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Abstract A queueing network is used to model the
flow of patients in a hospital using the observed admis-
sion rate of patients and the histogram for the length of
stay for patients in each ward. A complete log of orders
for every movement of all patients from room to room
covering two years was provided to us by the Medical
Information Department of the University of Tsukuba
Hospital in Japan. We focused on obstetric patients,
who are generally hospitalized at random times in a day,
and we analyzed the patient flow probabilistically. On
admission, each obstetric patient is assigned to a bed
in one of the two wards: one for normal delivery and
the other for high-risk delivery. Then, the patient may
be transferred between the two wards before discharge.
We confirm Little’s law of queueing theory for the pa-
tient flow in each ward. Next, we propose a new network
model of M/G/∞ and M/M/m queues to represent the
flow of these patients, which is used to predict the prob-
ability distribution for the number of patients staying
in each ward at the nightly census time. Although our
model is a very rough and simplistic approximation of
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the real patient flow, the predicted probability distri-
bution shows good agreement with the observed data.
The proposed method can be used for capacity plan-
ning of hospital wards to predict future patient load in
each ward.
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1 Introduction

The University of Tsukuba Hospital (UTH) is affiliated
to the University of Tsukuba, which is located approx-
imately 40 miles northeast of Tokyo, Japan [24]. It is
esteemed as a specific functional hospital in the Ibaraki
prefecture. Our team, which consisted of hospital staff
and OR/MS researchers in the engineering department,
conducted a healthcare service innovation project from
April 2011 to March 2014. The goal of our project was
to develop a web-based software system for controlling
admission and bed allocation of all patients using math-
ematical optimization. In addition, we analyzed the flow
of patients from admission to discharge within the hos-
pital using system-scientific techniques [23].

The Medical Information Department of UTH pro-
vided us with a complete log of orders for every move-
ment of all patients (with encrypted IDs) over a period
of two fiscal years 2010 and 2011. In particular, the logs
were collected from the night of April 1 2010 to the
night of March 31 2012. Orders for patient movements
include admission, discharge, ward transfer, room trans-
fer in the same ward, clinical group transfer, overnight
stay outside hospital, and so on. However, they do not
include details such as information about the clinical
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treatment or the condition of the patient. The statis-
tical treatment of these log data with the resulting
publication of research findings in our project was ap-
proved by the Research Ethics Committee of UTH. In
this paper, we focus on the movements of obstetric pa-
tients who are generally hospitalized at random times
through the year, unlike patients for cardiovascular or
brain surgeries, who have a more controlled admission.

Basic performance measures in patient management
in a hospital include the bed utilization and the mean
length-of-stay (LoS) per patient. Bed utilization is cal-
culated as the ratio of the mean number of patients
staying in each clinical unit or in the whole hospital to
the total number of beds in the unit or in the hospital,
respectively. The mean LoS is obtained from the hospi-
talization record of each patient. Alternatively, it can be
calculated as the ratio of the mean number of patients
present in the facility each day to the patient admis-
sion rate obtained using Little’s law from the queue-
ing theory of operations research. Taking this a step
forward, we propose an approximate queueing network
model for patient flow. Using our model, we can predict
the probability distribution for the number of patients
staying in each ward at the midnight census time us-
ing the given number of beds in the ward, the observed
rate of patient admissions, and the histogram of LoS
for each patient. Our approximation technique is vali-
dated against the data observed during the two years.
In spite of very rough approximations, we can “explain”
the patient flow with acceptable accuracy. Our method
can be used for capacity planning of hospital wards to
predict future patient load in each ward.

Preliminary reports of the present study are included
in the Proceedings of the 2013 Workshop on Visual An-
alytics in Healthcare [19] and 2014 SRII Global Confer-
ence [22]. See also Takagi [21] for the implication of the
present study in the framework of service science.

Extensive work has been carried out on the ap-
plication of system-scientific approaches, in particular,
queueing theory, to the patient flow in hospitals. For
example, surveys [6,7,10,20] and original papers [5,14–
17,26–28]. In particular, queueing network models have
been proposed and studied by Hershey et al. [12,25].
Among others, the patients in the obstetric and neona-
tal units are studied in [1,8]. Other techniques may be
discrete-event simulations of semi-Markov processes [4,
13] and agent-based simulations [2]. A book by Hall [11]
introduces general queueing-theoretic methods in detail
for a hospital, which is a typical service system.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the formulation and observed data
related to the number and LoS of all obstetric patients
in the wards of UTH during the two years 2010–2011.

These data are analyzed in the framework of Little’s
law. In Section 3, a new queueing network model for
the dominant routes of obstetric patients is proposed.
The assumptions of the Poisson arrival process and gen-
eral or exponential distributions for the LoS used in
the model are validated against the observed data us-
ing the chi-square test for “goodness-of-fit”. In Section
4, we calculate the distributions of the number of pa-
tients staying in each ward as well as in the whole hos-
pital per day during the two years 2010–2011 based on
the queueing network model. Further, a detailed com-
parison is drawn between the theoretical results and
observed values. We conclude the paper with a brief re-
mark on the success and difficulty in the modeling and
a plan for future research in Section 5. The appendix
includes the basic formulas for two relevant queueing
models M/G/∞ and M/M/m.

2 Formulation of the obstetric patient flow

The obstetric unit of UTH is called the Center for
Maternal, Fetal, and Neonatal Health for treatment of
normal as well as high-risk childbirth in Tsukuba and
southern areas of the Ibaraki prefecture. In this section,
we first present the formulation of observed data re-
lated to the number and the LoS of all obstetric patients
in the wards of UTH during the two years 2010–2011.
We then discuss the application of a generic, system-
scientific formula called Little’s law (in a finite-time
domain) to the obstetric patients treated during that
period. Little’s law is only concerned with the mean
values of the statistical quantities. Further, we show the
probability distribution for the number of all obstetric
patients who stayed in the wards of UTH on each day.

2.1 Wards of obstetric patients

There are two wards, numbered 300 and 30M, primarily
used by the obstetric unit in the UTH (The wards in
UTH moved to a new site in December 2012. All data in
this paper refer to the statistics before this movement.):

• Ward 300 with 26 beds accommodates patients with
normal delivery and also serves as a backup place
(waiting room) for patients destined to Ward 30M.

• Ward 30M is the maternal and fetal intensive care
unit (MFICU), which has six beds, for the treatment
of high-risk delivery.

Some other wards are also used by obstetric patients
when it is difficult to admit them in Wards 300 and
30M. Similarly, these two wards accommodate patients
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from other clinical units when their primary wards are
overloaded.

From the order log of all patients treated in the pe-
riod from April 1 2010 to March 31 2012, we extracted
the orders for obstetric patients. The resulting set of
orders includes those for patients hospitalized before
this period and for those who remained in the hospi-
tal after this period. We excluded the orders for these
patients from our study because we cannot know how
many days they stayed in the hospital before or after
this period. In other words, we limited ourselves to con-
sidering only those obstetric patients who were admit-
ted on and after April 1 2010, and discharged before
and on March 31 2012. Thus, we selected the set of or-
ders for P = 1, 956 patients. Because 2012 was a leap
year, there were T = 731 days during the period of our
study.

2.2 Routes of obstetric patient flow

We denote the sequence of wards in which a patient
stays from admission to discharge as the route of that
patient. We identified a set of R = 31 distinct routes
for P = 1, 956 obstetric patients under consideration
(Table 1). Let Jr be the number of wards visited by
patients of route r. From the data in the order log, we
can calculate the following quantities for route r (=
1, 2, . . . , R):

• Number of patients who take route r: Ar

• Set of wards on route r: W (r)
• Number of days that patient i of route r spends

(LoS) in ward w as the jth ward: LoSw
(r,j)(i), i =

1, 2, . . . , P . Note that LoSw
(r,j)(i) = 0 if w ̸∈ W (r).

