Na⁺ diffusion kinetics in nanoporous metal-hexacyanoferrates

<table>
<thead>
<tr>
<th>著者別名</th>
<th>守友 浩</th>
</tr>
</thead>
<tbody>
<tr>
<td>電子メール</td>
<td></td>
</tr>
<tr>
<td>席番</td>
<td></td>
</tr>
<tr>
<td>住所</td>
<td></td>
</tr>
<tr>
<td>権利</td>
<td>この論文の全文または一部の公開は禁止されています</td>
</tr>
</tbody>
</table>

doi: 10.1039/C5DT03276H
Na$^+$ diffusion kinetics in nanoporous metal-hexacyanoferrates†

Masamitsu Takachia, Yuya Fukuzumia and Yutaka Moritomoa,b,c

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 20XX
DOI: 10.1039/b000000x

Metal-hexacyanoferrates (metal-HCFs) are promising candidates for cathode materials of sodium-ion secondary batteries (SIBs). Here, we systematically investigated Na$^+$ diffusion constants (D) and their activation energies (E_a) in metal-HCFs against the framework size ($=a/2$). We found that the magnitude of D (E_a) systematically increases (decreases) with increases in a, indicating that steric hindrance plays a dominant role in Na$^+$ diffusion.

Coordination polymers are promising cathode materials for SIBs, due to their robust nature of their three-dimensional (3D) frameworks against Na$^+$ intercalation/deintercalation. Among the coordination polymers, metal-HCFs, Na$_x$M[Fe(CN)$_6$]$_2$ (M is metal element), are most intensively investigated as cathode materials for SIBs.$^{1-10}$ The compounds show 3D jungle-gym-type framework with periodic cubic nanopores, 0.5 nm at the edge.11 Significantly, the framework size ($=a/2$) is finely-controlled by the substitution of M. Actually, in (Cs,Rb)$_x$M[Fe(CN)$_6$]$_2$ (M = Co, Fe, Ni, Cu, Zn, Mn, and Cd), a increases linearly with increase in the ionic radius (r) of M as a [Å] = 0.8091 + 2r [Å].11,12

The electrochemical performance of the metal-HCF family has been rapidly improved every year. Goodenough’s group1 have reported Na$^+$ intercalation behaviors in a K-M-Fe(CN)$_6$ system (M = Mn, Fe, Co, No, Cu, Zn), even though their Coulomb efficiency is very low. The Coulomb efficiency is significantly improved in thin films of Na$_1$Cd$_{32}$Fe$_{36}$[Fe(CN)$_6$]$_{90}$3.5H$_2$O2 and Na$_1$Cd$_{16}$Fe$_{36}$[Fe(CN)$_6$]$_{90}$2.9H$_2$O3; the films show high capacities of 109 and 135 mAh/g and average operating voltages of 3.4 and 3.6 V against Na, respectively. By a structural optimization, Yang et al.5 demonstrated that Na$_1$Cd$_{32}$Ni$_{12}$Mn$_{30}$[Fe(CN)$_6$]$_{90}$98 exhibits an excellent cycle life with a capacity of 118 mAh/g. In addition, Lee et al.6 reported that Na$_2$MnII[MnII](CN)$_6$$_{3}$ show a huge capacity of 209 mAh/g mediated by one- and two-electron reactions per a chemical formula. Significantly, the metal-HCF also works as cathode materials of lithium-ion secondary batteries (LIBs).$^{13–17}$ Then, we can directly compare the diffusion dynamics of Li$^+$ (r = 0.92 Å) and Na$^+$ (r = 1.18 Å) within the same host framework.

In this Communication, we investigated the framework size dependence of Na$^+$ diffusion constants (D) and their activation energies (E_a) in metal-HCFs. We found that the magnitude of D (E_a) systematically increases (decreases) with increases in the framework size. We further compare the diffusion dynamics of Na$^+$ and Li$^+$ within the same Mn-HCF and Cd-HCF frameworks. Reflecting the smaller ionic radius, the diffusion constant of Li$^+$ is much higher than that of Na$^+$.

