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Undoped n-type BaSi2 films were grown on Si(111) by molecular beam epitaxy, and the valence

band (VB) offset at the interface between the BaSi2 and its native oxide was measured by hard

x-ray photoelectron spectroscopy (HAXPES) at room temperature. HAXPES enabled us to investi-

gate the electronic states of the buried BaSi2 layer non-destructively thanks to its large analysis

depth. We performed the depth-analysis by varying the take-off angle (TOA) of photoelectrons as

15�, 30�, and 90� with respect to the sample surface and succeeded to obtain the VB spectra of the

BaSi2 and the native oxide separately. The VB maximum was located at �1.0 eV from the Fermi

energy for the BaSi2 and �4.9 eV for the native oxide. We found that the band bending did not

occur near the native oxide/BaSi2 interface. This result was clarified by the fact that the core-level

emission peaks did not shift regardless of TOA (i.e., analysis depth). Thus, the barrier height of the

native oxide for the minority-carriers in the undoped n-BaSi2 (holes) was determined to be 3.9 eV.

No band bending in the BaSi2 close to the interface also suggests that the large minority-carrier

lifetime in undoped n-BaSi2 films capped with native oxide is attributed not to the band bending in

the BaSi2, which pushes away photogenerated minority carriers from the defective surface region,

but to the decrease of defective states by the native oxide. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4939614]

I. INTRODUCTION

Thin-film solar cells composed of Cu(In,Ga)Se2 (CIGS)

and CdTe have yielded practical applications because of

their high energy conversion efficiency and low cost.1–6

These materials include toxic and/or not-abundant metal ele-

ments. Therefore, materials consisting of earth-abundant and

environmental-friendly elements are preferable. To realize

such thin-film solar cells, Si thin-film solar cells have been

studied extensively;7–12 however, it is not easy to achieve

high efficiency as large as 20% because the absorption coef-

ficient of crystalline Si is much smaller than that of CIGS. It

is thereby very important to explore other thin-film solar cell

materials composed of non-toxic and earth abundant ele-

ments. Among such materials, we have focused much atten-

tion on semiconducting barium disilicide (BaSi2). BaSi2 has

a band gap of approximately 1.3 eV, matching the solar spec-

trum.13,14 In addition, it has a large absorption coefficient

reaching 3� 104 cm�1 at 1.5 eV,14 which might enable us to

achieve high-efficiency thin-film solar cells. Besides,

minority-carrier diffusion length (ca. 10 lm)15 and minority-

carrier lifetime, s, (ca. 14 ls)16,17 of undoped n-BaSi2 are

sufficiently large for thin-film solar cell application. Our pre-

vious studies suggested that the native oxide layer on the sur-

face of undoped n-BaSi2 acts as a passivation layer; s

reached approximately 10 ls.18 According to the previous x-

ray photoelectron spectroscopy (XPS) studies, we found that

this native oxide layer was composed of oxides such as SiOx

and BaCO3.18 But we could not discuss how the native

oxides contribute to the surface passivation due to the lack of

depth-dependent analysis for the native oxide/n-BaSi2 heter-

ostructure. In addition, we have recently achieved the solar

cell operation in the devices utilizing the native oxide/n-

BaSi2 heterointerface.19 The efficiency was quite limited

because the transport of photogenerated minority carriers

(holes) was blocked by the native oxide. In order to improve

the device performance, extraction of the photogenerated

holes more efficiently through the native oxide layer via tun-

neling is needed. At present, the barrier height of the native

oxide for holes is unknown. Hard x-ray photoelectron spec-

troscopy (HAXPES) is a powerful tool as a direct probe of

valence band (VB) density of states (DOS) of BaSi2 under its

native oxide. This is because the analysis-depth of HAXPES

is much deeper than that of conventional XPS and ultraviolet

photoelectron spectroscopy.20–29 In general, conventional

XPS in the electron kinetic-energy range of 50–100 eV is

quite surface sensitive due to the short electron inelastic

mean free path (IMFP), k, of <5 Å. The conventional XPS

spectra strongly reflect electronic states at surfaces of solids,
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which make it difficult to examine the electronic states inside