• Mean number of days that each patient of route r
spends (LoS) in ward w as the jth ward:

E[LoSw
(r,j)] =

1
Ar

P∑
i=1

LoSw
(r,j)(i) (1)

• Patient-days of route r in ward w

PDw
r =

Jr∑
j=1

P∑
i=1

LoSw
(r,j)(i) = Ar

Jr∑
j=1

E[LoSw
(r,j)] (2)

• Patient-days of route r

PDr =
∑

w∈W (r)

PDw
r (3)

Summing all routes, we get the total number of patients
and the total patient-days as follows:

Aall =
R∑

r=1

Ar = P ; PDall =
R∑

r=1

PDr (4)

Table 1 shows Ar, {w, E[LoSw
(r,j)]}, j = 1, 2, . . . , Jr,

and PDr for route r (= 1, 2, . . . , R). Further, it shows
that Aall = 1, 956 patients and PDall = 15, 712 patient-
days for the obstetric patients of all routes. In this ta-
ble, we identify five dominant routes by an asterisk (*),
which are selected as shown in Fig. 2 below.

2.3 Number and LoS of obstetric patients

In Table 2, we show several statistics on the obstet-
ric patients in Ward 300, Ward 30M, and in the whole
hospital (all wards) during the two years 2010–2011. In
this table, for a patient assigned to Ward 300 and then
transferred to Ward 30M, we count the admission to
both wards as separate admissions. For the whole hos-
pital, we count only the external arrivals once. Patients
admitted and discharged on the same day are counted
in the number of admitted patients with LoS of 0 days
so that they do not contribute to the count of patient-
days.

The numbers in Table 2 are calculated from the or-
der log by using the following formulas for each ward w

and for the whole hospital:

(1) Patient-days in ward w
• Sum of the number of days that each patient

stays in ward w

PDw =
R∑

r=1

PDw
r =

R∑
r=1

Ar

Jr∑
j=1

E[LoSw
(r,j)] (5)

(2) Number of patients staying in ward w

• Number of patients staying in ward w on the tth
day: Nw(t), t = 1, 2, . . . , T .

• Number of patients staying in the hospital on
the tth day: Nall(t), t = 1, 2, . . . , T .

• Sum of the number of patients staying in ward
w and in the hospital during the two years

PDw =
T∑

t=1

Nw(t) ; PDall =
T∑

t=1

Nall(t), (6)

which agrees with PDw in Eq. (5) and PDall in
Eq. (4), respectively.

• Mean number of patients staying in ward w and
in the hospital per day

E[Nw] =
PDw

T
; E[Nall] =

PDall

T
(7)

• Bed utilization of ward w

Uw =
E[Nw]

Bw
=

PDw

BwT
, (8)

where Bw is the number of beds in ward w.
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Table 1 Characteristics of the 31 routes of obstetric patients. Five routes with an asterisk (*) are the dominant routes. The
annotation “(4th)”, “(5th)”, and “(6th)” indicates the 4th, 5th, and 6th ward, respectively, for routes 29, 30, and 31. Wards
300 (mostly for patients of normal delivery) and 30M (for patients of high-risk delivery) are the two wards of primary concern.
Other wards such as 130, 401, and 501 belong to other clinical units used temporarily by obstetric patients.

Route Number of 1st Mean 2nd Mean 3rd Mean Patient-
patients ward LoS ward LoS ward LoS days

1 1 130 1.0000 1
2 * 1,582 300 6.5215 10,317
3 5 401 8.2000 41
4 2 501 16.5000 33
5 1 601 7.0000 7
6 1 830 2.0000 2
7 9 901 1.5556 14
8 7 930 2.7143 19
9 * 81 30M 7.6667 621
10 1 30 1.0000 300 4.0000 5
11 2 130 0.0000 300 5.0000 10
12 1 300 43.0000 30 1.0000 44
13 3 300 4.3333 901 5.0000 28
14 3 300 5.0000 930 4.6667 29
15 * 25 300 2.4000 30M 14.1600 414
16 1 401 1.0000 300 5.0000 6
17 1 430 2.0000 300 3.0000 5
18 2 530 1.0000 300 4.0000 10
19 4 601 0.5000 300 5.5000 24
20 4 901 0.2500 300 5.2500 22
21 3 930 6.6667 300 3.6667 31
22 1 930 1.0000 30M 12.0000 13
23 * 176 30M 10.5909 300 7.1250 3,118
24 3 300 7.0000 400 1.6667 300 3.3333 36
25 1 300 1.0000 401 5.0000 300 2.0000 8
26 1 300 12.0000 930 1.0000 300 2.0000 15
27 * 30 300 3.4000 30M 14.0667 300 6.7000 725
28 1 430 3.0000 400 2.0000 300 6.0000 11
29 2 30M 1.5000 300 12.5000 400 1.5000

(4th) 300 7.0000 45
30 1 300 6.0000 30M 18.0000 300 0.0000

(4th) 430 2.0000 (5th) 300 6.0000 32
31 1 300 5.0000 30M 4.0000 300 0.0000

(4th) 430 7.0000 (5th) 400 5.0000 (6th) 300 5.0000 26

Dominant 1,894 15,195
Total 1,956 15,712

(3) Number of patients arriving in ward w
• Number of patients who arrive in ward w (from

outside as well as from other wards in the hos-
pital) on the tth day: Aw(t), t = 1, 2, . . . , T .

• Number of patients who arrive in the hospital
from outside on the tth day: Aall(t), where only
external arrivals are counted, t = 1, 2, . . . , T .

• Sum of the number of patients arriving in ward
w and in the hospital during the two years

Aw =
T∑

t=1

Aw(t) ; Aall =
T∑

t=1

Aall(t), (9)

where Aall agrees with that in Eq. (4).

• Mean number of patients arriving in ward w and
in the hospital per day (arrival rate)

E[Aw] =
Aw

T
; E[Aall] =

Aall

T
(10)

(4) Mean LoS
• Mean number of days that a patient stays in

ward w and in the hospital

E[LoSw] =
PDw

Aw
=

E[Nw]
E[Aw]

,

E[LoSall] =
PDall

Aall
=

E[Nall]
E[Aall]

(11)

The second equalities in these equations are instances
of Little’s law shown below.
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Table 2 Statistics on the obstetric patients in Ward 300, Ward 30M, and in the whole hospital during two years 2010–2011.

Ward w Ward 300 Ward 30M All

Number of beds Bw 26 6
Patient-days PDw 12,204 3,298 15,712
Mean number of patients staying each day E[Nw] 16.6949 4.5116 21.4938
Bed utilization Uw 64.21% 75.19%
Total number of admitted patients Aw 1,889 317 1,956
Patients arrival rate per day E[Aw] 2.5841 0.4337 2.6758
Mean LoS in days E[LoSw] 6.4606 10.4038 8.0327

2.4 Statistics on the patients in Wards 300 and 30M

Let us calculate the numbers in Table 2. First, we con-
sider Ward 300 (mostly for patients of normal delivery)
where there are B300 = 26 beds. Summing LoS300

(r,j)(i)
for all patients using Eq. (5), we get PD300 = 12, 204.
Therefore, the mean number of patients staying in bed
on each day is E[N300] = 12, 204/731 = 16.6949, which
leads to bed utilization U300 = 16.695/26 = 0.6421.
On the other hand, since A300 = 1, 889 patients were
admitted during the two years, the arrival rate was
E[A300] = 1, 889/731 = 2.5841 patients/day. Then, the
mean LoS for each patient in Ward 300 is computed by
Eq. (11) as E[LoS300] = PD300/A300 = 12, 204/1, 889 =
6.4606 days. This result is reasonable because, in Japan,
a mother with normal delivery usually stays for five
days in a hospital after delivery. Therefore, if a baby is
born on the day of admission, the mother stays for five
nights. However, if a baby is born on the day following
the admission, she stays for six days in the hospital.
Mothers with abnormal delivery may stay a few more
days in the hospital.

Similar calculation for Ward 30M (for patients of
high-risk delivery) with B30M = 6 beds yields PD30M =
3, 298. Then, we have E[N30M] = 3, 298/731 = 4.5116
and U30M = 4.5116/6 = 0.7519. From A30M = 317,
we get E[A30M] = 317/731 = 0.4337 and E[LoS30M] =
3, 298/317 = 10.4038 days. This is longer than that in
Ward 300, because mothers with high-risk delivery are
accommodated in Ward 30M.

For all obstetric patients, we have PDall = 15, 712
and Aall = 1, 956. Then, we get E[Nall] = 15, 712/731 =
21.4938 and E[Aall] = 1, 956/731 = 2.6758, which lead
to an overall E[LoSall] = 15, 712/1, 956 = 8.0327 days.

