
On the Unconditional Convergence of Wavelet
Expansions for Continuous Functions

Naohiro Fukuda, Tamotu Kinoshita, and Toshio Suzuki

Abstract

In this paper, we study the unconditional convergence of wavelet
expansions with Lipschitz wavelets. Especially with the Strömberg
wavelet, we shall construct a counter example which shows that uni-
formly convergent wavelet expansions even for continuous functions
do not always converge unconditionally in L∞(R).
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1 Introduction

Let Ω be an open set of R. The space of bounded variations functions is
denoted by BV (Ω) with the norm ∥f∥BV := ∥f∥L1 + V (f,Ω), where V is
the total variation. The Sobolev space W 1,1(Ω) is a subspace of BV (Ω) and
has the decay property at infinity for the unbounded domain Ω (see e.g.,
[10]). We remark that BV (Ω) allows jump-type discontinuities. When Ω is
a bounded domain, the similar function spaces BV (Ω) and W 1,1(Ω) include
the space of Lipschitz continuous functions Lip(Ω), but not the space of
Hölder continuous functions Cα(Ω) with 0 < α < 1. In case of Ω = R,
after modifying the function on a set of measure zero we find that Lip(R) =
W 1,∞

loc (R), and by the Sobolev embedding theorem the following set inclusions
hold:

Lip(R) ⊂ W 1,1
loc (R), W 1,1(R) ⊂ C0(R) ∩ L∞(R). (1)

As for the Fourier expansion f(t) =
∑

j∈Z cjej(t) on Ω, the following results
are well-known (see [9] etc.):
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(i)F If f ∈ Cα(Ω) for α > 1/2, the Fourier series converges uniformly and
absolutely, i.e.,

∑
j∈Z |cj| <∞.

(ii)F If f ∈ W 1,1(Ω)∩Cα(Ω) for α > 0, the Fourier series converges uniformly
and absolutely, i.e.,

∑
j∈Z |cj| < ∞. In fact, W 1,1(Ω) can be relaxed to

BV (Ω).

(iii)F For the function f(t) =
∑∞

n=1
sinnt

n log(1+n)
∈ W 1,1(Ω) with Ω = (−π, π) its

Fourier series does not converge absolutely.

For a Schauder basis {ej(t)}, the ordering of the basis is important in the
sense of stable convergence. For a Banach space X,

∑
j∈Z cjej(t) converges to

f(t) unconditionally in X if and only if
∑

σ(j)∈Z cjej(t) converges to f(t) in X
for all permutations σ of Z. In other words, for the sequence {βj} ⊂ {1,−1}
the series

∑
j∈Z βjcjej(t) converges in X. Especially for a Hilbert space

X with an orthonormal basis {ej(t)}, the unconditional convergence holds
thanks to the Parseval’s identity ∥∑σ(j)∈Z cjej∥2X =

∑
σ(j)∈Z |cj|2. If X is a

Banach space, the absolute convergence is stronger than the unconditional
one. Noting that∥∥∥∑

j∈Z
|cj|ej

∥∥∥
L∞(Ω)

= ess. sup
t∈Ω

∑
j∈Z

|cjej(t)| =
∑
j∈Z

|cj| (2)

in case of the Banach space X = L∞(Ω) and |ej(t)| ≡ 1, we find that the
Fourier series converges to f(t) unconditionally in L∞(Ω) under the assump-
tions in (i)F or (ii)F . Here we pay attention to the fact that the Banach
space X = L∞(Ω) for the convergence and the Banach space X̃ = Cα(Ω) or
W 1,1(Ω) for the limit f are different (X̃ ⊂ X) in the Fourier series.

Remark 1.1 We can take the Hilbert space X = X̃ = L2(Ω) for both the
convergence and the limit, since the limit f belongs to L2(Ω) by the complete-
ness of L2(Ω). We need not assume any additional regularity for the limit f
unlike the case of X = L∞(Ω).

Remark 1.2 If X = X̃ = Lp(Ω) except the Hilbert space L2(R), the Fourier
series is not an unconditional basis (see [7], [9]).

