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Abstract Helping hand robots have been the focus of

a number of studies and have high potential in mod-

ern manufacturing processes and for use in daily living.

As helping hand robots interact closely with users, it is

important to find natural and intuitive user interfaces

for interacting with the robots in various situations.

This study describes a set of gestures for interacting

with and controlling helping hand robots in situations

in which users need to manually control the robot but

both hands are not available, for example, when users

are holding tools or objects in their hands. The gestures

are derived from an experimental study that asked par-

ticipants for gestures suitable for controlling primitive

robot motions. The selected gestures can be used to

control translation and orientation of an end effector of

a helping hand robot when one or both hands are en-
gaged with tasks. As an example for validating the pro-

posed gestures, we implemented a helping hand robot

system to perform a soldering task.
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Fig. 1 The user is trying to solder the cable in his left hand
to a circuit board while holding the soldering iron in his right
hand. The robot moved to a position near a soldering point.
However, the user found that it was not in the position he
expected and had to manually control the end effector with
body movement gestures to correct the error.

1 Introduction

This study proposes a set of gestures for manually con-

trolling an end effector when working closely with an

industrial robot that acts as a helping hand. We focused

mainly on a situation when the user’s hands cannot be

used or moved because of the task’s demands. For ex-

ample, when the user is holding tools and objects in

place and waiting for help from the robot, a situation

such as that depicted in Fig. 1 ensues. The proposed

gestures allow the user to precisely adjust the position

and orientation of an end effector without interruption

(e.g., releasing the soldering iron or the cable) using

body movement and hand gestures when the robot can-

not perform the expected operation.

Here is an example scenario. A user is trying to sol-

der a cable held in the left hand to a circuit board while



2 Mahisorn Wongphati et al.

(1) U: “Solder wire”
(2) R: “Okay, please wait”
(3) R: “Where do you want me to add the solder wire?”
(4) U: “Here”
(5) R: “Okay”
(6) U: “A little bit to the left”
(7) U: “A little bit to the right”
(8) U: (repeats (6) and (7) several times)
(9) U: “Follow me”

Fig. 2 The dialog between the user and the robot in the
example scenario.

holding a soldering iron in the right hand. How does the

user interact with a helping hand robot to tell it to feed

the solder wire to a specific soldering point? The dialog

presented in Fig. 2 reflects one of the possible scenarios

(U: user, R: robot).

In line (1), the user requests a solder wire from the

robot and the robot responds with line (2). After the

solder wire has been prepared, the robot asks for a sol-

dering point in line (3) and the user responds as in line

(4). Because the user is working on a prototype cir-

cuit board for testing a new design and the robot does

not know about the layout and exact positions of com-

ponents and soldering pads, the robot has to perform

its best guess based on limited sensor information by,

for example, detecting the location of the user’s hands

and tip of the soldering iron for interpreting the “here”

position in line (4). The robot then responds with an

utterance in line (5) and moves the tip of the solder wire

to the guessed position. However, the guessed position

is different from the one that user is expecting and the

user has to correct the error by repeatedly issuing the

utterances (6) and (7) until the user gives up and asks

the robot to move according to user’s gestures with the

command in line (9) to manually control the helping

hand robot.

The example scenario shows the need of an addi-

tional method for the user to manually control the end

effector of a helping hand robot in certain situations.

Traditional methods, such as teaching pendants or joy-

sticks are possible choices, but they are usually cumber-

some, in particular when both hands are engaged with

tasks. This constraint also makes tactile control, such

as a force–torque sensor or a joint impedance control

that allows users to manipulate the end effector directly

become an unfeasible choice. Although controlling with

verbal commands is one of the possible choices for com-

manding the robot, the verbal commands are usually

error-prone when they are used to convey spatial in-

formation that contains deictic terms such as “here”,

“that one”, and “over there” [16]. Both input devices

and verbal commands are also tediously repetitive when

used as depicted in line (8) in the scenario dialog.

On the other hand, controlling with gestures is more

suitable for this type of situation because gestures are

a less ambiguous method for conveying spatial informa-

tion to a computer system [22] and have already been

adopted in a number of studies [12] [29].

This study derived a set of gestures from a previ-

ous experimental study [34] and implemented a help-

ing hand robot system that can be manually controlled

with the gestures. We implemented a gesture recogni-

tion module for testing and refining the derived ges-

tures. The robot system was customized as a helping

hand tool for a soldering task that requires handiness

and dexterity of both the human and the robot. Re-

sults from this study are intended for complementing

the mentioned methods to emphasis the need of suit-

able multi-modal communication channels for the help-

ing hand robot [30].