the solids. Although the larger probing depth than 50 Å could

be expected for HAXPES, a significantly reduced photoioni-

zation cross-section prevented us from measuring VB photo-

electron spectra above 3 keV.30,31 An extremely brilliant X-

ray provided from the third generation synchrotron source

can well compensate for the diminished cross section and

has enabled us to perform HAXPES measurements with

high-energy resolution.32 There have been several reports

utilizing this large probing depth on the measurement of VB

spectra of buried layers such as CdS/Cu2ZnSnS4 (CZTS),

AlOx/Si heterostructures, and Bi2Se3 surface.20–22 For exam-

ple, in Ref. 20, CdS/CZTS heterostructures formed on Mo-

coated glass, where the CdS layer thickness was varied as 0,

5, and 100 nm, were examined by changing the effective

IMFP, which was controlled by take-off angle (TOA) of pho-

toelectrons in HAXPES. Consequently, they succeeded to

measure the VB spectra of CdS and CZTS, separately, and

obtained the VB offset (VBO) at the CdS/CZTS interface to

be 0.0 6 0.1 eV in a real device structure. In this study, we

have performed the HAXPES measurements for the native

oxide/BaSi2 in order to examine the VBO at the interface,

and the band bending near the interface.

II. EXPERIMENTAL METHOD

We used an ion-pumped molecular beam epitaxy (MBE)

system equipped with standard Knudsen cells for Ba and

CaF2 and an electron-beam evaporation source for Si in this

study. The base pressure of the MBE system was less than

10�8 Pa. The procedure of the sample preparation is as fol-

lows. First, Ba was deposited on a Si(111) substrate at

500 �C to form a 5-nm-thick BaSi2 template layer by reactive

deposition epitaxy (RDE).33 This layer works as a kind of

seed crystals for subsequent layers. Next, Ba and Si were co-

evaporated on the template layer at 580 �C by MBE to form

600-nm-thick undoped n-BaSi2 epitaxial films.34,35 After the

MBE growth, the sample was exposed to air for 3 min (sam-

ple A) and 24 h (sample B) to form a native oxide on the

BaSi2 surface, followed by the deposition of a 100-nm-thick

ITO layer by radio-frequency magnetron sputtering method

at room temperature (RT). For sample C, the BaSi2 surface

was exposed to air for 26 h after the MBE growth. For com-

parison, sample D was prepared, where the BaSi2 film was

capped in situ with a 2-nm-thick CaF2 layer in order to pre-

vent the surface oxidation.36 The oxide layer thicknesses for

samples A and B were evaluated by cross-sectional transmis-

sion electron microscope (TEM; FEI, Tecnai Osiris) with an

acceleration voltage of 200 kV. Thin foils for TEM observa-

tion were prepared with a focused ion beam micro-sampling

system. The layer structures of samples A–D are summarized

in Table I.

HAXPES measurements were performed at the revolver

undulator beamline BL15XU32,37 of SPring-8 in Japan. The

excitation photon energy was set to 5953 eV, and the inci-

dent angle of the photon was set to ca. 2�–5� with respect to

the sample surface. The TOA dependence of HAXPES

measured at 15�, 30�, and 90� with respect to the sample sur-

face was performed at RT. The overall energy resolution was

set to 150 meV. The Fermi energy, EF, was referred to the

Fermi cut-off of an evaporated Au film.

III. RESULTS AND DISCUSSION

Figures 1(a) and 1(b) show the bright-field cross-sec-

tional TEM images and the selected area diffraction (SAD)

patterns of samples A and B, respectively. As shown in the

SAD patterns, diffraction spots corresponding to (200),

(400), and (600) planes of BaSi2 are aligned normal to the

sample surface, thereby we succeeded to grow the a-axis-ori-

ented BaSi2 epitaxial films on Si(111). The native oxide

layer thickness is approximately 6 nm in sample A and 8 nm

in sample B. The difference between them is small although

the air exposure duration is quite different, that is, 3 min for

sample A and 24 h for sample B. This means that the native

oxide layer formed in a short period of time, and its layer

thickness almost saturated after 24 h. Therefore, it is reasona-

ble to suppose the native oxide layer thickness in sample C,

used for HAXPES measurements, to be also approximately

8 nm. Regarding the stability and reproducibility of the

native oxide, it was found from the secondary ion mass spec-

trometry measured on samples more than one month after

their growth that a large concentration of O atoms

(�1022 cm�3) existed only in the region close to the samples

surface like in samples A and B. We can thereby safely state

that the native oxide is stable at least on a BaSi2 epitaxial

film during such period.

TABLE I. Sample preparation: BaSi2 layer thickness, air exposure duration,

native oxide thickness, and surface capping, and its layer thickness are

specified.