Now we shall consider the wavelet expansion f(t) =
∑

j∈Z
∑

k∈Z cj,kψj,k(t),
where ψj,k(t) = 2j/2ψ(2jt−k). We are concerned with the unconditionality of
wavelet expansions except for the particular case of the Hilbert space L2(R).
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There are a lot of various wavelet bases ψ, although the Fourier basis consists
of only the analytic function space A. Therefore, we shall classify wavelets
ψ by a belonging function space (or set) Y which restricts the regularity or
the decay at infinity. Then the following results about wavelets are known:

(iv)w If ψ ∈ Y = {y ∈ C1(R); |y(t)| + |y′(t)| ≤ g(|t|)} with a decreasing
g ∈ L1[0,∞) such that |g(0)| < ∞ and ∥tg(·)∥L1[0,∞) < ∞, {ψj,k(t)} is an

unconditional basis in X = X̃ = Lp(R) with 1 < p <∞ (see [4]).

(v)w If ψ ∈ Y = {y ∈ A(R);F [y] is characteristic functions of a finite sum
of bounded closed intervals (unimodular wavelets)}, {ψj,k(t)} is an uncondi-
tional basis in X = X̃ = Lp(R) with 1 < p <∞ (see [1], [5]).

Let us choose the Banach space X = X̃ = W 1,1(R), and also ψ ∈ Y =
W 1,1(R). The choices of X = X̃ = Y = W 1,1(R) give that∑
j∈Z

∑
k∈Z

∥cj,kψj,k∥W 1,1 ≤
∑
j∈Z

∑
k∈Z

2j/2|cj,k|∥ψ(2j · −k)∥W 1,1

=
∑
j∈Z

∑
k∈Z

2j/2|cj,k|
∫
R

{
|ψ(2jt− k)|+ 2j|ψ′(2jt− k)|

}
dt

≤
(∑
j∈Z

∑
k∈Z

2−j/2|cj,k|
)
∥ψ∥L1 +

(∑
j∈Z

∑
k∈Z

2j/2|cj,k|
)
∥ψ′∥L1

≤
(∑
j∈Z

∑
k∈Z

2|j|/2|cj,k|
)
∥ψ∥W 1,1 .

Thus, if the scalar series
∑

j∈Z
∑

k∈Z 2
|j|/2|cj,k| converges, for ψ ∈ W 1,1(R),

the wavelet expansion
∑

j∈Z
∑

k∈Z cj,kψj,k converges absolutely and also un-
conditionally in W 1,1(R). Thus, we see the following basic observation:

Proposition 1.3 Assume that ψ ∈ W 1,1(R). Then, the wavelet expansion∑
j∈Z

∑
k∈Z cj,kψj,k(t) converges to f(t) unconditionally in W 1,1(R) if the co-

efficients satisfy {2|j|/2cj,k}(j,k)∈Z2 ∈ ℓ1.

Remark 1.4 Since the Sobolev embedding theorem gives W 1,1(R) ⊂ L2(R),
the coefficients cj,k := (f, ψj,k)L2 are well-defined.

It is not clear whether the condition {2|j|/2cj,k}(j,k)∈Z2 ∈ ℓ1 really restricts
the limit f ∈ W 1,1(R). This does not conclude the unconditionality in
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X = X̃ = W 1,1(R), but indicates the possibility that there exists a counter
example (non-unconditionality) if f ̸∈ W 1,1(R) and {2|j|/2cj,k}(j,k)∈Z2 ̸∈ ℓ1.

From (1), we see that the Sobolev space W 1,1(R) can be regarded as
a function space between Lip(R) (with a sufficient decay at infinity) and
C0(R) ∩ L∞(R). For the non-unconditionality, our strategy is to find a
suitable wavelet ψ ∈ Y = Lip(R) (with an exponential decay at infinity) and
a particular function f which belongs to C0(R) ∩ L∞(R) but not W 1,1(R),
i.e.,

f ∈ X̃ =
{
C0(R) ∩ L∞(R)

}
\W 1,1(R),

because the gap between the regularities of ψ and f possibly makes the
unconditionality worse. Indeed, there is a gap between A and C1/2(R) for
the basis and the limit of Fourier series. We shall take X = L∞(R) as
X̃ which is a little bit weak topology than W 1,1(R). Thus, we prove the
following result of the wavelet expansion which corresponding to (iii)F in
case of the Fourier expansion:

Theorem 1.5 There exists f0 ∈ {C0(R) ∩ L∞(R)}\W 1,1(R) satisfying the
following:

• f0 has the wavelet expansion f0(t) =
∑

j∈Z
∑

k∈Z cj,kψj,k(t) in L
2(R) for

some ψ ∈ Lip(R) and {cj,k}(j,k)∈Z2 ∈ ℓ2 such that {2|j|/2cj,k}(j,k)∈Z2 ̸∈
ℓ1.