2.5 Little’s law for obstetric patients

Let us briefly refer to the application of Little’s law in
queueing theory to the patient flow in a clinical unit of
a hospital [10]. If we write

L = E[Nw] ; λ = E[Aw] ; W = E[LoSw]

for ward w and

L = E[Nall] ; λ = E[Aall] ; W = E[LoSall]

for the whole hospital, both relations in Eq. (11) are
examples of Little’s law [9, p.10], [11, p.30]:

L = λW. (12)

The condition for this law to hold for a system in an
infinite-time domain is that the system is stable in the
sense that the number of customers present in the sys-
tem does not grow indefinitely. In such a case, Little’s
law refers to the relationship that holds for the long-run
limits of stochastic variables in the equilibrium state.
In this paper, however, we confirmed Eq. (12) only for
P = 1, 956 obstetric patients recorded in the order log
during the two years 2010–2011. Thus, the confirma-
tion of Little’s law verifies the correctness of counting
the number of patients each day and the LoS for each
patient. Multiplying both sides of Eq. (12) by T , we
have the following two expressions for patient-days:

Patient-days = LT = AW, where A = λT,

as illustrated in Eq. (11) for ward w.

2.6 Distribution for the number of patients in wards

Table 2 shows only the mean of the number of patients
staying in each ward or in the hospital on a day. How-
ever, we can also find the distribution for the number
of hospitalized patients. To do so for ward w, we note
that the probability distribution for the number of days
on which k patients stayed in ward w during the two
years 2010–2011 is given by

P{Nw = k} =
1
T

T∑
t=1

I{Nw(t) = k} 0 ≤ k ≤ Bw,

(13)

where Nw(t) is defined in Section 2.3, and I{·} is the
indicator function. Similarly, we have the probability
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distribution for the number of days on which k patients
stayed in the hospital during the two years as

P{Nall = k} =
1
T

T∑
t=1

I{Nall(t) = k} k ≥ 0, (14)

where Nall(t) is defined in Section 2.3. We note the
normalization conditions for the distribution

Bw∑
k=0

P{Nw = k} = 1 ;
∞∑

k=0

P{Nall = k} = 1

From Eqs. (13) and (14), we can calculate the mean
number of patients in ward w or in the hospital per day
as follows:

E[Nw] =
Bw∑
k=1

kP{Nw = k};

E[Nall] =
∞∑

k=1

kP{Nw = k}, (15)

which gives the same numerical values for E[Nw] and
E[Nall] as in Eq. (7).

Figure 1 shows T ·P{N300 = k}, T ·P{N30M = k},
and T · P{Nall = k}, respectively, which are the num-
bers of days for the number of patients who stayed in
Ward 300, Ward 30M, and in the whole hospital (all
wards) per day during the two years 2010–2011. These
numbers have been obtained from the histogram for
the number of days each patient stayed during the two
years. It is interesting to observe that the distribution
for Ward 300 shown in Fig. 1 (a) is almost zero up to 7,
and then, it appears rather symmetric about the mean
value 16.695. The likelihood that Ward 300 is fully oc-
cupied is very small; the probability that all beds in
Ward 300 are occupied on an arbitrary day is 5/731 =
0.00684, which is less than 1%. However, the distribu-
tion for Ward 30M shown in Fig. 1 (b) monotonically
increases up to the capacity of six patients. The prob-
ability that all beds in Ward 30M are occupied on an
arbitrary day is 238/731 = 0.3256, which is nearly equal
to one third. Figure 1 (c) shows the distribution of the
number of days during the two years for the number of
all obstetric patients staying on each day in the whole
hospital. The characteristic of this distribution is simi-
lar to that for Ward 300 in Fig. 1 (a), as a large portion
of obstetric patients stay in Ward 300.

3 Queueing network model of the obstetric
patient flow

It is very difficult to construct a mathematically precise
queueing network model to represent the entire patient
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Fig. 1 Distribution of the number of days during the two
years 2010–2011 for the number of obstetric patients in Wards
300, 30M, and all wards per day.

flow incorporating all routes given in Table 1. However,
in the present case, we can extract five dominant routes
in terms of patient-days out of the 31 routes. In addi-
tion, a sophisticated model would not be needed for the
practical estimation of the number of patients staying
in each ward per day.

In this section, we propose the use of two conven-
tional queueing models, M/G/∞ and M/M/m, in our
queueing network model for the patient flow of five
dominant routes. Naturally, the M/G/∞ queue is used
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All routes (1,956 patients) 12,204 3,298 15,712

Others

(62 patients)

- · · · -· · ·300 · · ·30M 270

(2.2%)

37

(1.1%)

517

(3.3%)

5 dominant routes (1,894 patients) 11,934

(97.8%)

3,261

(98.9%)

15,195

(96.7%)

Route 27

(30 patients)

- 300 - 30M - 300 - 303

(2.5%)

422

(12.8%)

725

(4.6%)

Route 23

(176 patients)

- 30M - 300 - 1,254

(10.3%)

1,864

(56.5%)

3,118

(19.8%)

Route 15

(25 patients)

- 300 - 30M - 60

(0.5%)

354

(10.7%)

414

(2.6%)

Route 9

(81 patients)

- 30M - 0 621

(18.8%)

621

(4.0%)

Route 2

(1,582 patients)

- 300 - 10,317

(84.5%)

0 10,317

(65.7%)

Wards 300 30M Total

Fig. 2 Dominant routes of obstetric patients in terms of patient-days.

to model Ward 300, which has a sufficient number of
beds. (Fig. 1 (a) shows that there is little possibility
that all beds are used in Ward 300.) A unique feature
of our queueing network model is the capability to use
the waiting room of the M/M/m queue to model those
set of patients staying in Ward 300 while they are wait-
ing for beds in Ward 30M. Therefore, only the service
facility of the M/M/m queue is used to model Ward
30M. We examine the assumption of Poisson processes
in the arrival and departure processes from the queues
that are to be used to model these wards. Further, we
compute the mean value and the distribution for the
LoS of patients in the wards on each route. See the ap-
pendix for the formulas of queueing theory used in our
analysis.

3.1 Selection of dominant routes

Let us start with selecting the dominant routes in the
patient flow by means of numerical evaluation. To do
so, we calculate the load (patient-days) for each route
by summing the load of patients over all wards on that
route, where the load of patients in a ward is defined as
the sum of LoS for all patients who stayed in that ward
on that route. The load of each route is shown in Table
1. As a result, Fig. 2 displays the load of obstetric pa-
tients on dominant routes 2, 9, 15, 23, and 27 along with
the load on all other routes. Since the set of patients
on these routes accounts for 96.7% of all loads, we will
consider only these patients in our analysis of the ob-

stetric patient flow in the following sections. In terms
of the number of patients who take dominant routes,
we consider a set of 1,894 patients, which accounts for
96.8% out of a total of 1,956 obstetric patients.

3.2 Network of queues

From the data analysis of the order log provided by the
UTH, we found that a dominant portion of the obstetric
patient flow consists of five routes 2, 9, 15, 23, and 27
marked by an asterisk (*) in the first column in Table 1.
The patients of route 2 are those who have normal de-
livery. These patients stay only in Ward 300 and simply
leave the hospital in approximately six days. The pa-
tients of routes 9, 15, 23, and 27 are assumed to be those
with high-risk delivery. They are to be treated in Ward
30M. Upon arrival, they are admitted to Ward 30M im-
mediately if beds are available. After giving birth, they
either leave the hospital (route 9) or move to Ward 300
possibly for after-birth treatment (route 23). If there
are no beds available in Ward 30M when they arrive,
they are temporarily accommodated in Ward 300 un-
til beds become available in Ward 30M. Then, they are
transferred to Ward 30M. After giving birth there, they
either leave the hospital (route 15) or move back to
Ward 300 possibly for after-birth treatment (route 27).

