lt w such that |det L| > w. Therefore we obtain
|det L| > w(|\|*/? + A)2, which implies Lemma 3.1
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em:tech:comp

Lem.4.1‘

Secondly, we consider the case where § € X, and A satisfying that |6] < dg, Re § < 0,]|A| > Ay and
Re A > [Re ¢/Im §[|[Im A|. The case (C2) is included in this case. We prove that det L 7# 0 provided

that (X, A) € D(Ry, R,) and Re A > |Red/Imd||ImA| by contradiction. Asuume that det L = 0, that is
det L = 0. Thus by the argument above, we have

FE(ImA) K, + (Im §) Ky = 0, Y5 (ReA) K1 + (pf + p3 + Red) Ko < 0. (3.47) [3.43]

When Im A = 0 and Im 0 # 0, we have K5 = 0, so that (Re A\)K; < 0. Since Re A = Ag > 0, we have
K; = 0. Thus we have @y = 0. When Im\ # 0, Im 6 # 0 and (Im A)(Im §) > 0, we have K; = K, = 0.
On the other hand, when ImA # 0, Im ¢ # 0 and (Im A)(Im ) <0, \%%l%ave K; = |Imd/ImA| K5 by the
first formula of (3.47), so that it follows from the second formula of (3.47) that

. Im §
{ﬁ(Re ) ‘IIIEA‘ + (43 + 15 +Re 5)} Ky <0.

Since Re 6 = —|Re 6|, Re A > [Red/Imd||Im)|, we see (Re A) [Im §/Im |+ (u + pF + Re §) > 0, which
implies K7 = K5 = 0. Therefore we obtain @y = 0, which contradicts to @ #* 0. Therefore we obtain
det L # 0 and we see that there exists a positive constant w such that |det L| > w(|A|Y/2 + A)2. In a
similar way, we can obtain the case where § € X, [d] < o, Re § = 0,[A| = Ao and Re A > Ao[Im A|.
This completes the proof of Lemma 3.1. O

th_RboundH

3.3 Proof of Theorem ‘

In this section, we shall show the proof of Theorem
following lemmas which is proven by Gotz and Shibata

Lemma 3.2. Let A be a domain in C and set A =Ax (RV=I\{0}). Let m(\, &) be multipliers defined
on A such that

th_RboundH Fh RboundH

.ibaI%aorder to prove Theorem 2.8, we use the

108 {(10:) m(N, €)}] < Cor (N2 + A) 727, (3.48) [tecnt]

for any & € NN~ and (X, &) € A. Let KX (i = 1,2) be operators defined by

+oo
KEOg =+ [ R I BB 0 ] o)
+oo

Ky (Ng =+ A Fe [m\ §)BEMx(xn +yn)i(€ yn))(z') dyn-

Then, there exists a constant C' such that

RL(LQ(Rg),Lq(Rg)HMN?)({(Tar)eGAKii()\) [AeA}) <C (£=0,1, i=1,2),

where G is an operator defined by Gau = (Au, yu, \/>Vu, V3u).

. ‘lem:tech:com . . S0 orm
Applying Lemma 3.2 to each term in solution formula (%2() we shall shlo;% the existence of R-

boundedne§s soluglon operator. In order to check that the each multipler in ( satigfy. the condition
of Lemma b 2, we use “the following elementary property (see Kubo, Shibata and Soga [8] for detail).

Lemma 3.3. Let 0 <e <m/2, \p >0 and s > 0.
(1) For any A € ¥ and o, 3 > 0, we have |aX + G| > (sin(e/2))(a|\| + 3).

(2) There exists a number o € (0,7) depending on s, s, uE, No and & such that (sps + ps +6)"'\ € £,
for any A € ' 5.