• ∑
j∈Z

∑
k∈Z cj,kψj,k(t) converges to f0(t) uniformly and non-unconditionally

in L∞(R).

For the proof of Theorem 1.5, it is sufficient to construct a concrete
f0 ∈ {C0(R) ∩ L∞(R)}\W 1,1(R). The Strömberg wavelet ψSt ∈ Lip(R)
has an exponential decay at infinity and enables us to construct f0 simply
(see Remark 2.2). Especially for the Franklin wavelet ψFr ∈ Lip(R), the
following fact is known:

(vi)w {ψFr
j,k(t)} is an unconditional basis in X = X̃ = Lp(R) with 1 < p <∞

(see Theorem 6.23 in §5 of [4]).

This holds for the spline wavelets of the same order. Therefore, we get the
following also for ψSt ∈ Lip(R):
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(vi)′w {ψSt
j,k(t)} is an unconditional basis in X = X̃ = Lp(R) with 1 < p <∞

(see Theorem 6.14 in §5 of [4]).

These two facts (vi)w and (vi)′w are obtained with a small modification the C1

assumption of (iv)w. We remark that
∑

j∈Z
∑

k∈Z |cj,k|ψSt
j,k(t) ∈ X = Lp(R)

with 1 < p < ∞ and f0 is not a counter example for (vi)′w. The function
space X = L∞(R) in Theorem 1.5 is locally stronger than X = Lp(R) with
1 < p < ∞ in (vi)′w. This causes the non-unconditionality even for the
continuous function f0.

2 Proof of Theorem 1.5

2.1 Piecewise Linear Spline Wavelets

The B-spline N2 is defined by

N2(t) =


t for 0 ≤ t ≤ 1,
2− t for 1 ≤ t ≤ 2,
0 otherwise.

Piecewise linear spline wavelets can be given by

ψ(t) =
∑
k∈Z

bkN2(2t− k).

Then, we shall give the following function:

f0(t) =
∑
j∈Z

∑
k∈Z

cj,kψj,k(t) with cj,k =


(−1)j

(j + 1)2
j
2

for j ≥ 0 and k = 0,

0 otherwise.

Our purpose is to prove f0 ̸∈ W 1,1(R) and the fact that
∑

j∈Z
∑

k∈Z cj,kψj,k(t)
converges to f0(t) uniformly and non-unconditionally in L∞(R). Let us put
tn = 2−n (n ≥ 1). The function f0 is rewritten as

f0(t) =
∞∑
j=0

(−1)j

(j + 1)2
j
2

ψj,0(t) =
∞∑
j=0

(−1)j

j + 1
ψ(2jt) =

∞∑
j=0

∑
k∈Z

(−1)j

j + 1
bkN2(2

j+1t−k).

Furthermore, using the fact that suppN2 ⊂ [0, 2], we shall compute f0(t)
for t ∈ [2−n, 2−n+1] = [tn, tn−1] as follows:
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• Case n = 1) For t ∈ [2−1, 20] = [t1, t0] we have

f0(t) =
(−1)0

0 + 1

{
b0N2(2

0+1t− 0) + b1N2(2
0+1t− 1)

}
+
(−1)1

1 + 1

{
b1N2(2

1+1t− 1) + b2N2(2
1+1t− 2) + b3N2(2

1+1t− 3)
}

+
(−1)2

2 + 1

{
b3N2(2

2+1t− 3) + b4N2(2
2+1t− 4) + b5N2(2

2+1t− 5)

+b6N2(2
2+1t− 6) + b7N2(2

2+1t− 7)
}

+ · · ·

=
∞∑
j=0

2j+1−1∑
k=2j−1

(−1)j

j + 1
bkN2(2

j+1t− k),

here we used that 20+1t ∈ [1, 2], 21+1t ∈ [2, 4], 22+1t ∈ [4, 8], and 2j+1t ∈
[2j, 2j+1].