Based on the above conjecture, we consider the dom-
inant flow of the obstetric patients shown in Fig. 3,
where λr denotes the arrival rate of route r patients,
and bw

(r,j) denotes the LoS in days that patients of route
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Fig. 3 Dominant flow of the obstetric patients.

r stay in ward w as the jth ward of the route. Numer-
ical values for the parameters of arrival rates and LoS
are provided from the order log. This flow is mapped
to a queueing network model consisting of an M/G/∞
queue and an M/M/6 queue shown in Fig. 4. Ward 300
is modeled by a combination of the M/G/∞ queue and
the waiting room of the M/M/6 queue, while Ward 30M
is modeled by the service facility of the M/M/6 queue.

Our model is approximate from a queueing-theoretic
viewpoint in the following sense:
• The stochastic process for the patient flow under

study is essentially a discrete-time system in which
arrivals, departures, and LoS are recorded on a daily
basis, while both M/G/∞ and M/M/m queues work
in the continuous-time framework.

• The movement of patients of routes 15 and 27 from
Ward 300 to Ward 30M, i.e., from the waiting room
to the service facility in the same M/M/m queue, is
not a Poisson process even in the continuous-time
framework.

On the other hand, the residence of patients in each
ward is treated as if they were independent while the
entrance of patients of route 27 patients twice into Ward
300 clearly violates this assumption. However, such treat-
ment has been proven valid in the continuous-time frame-
work of a Jackson-type queueing network with product-
form solution [9, p.210].

Considering these pros and cons, we propose a queue-
ing network model of M/G/∞ and M/M/m queues be-
cause of its simplicity in modeling and computation in
addition to the belief that mathematical rigor should
not be overly expected for practical purposes. The jus-
tification of our method is partly provided from the

&%
'$
M/M/6

Ward 30M

'

&

$

%
M/G/∞

Ward 300

λ2 -
- λ2

λ9 -
- λ9λ15 -
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6
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6
λ27

- λ27

Fig. 4 Queueing network model of the obstetric patient flow.

good agreement of the calculated results with the ob-
servations as demonstrated below.

In building a queueing network model of the ob-
stetric patient flow, we paid special attention to routes
15 and 27 on which 55 patients were first admitted to
Ward 300 and then transferred to Ward 30M. We con-
jecture that Ward 300 is used by patients with high-risk
delivery as the “waiting room” for Ward 30M if it is
crowded when they arrive. This kind of waiting period
is called “administrative days” by Weiss and McClain
[26], because the time is spent not for medical reasons
but rather for administrative reasons.

Table 3 shows the distribution and the mean for the
number of patients staying in Ward 30M exactly be-
fore the admission of patients on routes 15 and 27 to
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Ward 300, and exactly before the admission of patients
on routes 9 and 23 to Ward 30M. Here, the number of
patients staying in Ward 30M exactly before the admis-
sion of patients consists of the following:

(i) Number of patients in Ward 30M on the preceding
day of admission,

(ii) Minus the number of patients who depart from Ward
30M on the day of admission,

(iii) Plus the number of patients who are supposed to
enter Ward 30M from other wards on the day of
admission.

The time average for the number of patients staying in
Ward 30M over the two years is 4.4610 (Section 4.2). In
this table, we observe that the bed utilization in Ward
30M is rather higher on those days on which they are
admitted to Ward 300 than on average days and on
those days on which they are admitted to Ward 30M.

Only this table may not be enough to conclude that
all patients of routes 15 and 27 are destined to Ward
30M for high-risk delivery but that they are re-directed
to Ward 300 because there is no vacancy in Ward 30M
at the arrival time. We are unsure why exactly patients
of routes 15 and 27 stay in Ward 300 before entering
Ward 30M without clinical information in the given or-
der log. However, our conjecture of using Ward 300 as a
waiting room for the intended treatment in Ward 30M
was later endorsed to be true by the doctors of the Ob-
stetrics and Gynecology Section of UTH.

3.3 Arrival processes

In order to apply the theoretical queueing network model
to real patient flow, it is essential to validate the as-
sumption of the Poisson process for the arrival flow of
patients of routes (2,1) to Ward 300; patients of routes
(23,2) and (27,3) to Ward 300; patients of routes (9,1),
(15,1), (23,1), and (27,1) destined to Ward 30M; and all
patients from outside the hospital (see Fig. 4). However,
we cannot provide complete validation, because (i) the
patients arrive in a discrete-time framework, and (ii)
we only have the order log for a finite period of time.
Therefore, we content ourselves with examining limited
features of the Poisson process in the following.

(1) Poisson distribution for the number of arrivals per
day
In a Poisson process, the number of events that oc-
cur during a fixed time interval has Poisson distri-
bution. Therefore, we examine the probability dis-
tribution for the number of arrivals per day.
From the order log, we can obtain the number of
patients of route r who arrive in ward w as the jth

ward on the tth day, Aw
(r,j)(t), t = 1, 2, . . . , T . Then,

we get the probability distribution for Aw
(r,j), the

number of patients of route r who arrive there per
day :

P{Aw
(r,j) = k} =

1
T

T∑
t=1

I{Aw
(r,j)(t) = k}. (16)

The mean E[Aw
(r,j)] (arrival rate) is given by

E[Aw
(r,j)] =

1
T

T∑
t=1

Aw
(r,j)(t) =

∞∑
k=1

kP{Aw
(r,j) = k}.

(17)

Figure 5 shows the distribution T · P{Aw
(r,j) = k},

the number of days during the two years 2010–2011
for the number of arrivals per day for the four ar-
rival flows. They are plotted along with the Pois-
son distributions with the means calculated from
the respective observed data. We tested the validity
of Poisson distributions against the observed values
by the chi-square test using a level of significance
p = 0.05.
Hereafter, we use the notation Aw,w′,...

(r,j),{(r′,j′),(r′′,j′′)},...

to denote the number of patients who arrive at ward
w on a single route (r, j), at ward w′ on multiple
routes {(r′, j′), (r′′, j′′)}, and so on per day such as

Aw,w′,...
(r,j),{(r′,j′),(r′′,j′′)},... = Aw

(r,j)+Aw′

(r′,j′),(r′′,j′′)+· · · .

For a single ward in the superscript, the braces for
multiple routes in the subscript are omitted.
Figure 5 (a) plots the distribution T · P{A300

(2,1) =
k} for the number of route (2,1) patients who are
admitted to Ward 300 per day. The mean of this
distribution is calculated as

E[A300
(2,1)] = 2.1642

patients per day. The maximum is seven patients
per day. The Poisson distribution with mean 2.1642
is also plotted, which seems to fit with the observed
distribution fairly well. The chi-square statistic is
11.6268, which is lower than 14.0671 for the degree-
of-freedom 7 at the p-value 0.05. Therefore, we can-
not reject the null hypothesis that the set of ob-
served values follows the Poisson distribution at the
0.05 level of significance. In such a case, we would
say that the agreement is very good.
Figure 5 (b) plots the distribution T ·P{A300

(23,2),(27,3)

= k} for the number of routes (23,2) and (27,3)
patients moving from Ward 30M to Ward 300 with
the mean

E[A300
(23,2),(27,3)] = 0.2818
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Table 3 Distribution and the mean for the number of patients staying in Ward 30M exactly before the admission of patients
on routes 15 and 27 to Ward 300 and exactly before the admission of patients on routes 9 and 23 to Ward 30M.