(3) There exists constant d3 and 64 depending on s,,uli,uzi, Ao and € such that
O5(IAL+ 1€1%) < (st + iz +0) T A+ |2 < a1 + [€1%)

for any X € T¢ 5, and & € RN-1\{0}.
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First we start to estimate My = Ay, By, (Ax + By) and (A+ By). To this end, we use the following
estimates which follows from Lemma 3.3

c(INY? + A) < ReM, < |My| < d(INY? + A) (3.49)

o
-

for any A € I'. 5, and ¢ € RY-1\{0} with spme positive constant ¢ and ¢’ depending on ul ,uQ L€, Ao
and dp. By using (3.49) and Bell’s formula (LT3U) for the derivatives of the composite function of f(t)
and t = g(&’) and suitable coefficients F:i,‘..,n;’ we obtain

105 {(r0-)" (M1)*}] < Crr (JA]M/2  A)*~ 1] (3.50)

H

for any multi-index ' € NY7!, A € T, and ¢ € 015;1\{0}' R "
Second, we shall estimate Py (A,¢’) defined in (3.32). By Lemma &3.3,' (b.SU) and (‘330), we have

|05 {(70,) (A4 By + A2 }| < Cur (N2 + A)27 191, (3.51)
05 {(70:) (BuT + pi +65) A+ A) T < Cu (A2 + A4)~2 1] (3.52)

for £ = 0,1 and any multi-index ' € N'7', X\ € A., and ¢ € RV=1\{0}, so that by the Leibniz rule
we have

108 {(10:) PL (N, €)}| < Cr (IAIY2 + A)7I] (3.53) [estp|

for any muylti-index x/ € 1\ AEA N and £ € RN=1\{0}.
By (3.50) and (b 53) with (3.20), we see

|08 {(r0) L} < Cor (N2 + A) 1,
|08 {(70-) L} < Cur (N7 + 4)>7 7,
(18:) Ly} < Cor (A2 + A) 71

( )

|08 { (v | 2
05 {(70,) Ly} < Cor (A2 + A)- '“" (3.54) [est L
formM1 formM2
Moreover by (3.23) and (3.24), we have

08 {(70-) M | < Cor (AY2 + A)2711,
108 {(70:) MF ;| < Crr (A2 + 4311,
108 {(70:) M} ;| < Cor (A2 + A) 1,
108 {(r0-) M§ }| < Cor (IA]M/2 + A)27 17, (3.55) [esth]

formQR lem5.1_RstP
By ( 226 with dﬁ}.engi, T E%B) and (E%‘S) we have

08 {(70,) QL H < Cur (N2 4 A) 7271,
OE {(r0r) R H < Cur (N2 4 A) 727,
05 {(r0-) QT2 < Crr (IN/2 + 4)727 11,
05 {(r0:) R < Cor (A2 4 A) 41,
OE{(r0) QM < Cur (N2 4 4) 2,
08 {(10,)" RJ3}|<C (A2 4 4)~ 1=, (3.56) [ estOr]|
1 h:
Therefore the following multipliers satisfy the condition ‘3 48) in Lemma £362m techicon
07 AV2QTY %QQ 072 AI/QQ; iEmQ1 o AV2QTS g,
+.,0 B:I: B ’ +.,0 B:I: B ’ +.,0 B:I: ’ B:I: ’
S I iz Ry, AN/2RL% iR i"z NV2RY, i6nRL, R
B2 ' B ' B’ BX ' B2 ' BY ' BY ' By
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‘pro_ES‘

lem:tech:co
Therefore applying Lemma b.? to 7T, JE 5\), we have
Rop(zmy py ey et ({0 AT s(N) | A € Ae,}) < € (£=0,1), (3.57)

Ny _ N
where ﬁl(e%_}zloﬁ (F2, B3, P I, Jis) | o, Fia € Lo(R )‘
Lemma 2. .57) and , we can prove Theorem 2.8. This completes the proof of Theorem

th_RboundOmega

4 Proof of Theorem ‘2.6

We shall prove Theorem ‘%B—b%%%mt—sﬁgp is to show the existence 8f Z%ag)l%g[nded solution operator to a
bent space problem by using the change of variable and Theorem 2.8.