• Case n = 2) For t ∈ [2−2, 2−1] = [t2, t1] we have

f0(t) =
(−1)0

0 + 1

{
b−1N2(2

0+1t+ 1) + b0N2(2
0+1t− 0)

}
+
(−1)1

1 + 1

{
b0N2(2

1+1t− 0) + b1N2(2
1+1t− 1)

}
+
(−1)2

2 + 1

{
b1N2(2

2+1t− 1) + b2N2(2
2+1t− 2) + b3N2(2

2+1t− 3)
}

+ · · ·

=
(−1)0

0 + 1

{
b−1N2(2

0+1t+ 1) + b0N2(2
0+1t− 0)

}
+

∞∑
j=1

2j−1∑
k=2j−1−1

(−1)j

j + 1
bkN2(2

j+1t− k),

here we used that 20+1t ∈ [2−1, 1], 21+1t ∈ [1, 2], 22+1t ∈ [2, 4], and 2j+1t ∈
[2j−1, 2j].

• Case n = 3) For t ∈ [2−3, 2−2] = [t3, t2] we have

f0(t) =
(−1)0

0 + 1

{
b−1N2(2

0+1t+ 1) + b0N2(2
0+1t− 0)

}
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+
(−1)1

1 + 1

{
b−1N2(2

1+1t+ 1) + b0N2(2
1+1t− 0)

}
+
(−1)2

2 + 1

{
b0N2(2

2+1t− 0) + b1N2(2
2+1t− 1)

}
+ · · ·

=
1∑

j=0

(−1)j

j + 1

{
b−1N2(2

j+1t+ 1) + b0N2(2
j+1t− 0)

}

+
∞∑
j=2

2j−1−1∑
k=2j−2−1

(−1)j

j + 1
bkN2(2

j+1t− k),

here we used that 20+1t ∈ [2−2, 2−1], 21+1t ∈ [2−1, 1], 22+1t ∈ [1, 2], and
2j+1t ∈ [2j−2, 2j−1].

Thus, if n ≥ 2, for t ∈ [2−n, 2−n+1] = [tn, tn−1] we recursively have

f0(t) =
n−2∑
j=0

(−1)j

j + 1

{
b−1N2(2

j+1t+ 1) + b0N2(2
j+1t− 0)

}

+
∞∑

j=n−1

2j−n+2−1∑
k=2j−n+1−1

(−1)j

j + 1
bkN2(2

j+1t− k).

Since 2j+1t ∈ [2j−n+1, 2j−n+2] ⊂ [0, 1] for 0 ≤ j ≤ n− 2, we see that

N2(2
j+1t+ 1) = 2− (2j+1t+ 1) = 1− 2j+1t, N2(2

j+1t− 0) = 2j+1t

and get

f0(t) =
n−2∑
j=0

(−1)j

j + 1

{
(1− 2j+1t)b−1 + 2j+1tb0

}

+
∞∑

j=n−1

2j−n+2−1∑
k=2j−n+1−1

(−1)j

j + 1
bkN2(2

j+1t− k). (3)

Remark 2.1 In the same way we also get for t ∈ [−2−n+1,−2−n] = [−tn−1,−tn]

f0(t) =
n−2∑
j=0

(−1)j

j + 1

{
(1− 2j+1t)b−1 − 2j+1tb−2

}

+
∞∑

j=n−1

−2j−n+1−1∑
k=−2j−n+2−1

(−1)j

j + 1
bkN2(2

j+1t− k). (4)
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2.2 Unbounded Variation

It is sufficient to show that f0 ̸∈ BV (R) instead of f0 ̸∈ W 1,1(R), since
W 1,1(R) ⊂ BV (R). Especially when t = tn, noting that N2(2

j+1tn − k) =
δ1,2j+1tn−k, that is, the summation with respect to k runs over only k =
2j+1tn − 1 = 2j−n+1 − 1, (3) can be changed into

f0(tn) =
n−2∑
j=0

(−1)j

j + 1

{
(1− 2j−n+1)b−1 + 2j−n+1b0

}
+

∞∑
j=n−1

(−1)j

j + 1
b2j−n+1−1.