Sample

BaSi2 layer

(nm)

Air exposure

duration

Native oxide

(nm)

Capping

(nm)

A 600 3 min 6 100 (ITO)

B 600 24 h 8 100 (ITO)

C 600 26 h ca. 8 0

D 35 0 0 2 (CaF2)

FIG. 1. Cross-sectional TEM and SAD images of (a) ITO(100 nm)/oxide

(6 nm)/BaSi2(600 nm) (sample A) and (b) ITO(100 nm)/oxide(8 nm)/

BaSi2(600 nm) (sample B).
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Figure 2 shows the wide range HAXPES spectra of (a)

sample C and (b) sample D36 taken at TOA¼ 90�. In the fig-

ures, we can see the intense peaks of the Ba and Si core-levels.

In addition, the O 1s core-level peak was also observed in sam-

ple C as seen in Fig. 2(a). On the other hand, the O 1s core-

level peak was negligibly weak in sample D, which was BaSi2
capped in situ with CaF2,36 in Fig. 2(b).

Figure 3(a) shows the expected spectrum, which is the

sum of the rescaled partial DOSs of Si 3s, 3p, and Ba 6s
states using their photo-ionization cross-sections at a photon

energy of 6 keV. EF is located in the middle of the band gap.

Calculation details are given in our previous report.36 The

main VB feature of BaSi2 extends from approximately

�0.5 eV to �4 eV. The validity of this calculation was

proved by the measured VB HAXPES spectrum of sample D

in Fig. 3(b), which resembles the calculated VB spectrum in

Fig. 3(a). The contribution of the 2-nm-thick CaF2 capping

layer to the VB spectrum was negligible because of the fol-

lowing two reasons: (1) the VB maximum of CaF2 is located

far below that of BaSi2 due to the large band gap (ca. 12 eV),

and (2) the spectrum in Fig. 3(b) was not measured under

surface-sensitive condition but under bulk-sensitive condi-

tion. According to Tanuma-Powell-Penn equation,38 the

IMFP value, k, was calculated to be approximately 10 nm

for BaSi2 at 6 keV. The HAXPES intensity decays as

exp(�x/k) at a depth x beneath the surface, and the photo-

electron which contributes to the HAXPES intensity comes

from a range of 3k from the surface. Thus, the probing depth

is estimated to be 3k� sin(TOA), that is, approximately

30 nm for TOA¼ 90�. This value is much larger than the

native oxide layer thickness (ca. 8 nm), and therefore, the

HAXPES intensity originating from the BaSi2 becomes pro-

nounced. For these reasons, the contribution of the CaF2 can

be neglected in Fig. 3(b).

Next, we discuss the results on sample C, BaSi2 capped

with native oxide. Figures 3(c)–3(e) show the HAXPES spec-

tra measured at TOA¼ 90�, 30�, and 15�, respectively. The

spectrum in Fig. 3(c) was measured under bulk-sensitive con-

dition and that in Fig. 3(e) under surface-sensitive condition.

The VB HAXPES spectrum in Fig. 3(c) is quite similar to

that in Fig. 3(b). The VB structures originating from the

BaSi2 start to increase at approximately �1 eV and extend up

to approximately �4 eV in sample C, measured at

TOA¼ 90�. On the other hand, the VB structures are negligi-

bly weak in the above-mentioned energy range at TOA¼ 15�

as shown in Fig. 3(e). We should also note that the VB

HAXPES spectrum in Fig. 3(d) is the intermediate one

between those in Figs. 3(c) and 3(e). Since the HAXPES

spectrum shown in Fig. 3(e) was measured under the surface-

sensitive condition of TOA¼ 15�, it is safe to state that the

VB of the native oxide appears dominant in Fig. 3(e).

Figures 4(a) and 4(b), respectively, show the HAXPES

spectrum around �1.0 eV in Fig. 3(c), near the VB maxi-

mum of BaSi2, EBaSi2
V , and that around �5.0 eV in Fig. 3(e),

near the VB maximum of the native oxide, Eoxide
V . EBaSi2

V and

Eoxide
V are derived to be �1.0 and �4.9 eV, respectively, with

respect to EF by means of the linear extrapolation to the

baseline as shown in Fig. 4. VBO at the native oxide/BaSi2
is not given just by the difference between Eoxide

V and EBaSi2
V

because the band bending in the BaSi2 near the interface

should be considered. To investigate the influence of this

band bending, we next compared the core-level spectra

obtained for different TOAs.