The rest of the paper is organized as follows. Sec-

tion 2 depicts an overview of related work. Section 3

presents the robotic helping hand system and its com-

ponents. Section 4 describes the development of ges-

tures and recognition methods. Section 5 explains the

experiment to show the usefulness and intuitiveness of

the proposed gestures. The discussion and conclusion

are summarized in sections 6 and 7, respectively.

2 Related Work

After the introduction of industrial robots in the 1960s

[20], Many studies have shown the potential uses of a

robot arm as a helping hand in the healthcare domain

since the early days [15]. When robots became cheaper

because of demand and because the cost of skilled labor

increased, the concept of combining the precision and

repeatability of a robot with the problem-solving skills

of humans to create flexible manufacturing processes

and a flexible working environment was introduced. The

main focus of the concept is to make it easier for humans

to program and work closely with robots [6] [14].

One of the noticeable efforts in human–robot in-

teraction (HRI) and human–robot collaboration (HRC)

development is the integration of multimodal communi-

cation and user interfaces into robotic systems to allow

both experts and novices to communicate more eas-

ily, to program and configure robots according to their

preferences and task requirements [6].

From various communication and interaction meth-

ods, gestures have been selected by a number of studies

as a flexible and natural method for communication be-

tween human and robot systems in various situations

[12].

Rogalla et al. [24] presented a method for using hand

gestures for commanding a mobile manipulator robot.
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A set of gestural commands was defined for the robots,

such as yes/no, stopping, and grasping objects.

Iossifidis et al. [17] proposed a design concept of

anthropomorphism in an assistant robot. Users can in-

teract with the robot via multimodal communication

including gestures for demonstrating a simple assembly

task.

Stiefelhagen et al. [26] proposed multimodal inter-

action for HRI with speech, head pose, and gestures.

The study used pointing gesture and head pose (face

direction) to recognize users’ desired targets or objects.

Wachs et al. [28] proposed a reconfigurable gesture

recognition system and demonstrated it by teleoperat-

ing a robot manipulator with a set of predefined ges-

tures.

Tran et al. [27] proposed a wireless data glove that

has various motion sensors such as an accelerometer,

gyros, and magnetic sensors to detect hand gestures for

controlling various functions of a military robot.

Wallhoff et al. [30] presented a hybrid assembly sta-

tion that enabled human workers to teach and interact

with a helping hand using speech, gaze, and tactile in-

put from the projected user interface.

Burger et al. [8] summarized an effort to develop a

mobile manipulator platform that can be commanded

with speech commands and two-handed gestures and

provides a comprehensive review on related work about

hand gestures in HRI research.

With advancements in computing power and sensors

such as RGB-D sensors (e.g. Kinect [3]), complex hand

gestures can be recognized in real time (e.g. Wang et

al. [31] and Oikonomidis et al. [21]).

Surprisingly, an option for manually controlling help-

ing hand robots while working closely with them was

not formally discussed in the mentioned studies, despite

the fact that it is the last resort for users to overcome a

glitch with their problem-solving skills when the robot’s

performance does not meet their expectation, as shown

in the example scenario (Fig. 2).

Gestures in the mentioned works were usually de-

signed by system developers who were familiar with

the system’s capability. The designers tended to se-

lect gestures based on ease of detection and distin-

guishability to increase recognition reliability. There-

fore, the developer-designed gestures might not repre-

sent the real expectations of users and might feel un-

natural to the users [33].

This intuition has led to the studies about user-

defined gestures for robot systems from Wongphati et

al. [34] and Gleeson et al. [11]. The studies focus on

finding user-defined gestures for manually controlling

and communicating with robots during an HRC session

through user-centered design methodology.

In [34], the authors conducted an experimental study

to collect user-defined gestures for controlling the basic

movements (up, down, left, right, forward, and back-

ward) of an end effector of a virtual robot in a sim-

ulated soldering task. From the study, when gestures

were articulated while both the user’s hands were oc-

cupied, one with a soldering iron and the other with a

cable, the following findings delivered important con-

straints for gesture selection and implementation of a

gesture recognition system.

– Hand (one or both hands) and body movement (e.g.

tilt, lean, or twist body) gestures are the dominant

gestures.

– Participants who were holding objects in their hands

from the start of the task would perform gestures

without releasing the objects they were holding.

– Most participants used the left or right or both

hands interchangeably for articulating hand gestures.

– Reversible gestures for controlling basic movement

such as left and right by sweeping the hand to the

left and right were consistently performed by the

participants.

– Body movement gestures were articulated only by

the participants who were holding their hands in a

working pose as shown in Fig. 1.

Trying to manually control an end effector with six

degrees-of-freedom (DOFs) is not a trivial process and

therefore we observed methods used by various sys-

tems to select and prepare a set of suitable gestures.