Films of Co-, Mn- and Cd-HCF were fabricated by the electrochemical deposition on an indium tin oxide (ITO) transparent electrodes under potentiostatic conditions at - 0.45 V vs. a standard Ag/AgCl electrode.14,18 The electrolytes were aqueous solutions containing 0.8 mM K$_2$[Fe(CN)$_6$], 0.5 mM CoII[NO$_3$]$_2$, and 5M Na$_2$SO$_4$ for Co-HCF, that containing 1.0mM K$_3$[Fe(CN)$_6$], 1.5mM MnIIICl$_2$, and 1M NaCl for Mn-HCF, and that containing 1.0mM K$_2$[Fe(CN)$_6$], 1.5mM CdIICl$_2$, and 1M NaCl for Cd-HCF. The obtained film was transparent with a thickness (d) of ≈ 500 nm (Fig. S1). Chemical composition of the Co-HCF film determined to be Na$_1$Cd$_{32}$CoIII[Fe(CN)$_6$]$_{90}$3.1H$_2$O (denoted as CoF88) using the inductively coupled plasma (ICP) method and a CHN organic elemental analyzer. Calcd: Na, 10.4; Co, 17.6; Fe, 14.6; C, 18.9; H, 1.8; N, 22.0%. Found: Na, 11.2; Fe, 17.4; Fe, 15.3; C, 18.5; H, 1.9; N, 20.0%. Chemical composition of the Mn-HCF film determined to be Na$_1$Cd$_{36}$MnIII[Fe(CN)$_6$]$_{90}$3.4H$_2$O (MnF84). Calcd: Na, 9.7; Mn, 16.9; Fe, 14.5; C, 18.7; H, 2.1; N, 21.8%. Found: Na, 10.6; Mn, 16.8; Fe, 14.7; C, 18.2; H, 2.1; N, 20.9%. Chemical composition of the Cd-HCF film determined to be Na$_1$Cd$_{36}$MnIII[Fe(CN)$_6$]$_{90}$3.7H$_2$O (CdF94). Calcd: Na, 9.6; Cd, 26.8; Fe, 12.5; C, 16.1; H, 1.9; N, 18.8%. Found: Na, 10.3; Cd, 27.0; Fe, 13.1; C, 15.8; H, 1.8; N, 17.9%. The X-ray powder diffraction (XRD) patterns of the CoF88, MnF84, and CdF94 films were obtained with use of a synchrotron-
radiation X-ray source (Fig. S2). The crystal structure was hexagonal (R₃m; Z = 12) for MnF₈₄ and CoF₈₈ while it is face-centered cubic (FM₃m; Z = 4) for CdF₉₄. The masses of the films were measured using a conventional electronic weighing machine by subtracting the mass of the substrate.

In order to investigated the Na⁺ diffusion kinetics, electrochemical impedance spectra (EISs) were measured with a potentiosat (BioLogic SP-150) in a two-pole beaker type cell against Na metal. The electrolyte is propylene carbonate (PC) containing 1M NaClO₄. The active area of the film was 1 cm². The frequency range was from 5 mHz to 200 kHz, and the amplitude was 30 mV. The concentration (x) of Na⁺ was controlled by charge/discharge process of the battery. The magnitudes of x was evaluated by the relative charge with assuming the ideal redox reaction. In the MnF₈₄ and CoF₈₈ films, the discharge curve shows a characteristic two-plateau [at 3.6 Na⁺ + MnIII₂₄ [FeIII(CN)₆]₀.₈₈ → 0.₈₄Na⁺ + Na₀.₈₂MnII [FeIII(CN)₆]₀.₈₄ and 0.₈₄Na⁺ + Na₀.₈₂MnIII [FeII(CN)₆]₀.₈₄] at the central region of the low- and high- Na⁺ regions of the plateau.

In the high- and low-V plateaus of CoF₈₈ are ascribed to 1.₅₂Na⁺ + CoIII₂₄ [FeII(CN)₆]₀.₅₂[FeIII(CN)₆]₀.₃₆ + Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈ and Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈ → Na⁺ + Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈ and Na⁺ + Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈ → Na⁺ + Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈, respectively. The high- and low-V plateaus of CoF₈₈ are ascribed to 1.₅₂Na⁺ + CoIII₂₄ [FeII(CN)₆]₀.₅₂[FeIII(CN)₆]₀.₃₆ + Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈ and Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈ → Na⁺ + Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈ and Na⁺ + Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈ → Na⁺ + Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈, respectively. The high-V plateaus of CoF₈₈ are ascribed to 1.₅₂Na⁺ + CoIII₂₄ [FeII(CN)₆]₀.₅₂[FeIII(CN)₆]₀.₃₆ + Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈ and Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈ → Na⁺ + Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈ and Na⁺ + Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈ → Na⁺ + Na₀.₅₂CoII [FeII(CN)₆]₀.₈₈, respectively. In the high-V plateau, the EISs are too deformed to analyze (Fig. S4). So, we chose x = 0.₆ (0.₈) for MnF₈₄ (CoF₈₈) at the central region of the low-V plateau. In the CdF₉₄, the discharge curve shows a single-plateau 18 (Fig. S3): 0.₉₄Na⁺ + Na₀.₈₂CdII [FeIII(CN)₆]₀.₉₄ → Na₁.₇₆CdII [FeII(CN)₆]₀.₉₄. We chose x = 0.₅ at the central region of the plateau.