Number of patients in 30M just before admission 0 1 2 3 4 5 6 Total Mean

Number of patients of route 15 admitted to 300 0 0 1 0 8 6 10 25 4.96
Number of patients of route 27 admitted to 300 0 0 0 4 1 8 17 30 5.27

Number of patients of route 9 admitted to 30M 1 5 11 20 26 18 0 81 3.47
Number of patients of route 23 admitted to 30M 3 11 26 49 53 34 0 176 3.36

patients per day. The Poisson distribution with mean
0.2818 is also plotted, which again seems to fit with
the observed distribution very well. The chi-square
statistic is 3.6844, which is lower than 7.8147 for the
degree-of-freedom 3 at the p-value 0.05.
Figure 5 (c) plots the distribution

T · P{A30M
(9,1),(15,1),(23,1),(27,1) = k}

for the number of routes (9,1), (15,1), (23,1), and
(27,1) patients destined to Ward 30M with the mean

E[A30M
(9,1),(15,1),(23,1),(27,1)] = 0.4268

patients per day. The Poisson distribution with mean
0.4268 is also plotted, which seems to fit with the ob-
served distribution very well. The chi-square statis-
tic is 5.8379, which is lower than 7.8147 for the
degree-of-freedom 3 at the p-value 0.05.
Finally, Fig. 5 (d) plots the distribution

T · P{A300,30M
(2,1),{(15,1),(27,1),(9,1),(23,1)} = k}

for the number of patients of the five dominant routes
admitted to Wards 300 and 30M with the mean

E[A300,30M
(2,1),{(15,1),(27,1),(9,1),(23,1)}] = 2.5910

patients per day. The maximum is eight patients per
day. The Poisson distribution with mean 2.5910 is
also plotted, which appears to fit with the observed
distribution fairly well. However, the chi-square statis-
tic is 30.4890, which is much higher than 15.5073 for
the degree-of-freedom 8 at the p-value 0.05. There-
fore, we discard the assumption that the observed
distribution fits the Poisson distribution. Although
this result is somewhat unexpected, the assumption
of Poisson distribution for all patients of the domi-
nant routes admitted to Wards 300 and 30M is not
used in our queueing network model.

(2) Independence of the numbers of arrivals on two con-
secutive days
In a Poisson process, the numbers of events that oc-
cur during non-overlapping time intervals are inde-
pendent. Therefore, we examine the auto-correlation
for the number of arrivals on two consecutive days.

The mean number of patients who arrive in ward w,
the jth ward of route r, on each day (arrival rate)
during the two years is given in Eq. (17). We can also
calculate the variance and covariance as follows:

Var[Aw
(r,j)] =

1
T − 1

T∑
t=1

(
Aw

(r,j)(t) − E[Aw
(r,j)]

)2

,

Cov[Aw
(r,j), A

w,∗
(r,j)] =

1
T − 1

T−1∑
t=1

(
Aw

(r,j)(t) − E[Aw
(r,j)]

)
×

(
Aw

(r,j)(t + 1) − E[Aw
(r,j)]

)
.

In addition, the auto-correlation for the number of
patients who arrive in ward w, the jth ward of route
r, on each day, Aw

(r,j), and that on the next day
denoted by Aw.∗

(r,j) is given by

Corr[Aw
(r,j), A

w,∗
(r,j)] =

Cov[Aw
(r,j), A

w,∗
(r,j)]

Var[Aw
(r,j)]

.

In Table 4, we show the characteristics of the exter-
nal arrival processes of dominant routes (2,1), (9,1),
(15,1), (23,1), and (27,1). First, we note that the
mean and the variance of the number of arrivals
are nearly equal in all processes. This fact agrees
with a property of the Poisson distribution. Second,
auto-correlations with a one-day lag in the arrival
processes are mostly very small (with an exception
of 0.1043 for the route (15,1)). Therefore, we judge
that the numbers of arrivals on two consecutive days
are almost uncorrelated.

(3) Independence of the bed utilization on a day and
the number of arrivals on the next day
We are also interested in the dependence of the to-
tal number of patients who stay in a given ward w
on each day and the number of patients of route r
who arrive in the same ward on the next day. The
number of patients staying in ward w on the tth day,
Nw(t), is obtained from the order log. Then, we can
calculate the mean E[Nw] by Eqs. (7). Similarly, we
can also calculate the variance and covariance

Var[Nw] =
1

T − 1

T∑
t=1

(Nw(t) − E[Nw])2,
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Table 4 Dependency characteristics of the external arrival processes.

Wards 300 30M 300 30M 300
Arriving routes (2,1) (9,1) (15,1) (23,1) (27,1)

Total number of admissions 1582 81 25 176 30
Mean of admissions per day 2.1642 0.1108 0.0342 0.2408 0.0410
Variance of admissions per day 2.3730 0.1041 0.0413 0.2598 0.0531
Auto-correlation (1 day lag) −0.0111 0.0002 0.1043 −0.0181 0.0198
Correlation with patients in 300 −0.0129 −0.0514 0.0333 −0.0638 −0.0169
Correlation with patients in 30M 0.1191 −0.0744 0.0549 −0.1672 0.1022

Cov[Nw, Aw,∗
(r,j)] =

1
T − 1

T−1∑
t=1

(Nw(t) − E[Nw])

×
(
Aw

(r,j)(t + 1) − E[Aw
(r,j)]

)
.

We also calculate the correlation coefficient between
the number of patients who stay in ward w and the
number of patients who arrive there as the jth ward
of route r on the next day:

Corr[Nw, Aw,∗
(r,j)] =

Cov[Nw, Aw,∗
(r,j)]√

Var[Nw]Var[Aw
(r,j)]

.

These correlation coefficients are also shown in Ta-
ble 4. The correlation between the bed utilization on
a day and the number of arrivals on the next day is
rather weak in both Wards 300 and 30M. The most
negative correlation coefficient (−0.1672) occurs be-
tween the number of patients staying in Ward 30M
and the number of arrivals of route (23,1) patients
there on the next day.

From these results, we may judge that the arrival flows
for the queues in the network model can be dealt with
as Poisson processes.

3.4 Departure processes

As noted in the appendix, the outputs from M/G/∞
and M/M/m queues are Poisson processes. Therefore, it
is noteworthy to check if the departure flows of patients
in our network model are Poisson processes.

From the order log, we can obtain the number of
patients of route r who leave ward w as the jth ward
on the tth day, Dw

(r,j)(t), t = 1, 2, . . . , T . Then, we get
the probability distribution for Dw

(r,j), the number of
patients of route r who leave there per day :

P{Dw
(r,j) = k} =

1
T

T∑
t=1

I{Dw
(r,j)(t) = k} (18)

with its mean

E[Dw
(r,j)] =

1
T

T∑
t=1

Dw
(r,j)(t) =

∞∑
k=1

kP{Dw
(r,j) = k}. (19)

Again, we use the notation Dw,w′,...
(r,j),{(r′,j′),(r′′,j′′)},... to de-

note the number of patients who depart from ward w
on a single route (r, j), from ward w′ on multiple routes
{(r′, j′), (r′′, j′′)}, and so on per day such as

Dw,w′,...
(r,j),{(r′,j′),(r′′,j′′)},... = Dw

(r,j) + Dw′

(r′,j′),(r′′,j′′) + · · · .

For a single ward in the superscript, the braces for mul-
tiple routes in the subscript are omitted.

Figure 6 shows the distribution T · P{Dw
(r,j) = k},

the number of days during the two years 2010–2011
for the number of patients who depart from Wards
300 and 30M as well as from the hospital per day.
Each of them is plotted along with the Poisson dis-
tributions with means E[D300

(2,1),(23,2),(27,3)] = 2.4460,
E[D30M

(9,1),(15,2)] = 0.1450, and

E[D300,30M
{(2,1),(15,1),(27,1)},{(9,1),(23,1)}] = 2.5910,

respectively. The agreement between the observed and
theoretical values is excellent in all processes. We tested
the validity of Poisson distributions against the ob-
served values by the chi-square test at the 0.05 level of
significance. The chi-square statistic values are 5.41494,
5.59214, and 8.16896, which are lower than 15.5073,
7.8147, and 15.5073 for the degree-of-freedom 8, 3, and
8 at the p-value 0.05, respectively, in Figs. 6 (a), (b),
and (c).

3.5 Length of stay

Finally, we observe the distribution to identify the num-
ber of days that a patient stays in each ward as well as
in the hospital. From the order log, we can obtain the
probability distribution for the number of days (LoS)
that a patient of route r spends in ward w as the jth
ward

P{LoSw
(r,j) = k} =

1
Aw

(r,j)

P∑
i=1

I{LoSw
(r,j)(i) = k}, (20)
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(a) Patients of route (2,1) admitted to Ward 300 and the
Poisson distribution with mean 2.1642.
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(b) Patients of routes (23,2) and (27,3) moving from Ward
30M to Ward 300 and the Poisson distribution with mean
0.2818.
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(c) Patients of routes (9,1), (15,1), (23,1), and (27,1) destined
to Ward 30M and the Poisson distribution with mean 0.4268.
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(d) All patients of the five dominant routes admitted to
Wards 300 and 30M and the Poisson distribution with mean
2.5910.