Let ® : RN — R be two bijections of C! class and let ®~! be their inverse maps. We set V& =
A+ B(z) and V&L = A_; + B_1(x) and assume that A and A_; are orthogonal matrices with constant
coefficients and B(z) and B_;(x) are matrices of function in W}!(RY) with N < r < oo satisfying

1B, B-1)ll Lo vy < My, IV(B, B-1)llz, ®~) < Ma. (41

~—

Set Q4 = ®(RY) and T’ = (RY).
Let v (z) and v (z) be real-valued functions defined on RY satisfying the following conditions:

1 N
JPox < o (@) <204, 0<% (@) <pis, i =i liw@e) <M IV L 0u) < Cuy

(4.2)
for £ = 0,3, where 7 (¢ = 0,3) are some constants with pp +/2 < 35 < 2pg.+ and 0 <P1ﬁ3i <psy In
the same way as in%ﬁ we can prove the existence of R-bounded solution operator to (RP1) as follows:
Theorem 4.1. Let 1 < g < o0, 0<e<m/2 and A\g > 0. Set

Yy(Qu) = {(3. G-, 0 K) | Gx € Ly(Q), he Wi(@N, ke Wi ()N},
yq(Q:I:) - {(F1+aF177F27F37F47F57F6) |
Fii € LQu)N, B, Fs € LN, FyFs € L)Y, Fye LN},

d_
Assume that ,uft >0, uli + ,uzi >0 and 73[ and 7;[ satisfy the condition (E?Zni. Then there exist constant
My € (0,1) and Ao > 1, and operator families AL ()\) € HOI(F57>\O,E())Q(Q¢),WqQ(Qi)N) such that for

anyR@Jr,gL, fz, ﬁ,) €Y, () and A €T y,, Ux = AL (N)(g, Al/Qﬁ, Vﬁ, )\1/25,, VFL,) are unique solution
to (%FCPl) Moreover Ay (X\) possess the estimate
R, u)Ly@e){(70:) GAAL (V) [ A €Ty, }) <C (6=0,1),
where Gau = (Mu, yu, \Y?Vu, V2u) and \ = v +it.
th_RboundOmega
Finally we give the proof of Theorem ‘2.6. We start with introducing the following proposition

concernipg some, important properties of a uniform Wy ~Y" Jomain that was proved in Enomoto and
Shibata g . This proposition will be used to construct a solution operator in €.

Proposition 4.2 Let N <1 < o0 and let Q4 be uniform Wf_l/r domains in RN . Let My be the
number given in (h%Then, there exist constants My >0, 0 < d°,dL,d% < 1, at most countably many
N-vector of functions <I>9,<I>}i € W2RMN and points x? erl, x;)i eIy, x?i € QL such that the
following assertions hold.

(i) The maps: RN 3z — ®)(z) € RN and RN 3z — &} (z) € RN (j € N) are bijective.

(ii) The following relations hold: Bz (221) C Oz (jEN),

o o0

Q= [ J@JRY) N B () | U | (J (@} 2®Y) N By (2 2)) | U UBdi(z?i)

j=1 j=1
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goal

Fads, & LQ(RN)NQ’ Fe € Lq(RN)NS}' B%ylv%boundH

‘const_M

‘cond_gamma



and

®Y(RY) N Byo(29) = Qs N Byo(2), ®Y(RY) N Bygo(29) =T'N Byo(2Y),
(I)},i(Rg) N Bgy (2;4) = Qs N By (] 4), ‘I’;,i(RéV) N By (zj4)=Tn By (z;+) (j €EN).

(iii) There exist C™ functions (ﬁi, and fjki (k=0,1,2, j€eN) such that

C]]'C,:I:v gt S HCJ +llwz @y, ||C lwz @y < co, Cjifl on supp C] +

supp iji, supp iji C Bgo (xj), supp iji, supp Cj,ﬂ: C Bdii (;Ujvi) (i=1,2)

2 oo oo 00
Z Z C]k:t =1 on mv Z CJQ,j: =1 onT, ZC}’:‘: =1 onl4.
j=1

k=0 j=1 j=1
Here cq is a constant independent of j € N.

(iv) VOO = A9+ B9, Vol = A + B, V@)1 =A0_ +BI_, V(@) =4+ B
where A(;, .A;':l, A?ﬁ, and .AL’_l are N x N constant orthogonal matrices and BO Bi v B;)f, and
ij_l are N x N matrices of WHRYN) functions defined in RN satisfying

(85, 85, B;

7,—

BED L@y <My, (VB VB VB

7,—

VB lp, vy < M.