The formal valences at the EIS measurements are Na₀.₆MnII [FeII(CN)₆]₀.₀₈[FeIII(CN)₆]₀.₇₆ (MnF₈₄), Na₀.₈₂CoII [FeII(CN)₆]₀.₇₂[FeII(CN)₆]₀.₈₄ (CoF₈₈), and Na₁.₇CdII [FeII(CN)₆]₀.₃₂[FeII(CN)₆]₀.₆₆ (CdF₉₄). We note that the molar ratios of the divalent metals (MnII, FeII, CoII, and CdII) and the heavy metals (Mn, Fe, Co, and Cd) are close to each other: 0.₅₉, 0.₆₁, and 0.₆₆ for MnF₈₄ (x = 0.₆), CoF₈₈ (0.₈), and CdF₉₄ (1.₇), respectively. In other words, the electrostatic forces between Na⁺ and the host frameworks are nearly the same. In addition, the hexagonal distortion of the as-grown MnF₈₄ (x = 1.₃₆) and CoF₈₈ (1.₅₂) disappears with decrease in x. 2-4 Actually, crystal structures are face-centered cubic (FM₃m; Z = 4) at the EIS measurements: a = 10.₅₆ Å for MnF₈₄ (x = 0.₆) and 9.₉₉ Å for CoF₈₈ (0.₈). Thus, metal-HCFs give us nice platforms to investigate the interrelation between the Na⁺ diffusion kinetics and the framework size.

Figure 1(a) shows EISs of CoF₈₈, MnF₈₄, and CdF₉₄ films against Na. In the high frequency region, the spectra show semicircles. With increase in the frequency (f), the spectra show straight lines with the angle of ~ π/4 against the imaginary axis [broken straight lines in Fig. 1(a)]. With further decrease in f, the data deviates from the broken line. We define the critical frequency (f_c) where the data begins to deviate from the broken line. Then, f_c−¹ is the characteristic time when the diffusion length of Na⁺ reaches the film thickness (d). The diffusion constant (D) is expressed as D = 2 π f_c d². Looking at Fig. 1(a), we found that f_c in the CoF₈₈ film is much smaller than those in the MnF₈₄ and CdF₉₄ films.

We quantitatively analyzed the EISs with a Randles equivalent circuit model, which consists of the high frequency resistance (R₀) of electrolyte, ionic charge-transfer resistance (Rct), double layer capacitance (Cdl), and restricted diffusion impedance (Rd : zd). Rd and zd are characteristic resistance and reduced diffusion impedance, respectively) of flat plate with thickness d. 19 In order to reproduce the finite slope in the low frequency region, we used the constant phase element (CPE)-restricted form as zd: 20

\[
z_d(u) = \frac{\alpha \nu^u + \sqrt{\nu} \coth \sqrt{\nu}}{\alpha \nu^u + 1/2 \coth \sqrt{\nu}}, \quad u = \frac{\alpha \nu D^2}{D^2},
\]

![Fig. 1. (a) EISs of CoF₈₄, MnF₈₄, and CdF₉₄ films in PC containing 1M NaClO₄ at 305 K. (b) EISs of the Li-substituted MnF₈₄ and CdF₉₄ film in EC / DEC containing 1M LiClO₄ at 305 K. Arrows indicate the frequencies. Broken straight lines are eye-guided ones. Solid curves are results of the least-squares fittings with the Randles equivalent circuit model (see text).](image-url)
The temperature dependence of EISs (Figs. S6 and S7) for CoF88, MnF84, and CdF94 films. The D values were evaluated by the least-squares fittings of the EIS curves with the Randles equivalent circuit model [solid curve in Figs. S6 and S7]. Figure 3 shows temperature dependence of D. As indicated by least-squares fitted straight lines, D obeys the thermal-activation law: $D \propto \exp(-E_a/k_BT)$. In Fig. 2(b), we plotted E_a against a. We found that E_a steeply decreases with increases in a. The activation energy corresponds to the barrier height of the Na$^+$ potential curve along the ion migration path. An ab initio calculation indicates that the potential shows local maximum at the window position between the neighboring cubic nanopores. Then, the suppressed E_a in the large-a compound is ascribed to the weaker guest-host interaction, and resultant lower potential barrier at the window position.