Hence it follows that for n ≥ 3

f0(tn−1)− f0(tn) =
n−3∑
j=0

(−1)j

j + 1

{(
1− 2j−n+2

)
b−1 + 2j−n+2b0

}
+

∞∑
j=n−2

(−1)j

j + 1
b2j−n+2−1

−
n−2∑
j=0

(−1)j

j + 1

{(
1− 2j−n+1

)
b−1 + 2j−n+1b0

}
−

∞∑
j=n−1

(−1)j

j + 1
b2j−n+1−1

=
n−2∑
j=0

(−1)j

j + 1

{(
1− 2j−n+2

)
b−1 + 2j−n+2b0

}
− (−1)n−2

n− 1
b0

+
∞∑

j=n−1

(−1)j

j + 1
b2j−n+2−1 +

(−1)n−2

n− 1
b0

−
n−2∑
j=0

(−1)j

j + 1

{(
1− 2j−n+1

)
b−1 + 2j−n+1b0

}
−

∞∑
j=n−1

(−1)j

j + 1
b2j−n+1−1

=
n−2∑
j=0

(−1)j

j + 1
2j−n+1(b0 − b−1) +

∞∑
j=n−1

(−1)j

j + 1
(b2j−n+2−1 − b2j−n+1−1).

Our next task is to find a suitable wavelet whose coefficients bk satisfy∑∞
n=1 |f0(tn−1)− f0(tn)| = ∞.
In particular, for convenience, we shall choose the Strömberg wavelet

ψSt ∈ Lip(R) given by

ψSt(t) =
∑
k∈Z

bkN2(2t− k),

where

bk =



−4(
√
3− 2)k if k ≥ 1,

−5

2
+

√
3

2
if k = 0,

−(2−
√
3)−

k
2

(
cos

kπ

2
+
√
2 sin

kπ

2

)
if k ≤ −1,
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(see [3]). Noting that

n−2∑
j=0

(−2)j

j + 1
= 2−1

∫ 2

0

1− (−y)n−1

1 + y
dy = 2−1 log 3− 2n−1

∫ 1

0

(−z)n−1

1 + 2z
dz,

we can rewrite

f0(tn−1)− f0(tn) = (b0 − b−1)2
1−n

n−2∑
j=0

(−2)j

j + 1
+

(−1)n−1

n
(b1 − b0)

+
∞∑
j=n

(−1)j

j + 1
(b2j−n+2−1 − b2j−n+1−1)

= (b−1 − b0)
( ∫ 1

0

(−z)n−1

1 + 2z
dz − 2−n log 3

)
+

(−1)n−1

n
(b1 − b0)

+
∞∑
j=n

(−1)j

j + 1
(b2j−n+2−1 − b2j−n+1−1).

Especially, for n = 2m+ 1 (m ≥ 1) we obtain

t2m − t2m+1 = 2−2m−1,

f0(t2m)− f0(t2m+1) = (b−1 − b0)
∫ 1

0

z2m

1 + 2z
dz +

b1 − b0
2m+ 1

−(b−1 − b0)2
−2m−1 log 3 +

∞∑
j=2m+1

(−1)j

j + 1
{b2j−2m+1−1 − b2j−2m−1}

=: I + II − III + IV.

Using b−1 − b0 =
1
2
(3 +

√
3) and b1 − b0 =

3
2
(7− 3

√
3), we get

I + II ≥ (b−1 − b0)
∫ 1

0

z2m

1 + 2
dz +

b1 − b0
2m+ 1

>
13(2−

√
3)

6(m+ 1)
,

|IV | ≤ 1

2m+ 2

∞∑
j=2m+1

|b2j−2m+1−1 − b2j−2m−1|

=
2

(m+ 1)(2−
√
3)

∞∑
j=2m+1

{
(2−

√
3)2

j−2m − (2−
√
3)2

j−2m+1
}

≤ 2

(m+ 1)(2−
√
3)
(2−

√
3)2

(2m+1)−2m

=
2(2−

√
3)

m+ 1
.
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Since |III| < 2−
√
3

7(m+1)
for m ≥ 2, there exists c > 0 such that for m ≥ 2

|f0(t2m)− f0(t2m+1)| ≥
∣∣∣I + II + IV

∣∣∣− |III| ≥
∣∣∣I + II − |IV |

∣∣∣− |III|

≥ c

m+ 1
. (5)

Since
∑∞

n=1 |f0(tn−1) − f0(tn)| ≥
∑∞

m=1 |f0(t2m) − f0(t2m+1)| = ∞, we find
that f0 ̸∈ BV (R). Therefore we can conclude that f0 ̸∈ W 1,1(R).