(v) There exists a natural number L > 2 such that any L 4+ 1 distinct sets of {Bgo (:c(])) | j € N} and
{Bdli (2 1) | k=1,2,j € N} have an empty intersection.

fcon% Y., gl% (¢ = 0,1,2) are uniform continuous functions defined on Qi satlsfylng the conditions
.1), choosing d. > 0 smaller if necessary, we may assume that ’y — 7 < M, for any
7 ¢
x € Bypo(x ) and |y (z) — 7 e i k )| < M for any x € By (x ( 1) (k=1,2). Moreover after choosing Mo,
ES

d® and d% according to M; in Proposition E 20 we choose Mg again so large that H’Y@ 2, (Bo @) < M2
J

in

and |77 HLT(B@ @ty < M (k =1,2). Summing up, we may assume that

1
00+ <75 (@) < 20+, 0< (@) < pos (k=1,2)
in Q4N Bdo( ) and Q4 N Bdk ( ?7:‘:) (k‘ = 1,2) and

v — Vf(x?)HLm(Qidei(xg)) < My, ||V7§t||Lr(QiﬂBd?i(I?)) < My,
||,72: - ’Yl?t(x;‘i:t)HLm(QiﬁBd; (zfyi)) < Ml? ||vryét||LT(Qide;§i(iE?yi)) < M2 (é = O7 1’ 2)
In the sequel, we write B , = Bgo(2)), B}y = Bgx (2§ 1) (k= 1,2), H) . = ®Y(RY), H} , = @] L (RY),

HE = <I>?i(RN) OHY = ®V(RY), and OH) L = @] , ( &) for simplicity of notations. We define the
functlon Y5 f by

V(@) = (% (@) = @) L (2) + 77 (1)), 45T (@) = (0F (2) = 77 (25 ) (@) + 77 (2 4)
for =0,1,2, k=1,2 and j € N. We see that

1 - - .
3P0+ S5y (2) < 200, 0<pjy (2) < pox (z € Hjs),

Vi — V;Z(xé‘)lle(H;i) < M, ||V’YJZ"ZHLT(H;Yi) <Cwm, (4.3)
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and W;f(x) = ’ygi(m) in supp C;,i for £, =0,1,2, k =1,2 and j € N. Let gy € Ly(Q+) and hh_

qu(Qi). We consider the equations

’Ygo )‘“ S+ D“’Si( iy 4 ) — _1V<7;)1i’7;)2id1"“g +) = C]Q,:I:gi in M .,
(S4(80 1) + 05 A% A L(divad) )il o, 1 o (4.4)
—(Sf(ﬁ%_)ﬂji Vs ATHdiva] )D)A] g0 = CF1h,
@y lowe , — W5 _loro =0,
%0 it - DivSy (il ) - ATV (it ystdival ) =L g inHD (4.5)
_] + ‘37‘[1 =0
vio NIk —DivS_(@} ) = ATV (v divil ) =¢l G- inH_, (4.6)
(S_(@_) + 47 yls A divat )1t =,
and
'yjoi)\u — Div Si(ﬁii) - )\_1V(WJ1 'yﬂidlvu 4) = Eﬁig} in H?,i (4.7)
Here n an nﬂ aggmt}ge unit outward normals to 87‘(0_ and 8’/—[1 . Since 7 5 (£ =0, satisfy the
COIldlthlIl eorem 4.1 an e results due to Enomoto Below and Shibata [5], there exist
operator famlhes '+ (A) with

71 (N) € Hol(Te x,, LV (HY 1), Wy
T;'_(\) € Hol(Tc . LV (H] ),

k)
<
=
H_
Z

))a 7;1 ()‘) € HOI(FE )\O’E(LQ(HI' +)7 Wz(Hjl',Jr)N))v

s
Wa(HF ™)), TPL(A) € Hol(Te x,, L(Lq (M 1), Wa (HF £)™)),

where
VOHO L) = {(Fry, Fi, Fo, F) | Fie € Ly(H2 )N, Fy € Ly(HON, Fy € Ly(HO)NY,
VIHL ) = {(Fis, Fio, Fo, F3) | Fra € Ly(H} )N, Fy € Ly(HON", Fy € Ly(HH)V ).
Moreover