Figure 5 shows the Ba 3d3/2 core-level spectra in sample

C at TOA¼ 15�, 30�, and 90�. Each spectrum is well recon-

structed by the sum of two Gaussian curves (broken lines)

located at �795.9 eV and �797.1 eV. We attribute the peak

at �795.9 eV (�797.1 eV) to the BaSi2 layer (the surface

native oxide layer) because of the strong reduction of the
FIG. 2. Wide-range HAXPES spectra of (a) oxide(ca. 8 nm)/BaSi2(600 nm)

(sample C) and (b) CaF2(2 nm)/BaSi2(35 nm) (sample D).36

FIG. 3. (a) Calculated spectrum36 and (b) HAXPES spectrum of

CaF2(2 nm)/BaSi2(35 nm) (sample D).36 HAXPES spectra of oxide(ca.

8 nm)/BaSi2(600 nm) (sample C) when TOA is (c) 90�, (d) 30�, and (e) 15�.
Schematics of sample structure and TOA denoted by arrows are also shown.
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peak at �795.9 eV in the surface-sensitive spectrum

(TOA¼ 15�). As seen in Fig. 5, the peak energy positions

and shapes did not change regardless of TOA, thereby ana-

lyzing depth information. This means that the band bending

did not occur or it was negligibly small around the oxide/

BaSi2 interface. If there are lot of defects in the BaSi2 close

to the interface, EF pinning is likely to occur there, resulting

in the band bending as is often the case with Si,39 GaAs,40

and InN.41 No band bending in the BaSi2 layer indicates that

the native oxide/BaSi2 interface is not defective. This is con-

sistent with our previous result.19 According to Ref. 19, the

capacitance versus voltage characteristics of the device

structures composed of the native oxide/BaSi2 interface

revealed that the trapped electrons at the surface defect states

decreased with the air exposure duration of the BaSi2
surface. On the basis of these results, the band lineup of the

native oxide layer and BaSi2 can be obtained as shown in

Fig. 6. We thus conclude that the barrier height of the native

oxide layer against holes, minority carriers in n-BaSi2, is

approximately 3.9 eV (¼ 4.9 eV – 1.0 eV).

We next discuss the reason why the minority-carrier

lifetime in undoped n-type BaSi2 is improved from ca. 0.2 ls

to ca. 10 ls by forming the native oxide on the BaSi2 sur-

face.18 Surface passivation is widely known in crystalline Si

capped with oxides such as SiO2 and Al2O3.42–48 It is attrib-

uted to two mechanisms, that is, the decrease of surface

states in Si by terminating the dangling bonds of Si and the

electric-field due to charges in the oxides, which bends

the energy band of Si near the oxide/Si interface so as the

photogenerated minority carriers are pushed away from the

defective surface region. In the case of native oxide/BaSi2,

such a band bending does not exist as discussed in Fig. 5. It

is thus the decrease of the surface states that accounts for the

large minority-carrier lifetime obtained for BaSi2 capped

with native oxide. Now that the barrier height of holes is

made clear, and thinning of the oxide layer thickness with

more precision might enhance the transport of photogener-

ated holes through the native oxide layer via tunneling and

improve the solar cell efficiency much further.

IV. SUMMARY

We formed 600-nm-thick a-axis-oriented undoped

n-BaSi2 epitaxial layers on Si(111) by MBE and directly

measured the electronic states of the buried BaSi2 layers

under the 8-nm-thick native oxide by HAXPES. We per-

formed the depth-analysis by varying TOA of 15�, 30�, and

90� and obtained the VB spectra of the BaSi2 and the native

oxide separately. The VB maximum was located at �4.9 eV

from EF for the native oxide and �1.0 eV for the BaSi2. The

VBO at the native oxide/BaSi2 interface, that is, the barrier

height for holes in n-BaSi2, was thus determined to be

3.9 eV. The Ba 3d core-level HAXPES spectra revealed that

there was no band bending in the BaSi2 close to the native

oxide/BaSi2 interface. This means that the large minority-

carrier lifetime in undoped n-BaSi2 films capped with native

FIG. 4. Enlarged spectra for sample C around (a) �1 eV in Fig. 3(c) and

3(b) �5 eV in Fig. 3(e), corresponding to the HAXPES spectra around the

VB maximum of BaSi2 and native oxide, respectively.

FIG. 5. Ba 3d3/2 core-level HAXPES spectra for sample C taken at

TOA¼ 15�, 30�, and 90�. Each spectrum can be fitted by the sum of two

Gaussian curves (broken lines) peaking at �795.9 eV and �797.1 eV.

Broken lines are shifted downward a little to be seen.

FIG. 6. Band lineup of the native oxide and BaSi2 layers determined by the

HAXPES measurements.
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oxide is attributed not to the band bending in the BaSi2,

which keeps photogenerated minority carriers away from the

defective surface region, but to the decrease of defective

states by the native oxide.
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