Remark 2.2 Thanks to the Strömberg wavelet ψSt ∈ Lip(R), we can know
that |I+II+IV | ≠ 0. The information of the exact values of bk is required to
find (5). Therefore, it would be difficult to get (5) for general piecewise linear
spline wavelets ψ ∈ Lip(R) or even for the Franklin wavelet ψFr ∈ Lip(R)
whose values of bk are very complicated (see [3]).

2.3 Continuity and Uniform Convergence

As for the continuity (at t = 0), with

f0(0) =
∞∑
j=0

∑
k∈Z

(−1)j

j + 1
bkN2(2

j+10− k) =
∞∑
j=0

(−1)j

j + 1
b−1,

by (3) we get

|f0(t)− f0(0)| ≤
∣∣∣ ∞∑
j=n−1

(−1)j

j + 1

∣∣∣|b−1|+
∣∣∣ n−2∑
j=0

(−1)j

j + 1
2j+1

∣∣∣|b0 − b−1|t

+
∣∣∣ ∞∑
j=n−1

2j−n+2−1∑
k=2j−n+1−1

(−1)j

j + 1
bkN2(2

j+1t− k)
∣∣∣

=: I ′ + II ′ + III ′.

We can estimate I ′, II ′ and III ′ as follows:

I ′ =
∣∣∣ ∞∑
j=n−1

(−1)j

j + 1

∣∣∣(√3− 1) =
∣∣∣ ∫ 1

0

(−z)n−1

1 + z
dz
∣∣∣(√3− 1)

≤
∫ 1

0

zn−1

1 + 0
dz(

√
3− 1) ≤ C

n
,
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II ′ ≤
∣∣∣ n−2∑
j=0

(−2)j

j + 1

∣∣∣ · 2|b0 − b−1|tn−1

=
∣∣∣2−1 log 3− 2n−1

∫ 1

0

(−z)n−1

1 + 2z
dz
∣∣∣ · 2∣∣∣− 1

2
(3 +

√
3)
∣∣∣2−n+1

≤
(
2−1 log 3 + 2n−1

∫ 1

0

zn−1

1 + 2 · 0
dz
)
· (3 +

√
3)2−n+1 ≤ C

n
,

III ′ ≤
∞∑

j=n−1

2j−n+2−1∑
k=2j−n+1−1

|bk|
j + 1

≤ 1

n

∞∑
j=n−1

(
sup

2j−n+1−1≤k≤2j−n+2−1

|bk|
) 2j−n+2−1∑
k=2j−n+1−1

1

≤ 1

n

∞∑
j=n−1

4(2−
√
3)2

j−n+1−1(2j−n+1 + 1) ≤ C

n
.

Thus we find that |f0(t) − f0(0)| → 0 as n → ∞ for t ∈ [2−n, 2−n+1] =
[tn, tn−1]. This means the right continuity of f0. Similarly, the left continuity
of f0 follows from (4) instead of (3), and we get f0 ∈ C0(R).

Remark 2.3 We remark that f0 is not only continuous but also uniformly
continuous. More precisely, f0 satisfies |f0(t) − f0(s)| ≤ C/ log |t − s|−1 for
0 < |t− s| < 1/2, that is log-Hölder continuous.

Remark 2.4 In general, f0 is continuous if fJ → f0 uniformly, but the
converse does not hold. It is known that fJ → f0 uniformly if {fJ(t)}J
is uniformly equicontinuous and fJ(t) → f0(t) pointwise. Let us take the
sequence of partial sums

fJ(t) =
J∑

j=0

(−1)j

(j + 1)2
j
2

ψSt
j,0(t).