Fig. 5 Distribution of the number of days for the number of
arrivals of patients per day during the two years 2010–2011.

0 1 2 3 4 5 6 7 8 9
0

50

100

150

0 1 2 3 4 5 6 7 8 9

Number of departures

N
um

be
ro

f
da

ys

(a) Patients of routes (2,1), (23,2), and (27,3) departing from
Ward 300 and the Poisson distribution with mean 2.4460.
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(b) Patients of routes (9,1) and (15,2) departing from Ward
30M and the Poisson distribution with mean 0.1450.
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(c) All patients of the five dominant routes departing from
Wards 300 and 30M and the Poisson distribution with mean
2.5910.

Fig. 6 Distribution of the number of days during the two
years 2010–2011 for the number of patients departing from
Wards 300 and 30M per day.

where

Aw
(r,j) = T · E[Aw

(r,j)] =
T∑

t=1

Aw
(r,j)(t) (21)

is the number of patients of route r who arrive in ward
w as the jth ward during the two years. The mean LoS
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of a patient of route r in ward w as the jth ward is
given by

E[LoSw
(r,j)] =

∞∑
k=1

kP{LoSw
(r,j) = k}

=
1

Aw
(r,j)

P∑
i=1

LoSw
(r,j)(i). (22)

Figure 7 shows the distribution for the LoS

Aw,w′,...
(r,j),{(r′,j′),(r′′,j′′)},... ·P{LoSw,w′,...

(r,j),{(r′,j′),(r′′,j′′)},... = k}

of patients in ward w on a single route (r, j), in ward w′

on multiple routes {(r′, j′), (r′′, j′′)}, and so on, where

Aw,w′,...
(r,j),{(r′,j′),(r′′,j′′)},... = Aw

(r,j) + Aw′

(r′,j′),(r′′,j′′) + · · ·

and

Aw,w′,...
(r,j),{(r′,j′),(r′′,j′′)},... · E[LoSw,w′,...

(r,j),{(r′,j′),(r′′,j′′)},...]

= Aw
(r,j) · E[LoSw

(r,j)]

+ Aw′

(r′,j′),(r′′,j′′) · E[LoSw′

(r′,j′),(r′′,j′′)] + · · · .

Figure 7 (a) simply plots the distribution

A300
(2,1) · P{LoS300

(2,1) = k}

for the LoS of route (2,1) patients in Ward 300. There
are A300

(2,1) = 1, 582 patients. The mean is E[LoS300
(2,1)] =

6.5215 days. We do not attempt to find any theoretical
distribution that may fit with this distribution, because
we will not need the distributional form for LoS in our
modeling of route (2,1) patients by an M/G/∞ queue.

Figure 7 (b) plots the distribution

A300
(23,2),(27,3) · P{LoS300

(23,2),(27,3) = k}

for the LoS of re-entrant patients on routes (23,2) and
(27,3) in Ward 300. There are A300

(23,2),(27,3) = 206 pa-
tients. The mean is E[LoS300

(23,2),(27,3)] = 7.0631 days.
Fitting a theoretical distribution is not needed for this
distribution either for the same reason as above.

Figure 7 (c) plots the distribution

A30M
(9,1),(15,2),(23,1),(27,2) ·P{LoS30M

(9,1),(15,2),(23,1),(27,2) = k}

for the LoS of patients on routes (9,1), (15,2), (23,1),
and (27,2) in Ward 30M. There are

A30M
(9,1),(15,2),(23,1),(27,2) = 312 patients.

The mean is E[LoS30M
(9,1),(15,2),(23,1),(27,2)] = 10.4519 days.

The probability density function for the exponential
distribution with mean 10.4519 is also plotted in the
same coordinates, which appears to agree with the ob-
served distribution very well. We tested the validity
of exponential distribution against the observed values

by the chi-square test at the 0.05 level of significance.
The chi-square statistic is 9.3099, which is lower than
15.5073 for the degree-of-freedom 8 at the p-value 0.05.
This agreement is essential to our usage of an M/M/6
queueing model for patients whose high-risk delivery is
treated in Ward 30M. (We are not aware of any clinical
reason for the exponential distribution of the LoS with
high-risk delivery.)

Finally, Fig. 7 (d) shows the distribution

A300,30M
{(2,1),(15,1),(27,1)},{(9,1),(23,1)}

×P{LoS300,30M
{(2,1),(15,1),(27,1)},{(9,1),(23,1)} = k}

for the LoS of all obstetric patients on the five dominant
routes in the whole hospital. There are

A300,30M
{(2,1),(15,1),(27,1)},{(9,1),(23,1)} = 1, 894 patients.

The distribution concentrates around its mean value

E[LoS300,30M
{(2,1),(15,1),(27,1)},{(9,1),(23,1)}] = 8.0227 days.

Fitting a theoretical distribution is not needed for this
distribution.

4 Prediction of the number of obstetric
patients in Wards 300 and 30M

By now, we have clarified all statistical characteristics
for the flow of obstetric patients of the five dominant
routes in the framework of a queueing network model.
Therefore, we are now in a position to use them in the
calculation of the probability distribution for the num-
ber of patients staying in Wards 300 and 30M per day.
The theoretical results are compared with the observed
histogram in Figs. 8 and 9 for Ward 300 and in Fig. 10
for Ward 30M. We tested the fitting of theoretical distri-
butions with the observed values by the chi-square test
at the 0.05 level of significance. The agreement looks
roughly acceptable in appearance in most cases, which
has been confirmed by the chi-square test.

4.1 Number of patients of dominant routes in Ward
300

Let us first consider the number of patients of routes
(2,1), (15,1), (23,2), (27,1), and (27,3) who stay in Ward
300 on each day. They are divided into the following
three types of patients:

• Patients of route (2,1) going through Ward 300 only,
• Patients of routes (23,2) and (27,3) transferred from

Ward 30M,
• Patients of routes (15,1) and (27,1) waiting for beds

in Ward 30M.
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(a) Patients of route (2,1) in Ward 300 with a mean of 6.5215
days.
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(b) Patients of routes (23,2) and (27,3) in Ward 300 with a
mean of 7.0631 days.
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(c) Patients of routes (9,1), (15,2), (23,1), and (27,2) in Ward
30M and the exponential distribution with a mean of 10.4519
days.
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(d) All patients of the five dominant routes in Wards 300 and
30M with a mean of 8.0227 days.

Fig. 7 Distribution of the number of patients for the LoS
(days) in Wards 300 and 30M.

Therefore, we first find the probability distribution for
the number of patients in Ward 300 for each type. We
then obtain the probability distribution for the total
number of patients in Ward 300 by the convolution of
the three distributions.

We know from Fig. 1 (a) that the probability that all
beds in Ward 300 are occupied is less than 1%. There-
fore, without much error, we can assume that there are
a sufficient number of beds in Ward 300, which can
accept all patients at any time. Thus, we will use an
M/G/∞ queue to model the patient flow of routes (2,1),
(23,2), and (27,3) with the observed arrival rates and
mean LoS in Ward 300. Then, we apply the convolu-
tion technique to the probability distribution for the
sum of independent random variables. Note that the
numbers of patients of the three types are assumed to
be independent of each other in the M/G/∞ model.
Furthermore, the LoS of each type of patient does not
need to be exponentially distributed in the M/G/∞
model. In addition, patients of routes (15,1) and (27,1)
in Ward 300 are modeled by the customers in the wait-
ing room of an M/M/6 queue (a model of Ward 30M)
with the Poisson arrival process and exponentially dis-
tributed service times of the routes (9,1), (15,2), (23,1),
and (27,2) patients.

Now, we use the Poisson distribution in Eq. (27) for
the M/G/∞ queue as the probability distribution for
the number of route (2,1) patients in Ward 300:

P 300
(2,1)(k) =

[ρ300
(2,1)]

k

k!
e−ρ300

(2,1) k ≥ 0, (23)

where

ρ300
(2,1) = E[A300

(2,1)] · E[LoS300
(2,1)] =

1, 582
731

× 6.5215

= 14.1135.