Finally, let us discuss the effects of the Na$^+$ - H$_2$O and Na$^+$ - Na$^+$ interactions on D. The metal-HCF has two types of crystal waters, i.e., the ligand and zeolite waters, in addition to Na$^+$. Among them, the zeolite waters occupy the nanopores and disturb the Na$^+$ diffusion. In other words, the Na$^+$ - H$_2$O interaction is expected to suppress D with increase in the number (n_2) of the zeolite water. The actual D value, however, increases with increase in n_2: $n_2=2.4, 2.4, 3.4$ for CoF88, MnF84, and CdF94, respectively. This indicates that the Na$^+$ - H$_2$O interaction has minor effect on D. The Na$^+$ - Na$^+$ interaction is also expected to suppress D with a, because Na$^+$ cannot hop to the occupied adjacent site. We, however, found that the D value of the MnF84 film is less sensitive to x: $D = 2.3 \times 10^{-10}, 2.2 \times 10^{-10}$, and 2.6×10^{-10} cm2/s at $x=0.6, 0.9$, and 1.1, respectively.

In conclusion, we demonstrate that diffusion kinetics of alkali cations in metal-HCFs crucially depends on not only the ionic radius but also the framework size. The high Na$^+$ diffusion constant ($\approx 10^{-9}$ cm2/s) in the wide framework compounds suggests that metal-HCFs are promising cathode materials of SIBs.

where $\omega (= 2\pi f)$, α, n is the angular velocity, dimensionless quantity, and specific exponent, respectively. We evaluated seven parameters, i.e., R_0, R_e, C_d, R_d, α, n, and D, by least-squares fittings of the EIS curves [solid curves in Fig. 1(a)].

We further investigated the diffusion kinetics of Li$^+$ in the same host framework. We measured the EISs in ethylene carbonate (EC) / diethyl carbonate (DEC) containing 1M LiClO$_4$ against Li metal. Before the measurements, Na$^+$ of the films is electrochemically substituted for Li$^+$. The concentration (x) of alkali cations was controlled by charge/discharge process of the battery cell. The magnitudes of x was evaluated by the relative charge with assuming the ideal redox reaction. In the MnF84 films, the discharge curve shows a characteristic two-plateau structure (Fig. S5). Figure 1(b) shows EISs of MnF84 and CdF94 films against Li. We evaluated the D values by least-squares fittings of the EIS curves with the Randles equivalent circuit model [solid curve in Fig. 1(b)].

In Fig. 2(a), we plotted D against a. Open and closed circles stand for Na$^+$ and Li$^+$, respectively. The magnitudes of a were evaluated with use of the x dependence of a reported in literature. For CdF94, we used the structural data of the Li-substituted Cd-HCF. We found that the Na$^+$ diffusion constant steeply increases with increase in a: $D = 0.5 \times 10^{-10}, 2.3 \times 10^{-10},$ and 7.7×10^{-10} cm2/s at $a = 9.97$ (CoF88), 10.56 (MnF84), and 10.70 Å (CdF94), respectively. This behavior is reasonable because the wider the framework becomes the faster the guest ion transfer to the adjacent cubic nanopore. We further found that the diffusion constant of the smaller Li$^+$ is much higher than that of Na$^+$ diffusion constant in the same MnF84 and CdF94 framework.

In order to evaluate the activation energy (E_a) of D, we investigated temperature dependence of EISs (Figs. S6 and S7) for CoF88, MnF84, and CdF94 films. Open and closed circles stand for Na$^+$ and Li$^+$, respectively. Solid lines are results of least-squares fitting.

Fig. 2: (a) Diffusion constant (D) and (b) activation energy (E_a) in CoF88, MnF84, and CdF94 films against lattice constant (a). Open and closed circles stand for Na$^+$ and Li$^+$, respectively.
This work was supported by the Mitsubishi Foundation, Yazaki Memorial Foundation, and Nippon Sheet Glass Foundation. The elementary analyses were performed at the Chemical Analysis Division, Research Facility Center for Science and Engineering, University of Tsukuba. The XRD measurements were performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2014G507).

References