Similarly, we also find that |fJ(t) − fJ(0)| → 0 as n → ∞ for t ∈ [tn, tn−1].
We remark that the corresponding I ′J , II

′
J and III ′J tend to 0 independently

of J . This means that {fJ(t)}J is uniformly equicontinuous. We see that
fJ(t0) → f0(t0) for a fixed t0 ̸= 0, since |bk| is rapidly decreasing at ±∞ and

fJ(t0) =
J∑

j=0

(−1)j

(j + 1)2
j
2

ψSt
j,0(t0) =

J∑
j=0

∑
k∈Z

(−1)j

j + 1
bkN2(2

j+1t0−k) ∼
J∑

j=0

(−1)j

j + 1
b[2j+1t0],

11



where [α] is the largest integer not greater than α. Meanwhile, we immedi-
ately see that fJ(0) → f0(0) as an alternating series. Thus, fJ(t) → f0(t)
pointwise and we can conclude that fJ → f0 uniformly.

2.4 Non-unconditional Convergence

The non-unconditional convergence implies that there exists a sequence βj ∈
{1,−1} such that the series

∑
j∈Z βjcjej(t) does not converge. In order to

know the non-unconditional convergence of f0(t) =
∑∞

j=0
(−1)j

(j+1)2
j
2

ψSt
j,0(t), with

βj = cj/|cj| especially for
∑

j∈Z βjcjej(t) we shall consider the divergence of

f̃0(t) :=
∞∑
j=0

∣∣∣ (−1)j

(j + 1)2
j
2

∣∣∣ψSt
j,0(t).

We remark that we can not deal with
∑∞

j=0

∣∣∣ (−1)j

(j+1)2
j
2

∣∣∣|ψSt
j,0(t)| instead of f̃0(t).

Let us define the interval IJ = (2−J−3, 2−J−3 + 2−J−4) for J ≥ 1. Taking
L∞(R)-norm, we have

∥f̃0∥L∞(R) ≥ ∥f̃0∥L∞(IJ ) =
∥∥∥ ∞∑
j=0

ψSt
j,0(t)

(j + 1)2
j
2

∥∥∥
L∞(IJ )

≥
∥∥∥ J−1∑

j=0

ψSt
j,0(t)

(j + 1)2
j
2

∥∥∥
L∞(IJ )

−
∥∥∥ ∞∑
j=J

ψSt
j,0(t)

(j + 1)2
j
2

∥∥∥
L∞(IJ )

=: LJ −MJ .

We note that 0 < 2j+1t−k < 2 if N2(2
j+1t−k) ̸= 0, i.e., 2j+1t−2 < k < 2j+1t.

Therefore we may consider [2j+1t]− 1 ≤ k ≤ [2j+1t]. As for the 1st term, we
get

LJ ≥ ess. sup
t∈IJ

J−1∑
j=0

ψSt
j,0(t)

(j + 1)2
j
2

= ess. sup
t∈IJ

J−1∑
j=0

1

j + 1

∑
k∈Z

bkN2(2
j+1t− k)

= ess. sup
t∈IJ

J−1∑
j=0

1

j + 1

{
b−1N2(2

j+1t+ 1) + b0N2(2
j+1t− 0)

}

= ess. sup
t∈IJ

J−1∑
j=0

1

j + 1

{
b−1(1− 2j+1t) + b02

j+1t
}
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= ess. sup
t∈IJ

J−1∑
j=0

1

j + 1

{
b−1 − 2j+1t(b−1 − b0)

}
,

here we used that 0 < 2j+1t ≤ 3
8
for 0 ≤ j ≤ J and t ∈ IJ . Since b−1 =√

4− 2
√
3 =

√
3− 1 and b−1 − b0 =

√
3+3
2

, we see that

LJ ≥
J−1∑
j=0

1

j + 1

{
b−1 − 2j+1 · (2−J−3 + 2−J−4) · (b−1 − b0)

}

≥
J−1∑
j=0

1

j + 1

{
b−1 − 2(J−1)+1 · (2−J−3 + 2−J−4) · (b−1 − b0)

}

≥
J−1∑
j=0

c

j + 1
(c > 0).