We also use Eq. (27) as the probability distribution for
the number of routes (23,2) and (27,3) patients in Ward
300:

P 300
(23,2),(27,3)(k) =

[ρ300
(23,2),(27,3)]

k

k!
e−ρ300

(23,2),(27,3) k ≥ 0,

(24)

where

ρ300
(23,2),(27,3) = E[A300

(23,2)] · E[LoS300
(23,2)]

+ E[A300
(27,3)] · E[LoS300

(27,3)]

=
176
731

× 7.1250 +
30
731

× 6.700 = 1.9904.

Theoretical distribution in Eq. (23) and the observed
distribution for the number of route (2,1) patients in
Ward 300 are plotted in Fig. 8 (a). They seem to agree
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well in appearance. The chi-square statistic is taken
from k = 3 to 26 to get a value of 18.6598, which is
less than 33.9244 for the degree-of-freedom 22 at the
p-value 0.05. Thus, we can say the fitting with the pre-
dicted Poisson distribution is well acceptable.

Theoretical distribution in Eq. (24) and the observed
distribution for the number of routes (23,2) and (27,3)
patients in Ward 300 are plotted in Fig. 8 (b), which
also seem to agree well. The chi-square statistic for the
range from k = 0 to 6 is 10.4275, which is slightly less
than 11.0705 for the degree-of-freedom 5 at the p-value
0.05. Therefore, we may barely say that the set of ob-
served values follows the predicted Poisson distribution.

The patients of routes (15,1) and (27,1) in Ward 300
are considered to be staying in the waiting room of the
M/M/m queue with m = 6 that represents Ward 30M.
Therefore, the number of these patients has a distribu-
tion P{L = k} in Eq. (30) in the appendix with

ρ30M
(9,1),(15,2),(23,1),(27,2)

= E[A30M
(9,1),(15,2),(23,1),(27,2)] · E[LoS30M

(9,1),(15,2),(23,1),(27,2)]

=
312
731

× 10.4519 = 4.4610

and
C(6, ρ30M

(9,1),(15,2),(23,1),(27,2)) = 0.4099.

The theoretical distribution of T ·P{L = k} and the
observed histogram of the number of days during the
two years for the number of these patients are plotted in
Fig. 8 (c). While we observe that the theoretical distri-
bution captures the basic characteristic of the observed
distribution, their mean values are rather different as

E[N300
(15,1),(27,1)] =

25 × 2.4 + 30 × 3.4
731

= 0.2216,

E[L] =
4.4610 × 0.4099

6 − 4.4610
= 1.1882.

In fact, the chi-square statistic for the range from k = 0
to 6 is 103.129, which is much larger than 11.0705 for
the degree-of-freedom 5 at the p-value 0.05. This is an
instance in our modeling that shows sizable discrepancy
between theory and observation.

In addition, the distribution function of the waiting
time for the A300

(15,1),(27,1) = 55 patients of routes (15,1)
and (27,1) who arrive to Ward 300 is given theoretically
by P{W < t} in Eq. (32) as the waiting time W in
the M/M/6 queue with ρ = 4.4610 given above. The
correspondence between the waiting time W and the
LoS is given by

P{LoS300
(15,1),(27,1) = k} = P{W < k + 1} − P{W < k}

k = 0, 1, 2, . . . .

The theoretical and observed distributions

A300
(15,1),(27,1) · P{LoS300

(15,1),((27,1)}
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(a) Patients of route (2,1) and the Poisson distribution with
mean 14.1135.
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(b) Patients of routes (23,2), and (27,3) and the Poisson dis-
tribution with mean 1.9904.
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(c) Patients of routes (15,1) and (27,1) (observed mean
0.2216) and the distribution in Eq.(30) with m = 6 and
ρ = 4.4610 (theoretical mean 1.1882).
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(d) Patients of routes (2,1), (15,1), (23,2), (27,1), and (27,3):
observed and theoretical distributions with mean 16.1039.

Fig. 8 Distribution of the number of days during the two
years 2010–2011 for the number of patients in Ward 300 with
the corresponding theoretical distributions.
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Fig. 9 Distribution of the number of days during the two
years 2010–2011 of the number of routes (15,1) and (27,1)
patients for the LoS in Ward 300 with a mean of 2.9455 days
and the distribution from Eq.(32) with m = 6, µ = 1/10.4519,
and ρ = 4.4610.

are plotted in Fig. 9. We again see that the theoretical
distribution barely captures the basic characteristic of
the observed distribution. Their mean values also agree
fairly well:

E[LoS300
(15,1),((27,1)] = 2.9455 ; E[W ] = 2.7840.

Using E[A300
(15,1),(27,1)] = 0.0752, we confirm Little’s law

in the observed data:

E[N300
(15,1),(27,1)] = E[A300

(15,1),(27,1)] · E[LoS300
(15,1),((27,1)].

The Little’s law E[L] = λE[W ] in the theoretical distri-
bution also holds with λ = E[A30M

(9,1),(15,2),(23,1),(27,2)] =
0.4268. The sets of patients to which Little’s law is ap-
plied are different between the observed data and the
theoretical model.

Finally, the probability distribution for the total
number of patients in Ward 300 is obtained by the
convolution of the above-mentioned three distributions.
Since the first two are independent Poisson distribu-
tions, the convolution of the two generates another Pois-
son distribution with the mean

ρ300
(2,1) + ρ300

(23,2),(27,3) = 14.1135 + 1.9904 = 16.1039.

Therefore, we only have to calculate the convolution of
this Poisson distribution with the distribution P{L =
k} in the form of Eq. (30) with m = 6 and ρ = 4.4610.
Thus, we plot the distribution of the number of days
during the two years for the number of routes (2,1),
(15,1), (23,2), (27,1), and (27,3) patients in Ward 300
in Fig. 8 (d). The mean number of patients in Ward
300 is given by

E[N300
(2,1),(15,1),(23,2),(27,1),(27,3)]

= ρ300
(2,1) + ρ300

(23,2),(27,3) + E[N300
(15,1),(27,1)]

= 16.1039 + 0.2216 = 16.3255.

We observe fairly good agreement between the theory
and observation except near the capacity 26 of Ward
300. The chi-square statistic for the range from k = 4
to 25 is 34.5571, which slightly exceeds 31.4104 for the
degree-of-freedom 20 at the p-value 0.05.

4.2 Number of patients of dominant routes in Ward
30M

Next, we consider the number of patients of routes (9,1),
(15,2), (23,1), and (27,2) who stay in Ward 30M on
each day. In our model, these patients are considered to
be in service in the M/M/6 queue that models Ward
30M. Therefore, the number of these patients has the
distribution P{S = k} given in Eq. (33) in the appendix
with m = 6 and ρ = 4.4610, which yields P0(6, ρ) =
0.0096 and C(6, ρ) = 0.4099.

The theoretical distribution of T ·P{S = k} and the
observed distribution of the number of days during the
two years for the number of these patients are plotted
with a solid line graph and a bar chart, respectively, in
Fig. 10. The theoretical result still captures major char-
acteristics of the observed values with the same mean
values

E[N30M
(9,1),(15,2),(23,1),(27,2)] = E[S] = 4.4610.

In this figure, we also plot T · P{S∗ = k} with a
dashed line graph from the theoretical distribution for
the number of customers present in the M/M/m/m Er-
lang’s loss system [9, p.81]:

P{S∗ = k} =
ρk

k!

/
m∑

j=0

ρj

j!
0 ≤ k ≤ m (25)

with m = 6 and ρ = 4.4610. This model is used by
Hershey et al. [12] in their model of a ward with fi-
nite capacity. The distributional shape of this model
seems to fail to capture the monotonic increase that
characterizes the observed data. The mean value pre-
dicted by Eq. (25) is E[S∗] = 3.7863. The probability
that patients are not admitted upon arrival is given as
the probability P{S∗ = m} = 0.1512 that all beds are
occupied, which is close to the observed ratio

A300
(15,1),(27,1)

A30M
(9,1),(15,2),(23,1),(27,2)

=
55
312

= 0.1763.