@ =T (N 17+, O L h), @ =T (N s,

iy =T} (NG G, (§_ho), T e = 7},:&:(>‘)<J]'c,:t§:|:7
where F)\(g, i_i) = (g, \V 25, Vf_i), uniquely solve problem (%%%f%spectively and we have their R-
boundedness:
Re@, (1 )L, (10 i)({(Tar)éGA@?i()\) [AeTl: 5} < (£=0,1),
R, ) g ) {TO) AT (V) | A €Ten}) < (¢=0,1),
R,y )Ly _ ({(Tar)éG/\'Z}%f(A) [AeTx}) <k (£=0,1),
R, ) L0 ) {(T0) GATZL(A) | A€ Ty }) < (£=0,1)

with some constant k5 independent of j € N and the following resolvent estimates:
[ L, A2Vl i,v @
|\()\uj+,/\1/2Vﬁ1- i
I(NTS, . A2V
(22 ., A2V L, v

L, ) < ka2l (S :tg:tv>\1/2éoj:haV(CNJQ,:I:h)HLq(H?,i)v
(3 NG )<H2HCJ +G+llL, (HO L)

,E
SRS SLTE S (SR

e, ) < w2ll(G Mz, )

+)
)
i)
)

:t I, (H2 ) = lizHCj,igiHLq(H;i)
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o —
@ ‘ o
N 2]

for j € N. For

oo 2.8
Gr € Lg(Qx) and h,h_ € W}(Q), we consider the equation (‘273) We set the
parametrix Uy (A) (7,

€
- S - R 4.8
hiis) = Y Gt s Since Ue(N)(Ges i) € W2HQ)Y by (19), in-
serting Us (A\) (g, h, h_) into (b?i) and noting the facts that 7 = ﬁ? on supp Cjo’i NT and 7i_ = 7} on
supp le,_ NT'_, we have

W ATE — Div Sety — AV (iyadivay) = gr — VE(A)(Fe hoho)  in Qy

(St () + 2 AT (div )i rgo —(S—(0-) + 77 72 AN (div e ) D o= h — V2(N) (g, h),
T4 |r+0 — U-|r—0 =0, .

(S—(T-) + 7 g A HdivT ) )i = K- = V3(A)(Fx, o),

1]Jr|pJr = 0

with 7y = Us (A\)(F, h, h_), where

2 oo
VL) Fe, i) ZZ(Dlei ¢t y) — (i DivSe (@ L))

=0 j=

—

P e o i,+ i,+
- )\ [v(/yjl 7_72 C 7:I:dlvuj,:‘:) Cj :I:V(’y‘yl 7_72 leu] :t)])

ﬁz@)(ﬁiﬁ) = Z <S+(C?,+172,+)—§?,+S+(ﬁ?,+) +’Y]1 ’sz AT (div (¢ 4.+ U3, +) CJ('J,eriVﬁ(;,Jr)I) ﬁ?

j=1
= (S (G- ) =S (@ 1) + A5 A5 AT div (¢ )¢ _diva )T ),
j=1
VAN i) = D (S-(¢ 8}, 1) =S (@) 1) + )i g AN div (¢ @) )~ ¢} _diva} )T) ).
j=1

By (4:8), we have VL) (Ga, hoh) € Lo(@)N and V2(A\) (G, h), V3(N) (e, k) € WHQ)Y, and

IEA(VE ) (G, By ), V2O (s 1) VPO G By 0y < NG P IFA @G By )y (49)

4.9
and choosing Ao > 1 so large that CAy 12 < 1/2 in (@) we see that (I — Vi)™! € L(Y,(Q4)) exists

and @y = UL (I — Vi) Gy, G-, h, l_“;,) is a solution to problem ( ‘Zﬁ The uniquness follows from the
existence of solutions to the dual problem, so that we may omit its proof. Moreover the R-boundedness
of solution operator from the argument due to Enomoﬁ Eibe 2loy Damd Shibata %%so that we may omit its
proof. Therefore this completes the proof of Theorem
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