As for the 2nd term, noting that |bk| is decreasing for k ≥ 0, we get

MJ ≤ ess. sup
t∈IJ

∞∑
j=J

|ψSt
j,0(t)|

(j + 1)2
j
2

= ess. sup
t∈IJ

∞∑
j=J

1

j + 1

∣∣∣ ∑
k∈Z

bkN2(2
j+1t− k)

∣∣∣
= ess. sup

t∈IJ

∞∑
j=J

1

j + 1

∣∣∣b[2j+1t]−1N2(2
j+1t− [2j+1t] + 1)

+b[2j+1t]N2(2
j+1t− [2j+1t])

∣∣∣
≤ ess. sup

t∈IJ

∞∑
j=J

|b[2j+1t]−1|+ |b[2j+1t]|
j + 1

≤ C

J
+ ess. sup

t∈IJ

∞∑
j=J+2

2|b[2j+1t]−1|
j + 1

≤ C

J
+

∞∑
j=J+2

2|b2j−J−2−1|
j + 1

,

here we used that [2j+1t]− 1 ≥ [2j−J−2]− 1 = 2j−J−2 − 1(≥ 0) for j ≥ J + 2
and t ∈ IJ . Moreover, we easily see that

MJ ≤ C

J
+ c1 +

∞∑
h=2

8(2−
√
3)2

h−1

J + h+ 2
≤ C ′ +

∞∑
h=2

8(2−
√
3)h

1 + 1 + 2
≤ C ′′,

where C ′ is independent of J . Thus, it follows that

∥f̃0∥L∞(R) ≥ LJ −MJ ≥
J−1∑
j=0

c

j + 1
− C ′′.

This holds for all J ≥ 0, that is, ∥f̃0∥L∞(R) = ∞.
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Remark 2.5 If we take only B0(R)-norm (sup-norm) instead of L∞(R)-
norm (ess. sup-norm), by substituting t = 0 we immediately find that

∥f̃0∥B0(R) ≥
∣∣∣ ∞∑
j=0

∣∣∣ (−1)j

(j + 1)2
j
2

∣∣∣ψSt
j,0(0)

∣∣∣ = ∣∣∣ ∞∑
j=0

∑
k∈Z bkN2(−k)

j + 1

∣∣∣ = ∞∑
j=0

b−1

j + 1
= ∞.

In the above estimate of ∥f̃0∥L∞(R) , we used the sequence of the interval {IJ}
since the essential supremum excludes the measure zero set {t = 0}. We also

remark that
∑∞

j=0

∣∣∣ (−1)j

(j+1)2
j
2

∣∣∣ψSt
j,0(t) does not converge to f̃0(t) uniformly (while∑∞

j=0
(−1)j

(j+1)2
j
2

ψSt
j,0(t) converges to f0(t) uniformly).

Concluding Remarks

• We have considered a continuous wavelet with sufficient decay. In general,
such a wavelet is difficult to be exactly represented in the time domain.
We paid attention to a little-known fact that the Strömberg wavelet has
simple exact values at nodes. The sequence of those simple exact values
decays rapidly and plays an important role to derive some estimates in the
proof. So, we have utilized the Strömberg wavelet effectively in this paper.

• In our construction, the unbounded variation of a function causes the non-
unconditional convergence of a wavelet expansion. We remark that the proof
would become simpler if one considered a discontinuous function with the
unbounded variation. But we can not expect the uniform convergence, if
discontinuous functions are expanded by continuous wavelets. So, we have
succeeded to construct a continuous function whose wavelet expansion
converges uniformly and non-unconditionally in L∞.

References

[1] R. Ashino and T. Mandai, Wavelet bases for microlocal filtering and the
sampling theorem in Lp(R

n), Appl. Anal., 82, No. 1, 1–24 (2003).

[2] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Confer-
ence Series in Applied Mathematics, 61, SIAM, Philadelphia, PA, 1992.

14



[3] N. Fukuda and T. Kinoshita, On non-symmetric orthogonal spline
wavelets, Southeast Asian Bull. Math., 36, No. 3, 319–341 (2012).

[4] E. Hernández and G. Weiss, A first course on wavelets, CRC Press, Boca
Raton, FL, 1996.

[5] T. Hoshiro, Unconditional convergence of wavelet expansions (Japanese)
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