4.3 Number of all patients of dominant routes

Finally, we examine the probability distribution for the
number of patients of the five dominant routes who
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Fig. 10 Distribution of the number of days during the two
years 2010–2011 for the number of routes (9,1), (15,2), (23,1),
and (27,2) patients in Ward 30M (bar chart), the distribution
in Eq. (33) (solid line), and the distribution in Eq. (25) with
m = 6 and ρ = 4.4610 (dashed line).
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Fig. 11 Distribution of the number of days during the two
years 2010–2011 for the number of all patients of dominant
routes in Wards 300 and 30M and the Poisson distribution
with mean 20.7866.

stayed in Wards 300 and 30M together during the two
years. There are A(2,1),(9,1),(15,1),(23,1),(27,1) = 1, 894 such
patients. The distribution for their LoS is shown in
Fig. 7 (d), which shows a steep peak at the mean value
E[LoS(2,1),(9,1),(15,1),(23,1),(27,1)] = 8.0277 days.

Since all patients are admitted upon arrival, we again
apply the Poisson distribution in Eq. (27) for an M/G/∞
queue, and get

P(2,1),(9,1),(15,1),(23,1),(27,1)(k) =
ρ̂k

k!
e−ρ̂ k ≥ 0, (26)

where

ρ̂ = E[A(2,1),(9,1),(15,1),(23,1),(27,1)]

× E[LoS(2,1),(9,1),(15,1),(23,1),(27,1)]

=
1, 894
731

× 8.0227 = 20.7866

= E[N300
(2,1),(15,1),(23,2),(27,1),(27,3)]

+ E[N30M
(9,1),(15,2),(23,1),(27,2)].

We note that T ρ̂ = 15, 195 is the patient-days for all
patients of the dominant routes during the two years
(see Table 1).

Figure 11 plots the distribution of the number of
days during the two years for the number of patients
of all dominant routes in Wards 300 and 30M and the
Poisson distribution with mean 20.7866. We observe ex-
cellent agreement between the theory and observation.
The chi-square statistic for the range from k = 11 to 31
is 30.1521, which almost equals 30.1435 for the degree-
of-freedom 19 at the p-value 0.05.

Let us suggest a method to assess the saturation
condition using our model. Since the patient flow will be
mixed over Wards 300 and 30M when they are crowded,
it will be reasonable to consider both wards together
with the capacity m = 26 + 6 = 32 when we estimate
the saturation condition. In order to assess the satu-
ration condition of both wards, we may use Eq. (25),
which also holds for the M/G/m/m loss model. With
the current load ρ̂ = 20.7866 and capacity m = 32, the
blocking probability (the probability that both wards
are full) is 0.0053. Therefore, most admission requests
are admitted. However, if the admission rate doubles to
ρ̂ = 41.5732, the blocking probability becomes 0.28419,
which is probably unacceptable. If ρ̂ = 26.5, the block-
ing probability is approximately 5%, which may be barely
acceptable. Although it is subjective to determine what
is acceptable and unacceptable with respect to the block-
ing probability, we can say that the current load ρ̂ =
20.7866 making the blocking probability 0.0053 is fairly
well controlled by the standard of UTH.

5 Concluding remarks

In this paper, we applied Little’ law of queueing theory
and proposed a network model of M/G/∞ and M/M/m
queues for the obstetric patient flow in the UTH. Sta-
tistical techniques were used to select a set of domi-
nant routes of patient flow. We compared the results of
numerical calculation based on our theoretical models
with the data extracted from the hospital’s order log
during the two years, and demonstrated good agree-
ment between them in most cases.

In spite of a very rough approximation, we “ex-
plained” the patient flow with acceptable accuracy. The
reasons for this success may be as follows:

• The flow of obstetric patients is rather isolated from
the flow of patients in other clinical departments as
two wards 300 and 30M are almost dedicated to the
obstetric unit.
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• The process in which obstetric patients arrive and
admitted is random and can be modeled as a Pois-
son process fairly well.

• The probability that all beds are occupied is very
small in Ward 300, which makes it possible to use
the M/G/∞ queueing model even though the LoS
is not exponentially distributed in that ward.

• The LoS in Ward 30M has an exponential distri-
bution, which makes it possible to use the M/M/m
queueing model.

On the other hand, the treatment of the patients
staying in Ward 300 when waiting for beds in Ward 30M
needs further investigation. While Hershey et al. [12]
used Erlang’s loss system and Weiss and McClain [26]
presented a different approach, we have proposed to
model the waiting patients as those customers in the
waiting room of an M/M/m queue. It is fair to say that
none of them have been very successful in predicting
the distribution for the number of such patients pre-
cisely enough as yet. However, only our model captures
the monotonically increasing characteristic in the dis-
tribution for the number of patients staying in Ward
30M.

We plan to extend our study of patient flow to those
in other clinical units of the UTH. It is also interesting
to see if the modeling technique proposed in this paper
can be applied to the patient flow in other hospitals.

We showed a method to build a network model of
patient flow from the order log usually available in the
information department of each hospital. Our model is
free of clinical information. It will be useful for capacity
planning of hospital wards by determining the optimal
allocation of beds among clinical departments in a hos-
pital given the predicted demands of patients in terms
of the statistics on the number of arrivals and the LoS
for patients of each department.
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A Relevant queueing models

The following queueing models are relatively simple and ro-
bust, and the explicit formulas are available for the proba-
bility distribution of the number of customers present in the
system.

(1) M/G/∞
A model denoted by M/G/∞ in Kendall’s notation of
queueing theory is simply a system with sufficiently many
servers to which customers arrive in a Poisson process and
spend a random amount of service time, which is generally
distributed probabilistically [9, p.84], [11, p.145]. There is
no contention for servers among customers. If λ denotes
the arrival rate and b denotes the mean service time, the
number N of customers present in the system at an arbi-
trary time has a Poisson distribution with mean ρ := λb:

P{N = k} =
ρk

k!
e−ρ k ≥ 0. (27)

Note that this distribution depends on the service time
only through its mean value.

A useful property in modeling is that the output of an
M/G/∞ system is a Poisson process [18]. A nice prop-
erty about the Poisson process is that the superposition
of independent Poisson processes forms another Poisson
process with added rates. These properties contribute to
building a simple and robust model.

(2) M/M/m
A model denoted by M/M/m in Kendall’s notation is a
queueing system with m servers and a waiting room of
infinite capacity to which customers arrive in a Poisson
process at rate λ each with the service time exponentially
distributed with mean 1/µ [9, p.66], [11, p.142]. Then,
the probability distribution for the number N of the cus-
tomers present in the system at an arbitrary time in the
steady state is given by

P{N = k} =


P0(m, ρ)

ρk

k!
0 ≤ k ≤ m,

P0(m, ρ)
mm

m!

(
ρ

m

)k

k ≥ m + 1,

(28)

where ρ := λ/µ and

1

P0(m, ρ)
=

m−1∑
k=0

ρk

k!
+

ρm

(m − 1)!(m − ρ)
. (29)

The output of an M/M/m system is also a Poisson process
[3].
Each customer in the system is either waiting in the wait-
ing room or being served. The probability distribution
and the mean for the number L of customers in the wait-
ing room are given by

P{L = k} = P{N = m + k}

=


1 −

ρ

m
C(m, ρ) k = 0,

C(m, ρ)

(
1 −

ρ

m

)(
ρ

m

)k

k ≥ 1,

E[L] =
ρC(m, ρ)

m − ρ
, (30)

where the Erlang’s C formula [9, p.70]

C(m, ρ) :=

ρm

m!(
1 −

ρ

m

)m−1∑
k=0

ρk

k!
+

ρm

m!

(31)

gives the probability that an arriving customer waits be-
cause all servers are busy.
The probability distribution and the mean for the waiting
time (the time that a customer spends in the waiting
room) W in the M/M/m queue are given by

P{W = 0} = 1 − C(m, ρ),

P{W < t} = 1 − C(m, ρ)e−(m−ρ)µt t > 0,

E[W ] =
C(m, ρ)

µ(m − ρ)
. (32)

We note that the relation E[L] = λE[W ] is an example
of Little’s law in Eq. (12).
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The probability distribution and the mean for the number
S of customers in service are given by

P{S = k} =

P{N = k} 0 ≤ k ≤ m − 1

P{N ≥ m} k = m,

=

P0(m, ρ)
ρk

k!
0 ≤ k ≤ m − 1

C(m, ρ) k = m,

E[S] = ρ, (33)

where P0(m, ρ) and C(m, ρ) are given in Eqs. (29) and
(31), respectively.