A teaching pendant for a robot arm handles this is-

sue by providing separated control for each DOF (Fig.

3(a)). Three-dimensional (3D) computer aided design

(CAD) and computer aided machining (CAM) software

provide an option for decoupling the translation from

orientation control when manipulating objects within

the software (Fig. 3(b)). Humans also usually transfer

or move objects to a desired destination before/after

aligning their orientation [18].

These observations and the trial-and-error testing

with various control methods such as a 3D interactive

marker in ROS [23], a 6-DOF 3D mouse [5], and a tac-

tile control that utilizes a force–torque sensor on the

implemented helping hand robot give the following in-

tuitive ideas about how to manually control an end ef-

fector.

– It is easier to control translation and orientation sep-

arately.

– Translation and orientation control should be able

to switch between workspace and end effector (tool)

frames.

– Controlling the orientation of an end effector in the

workspace frame is not intuitive.
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(a) (b)

Fig. 3 (a) The teaching pendant for an industrial robot from
Denso Corporation. Each joint of the robot can be controlled
using two rows of buttons, at left. (b) A 6-DOF 3D interac-
tive marker in the robot operating system (ROS) that can be
manipulated with a mouse by pulling arrows for translation
or dialing rings for orientation control.

(a) (b)

Fig. 4 (a) The helping hand robot system for the soldering
task. (b) The 3D printed solder wire holder.

– An individual axis (x, y, z) or plane (x–y, x–z, y–z)

should be selectable for translation control.

– Orientation control is more intuitive and easier to

handle when each axis (roll, pitch, yaw) is controlled

separately.

3 The Helping Hand Robot System

3.1 Hardware and Software

The helping hand robot is a 6-DOF Denso VP-6424G

industrial robot mounted on a table (Fig. 4).

Two Kinect cameras are used as main sensors. The

first camera (Kinect 1 in Fig. 4(a)) is mounted over the

workspace and connected to the main PC. Its raw point

cloud data is used for workspace calibration, object and

arm detection, and hand gesture recognition. A point

cloud library (PCL) [25] is used for processing the point

cloud data. bThe second camera is introduced because

the upper body of the user cannot be seen in the first

camera field of view.

VP-­‐6242GKinect1

Windows  +  Kinect  SDK

Linux  +  ROS Real-­‐time  Linux  +  ROS

Arms

Upper  body
Point  Cloud

Upper  body  skeleton Trajectory

Joint  commands

Kinect2

Fig. 5 Overview of the components of the helping hand
robot system.

The second camera (Kinect 2 in Fig. 4(a)) is mounted

in front of the workspace and pitched downward for de-

tecting the upper body. It is used for recognizing up-

per body skeletons with Microsoft Kinect SDK [3] that

available only on a Windows PC. The recognized skele-

ton information (e.g., joint positions) is sent to a main

PC for gesture recognition calculations to be performed.

Detailed information about gesture recognition and al-

gorithm will be discussed in Section 4.2.

The main PC is a Linux system with a ROS that

handles all interactions between the user and the help-

ing hand robot. After the target position of the end

effector of the robot is computed from the interaction

between the user and the system, trajectories of the

robot are generated and sent to a real-time Linux PC

to be converted to joint commands and transmitted to

the robot controller at 1000 Hz. The need of the sepa-

rated real-time Linux PC is caused by the computation

load of the main PC. The load prevents the main PC

from sending trajectory commands with less than 2 ms

jitter which is required by the robot controller.

A diagram of the overall system is shown in Fig. 5.

All source codes of the implemented system are open-

source and available at [2].

3.2 User Interface

The main screen of the user interface (UI) is based on

the 3D visualization tool for ROS (rviz) [1] shown in

Fig. 6(a). In rviz, users can perform all common 3D in-

terface controls such as pan, tilt, zoom, and rotate the

scene to match their preferences and controlling meth-

ods. Robot states such as the positions of joints are up-

dated in real time with data from the robot controller

and displayed with a 3D model of the robot in rviz (a

white mesh in Fig. 6(a)). The real-time updated robot

model is also used as a supplementary virtual feedback

for gestures and state of the robot for the participants

during the experiment.
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(a) The rviz screen (b) The control panel

Fig. 6 Screen shots of the implemented user interface, which
is displayed on a large monitor behind a workspace (Fig. 4(a))
to allow a user to control and monitor all system states.

An interactive marker in rviz (magnified in Fig. 3(b))

is used to manually control or set up an end effector of

the robot [13]. The user can drag an arrow or dial a

ring to perform translation or orientation control, re-

spectively. The interactive marker is used as one of the

testing conditions in the experiment in Section 5. Ob-

stacle avoidance, self-collision checking, and invert kine-

matic solving are based on the MoveIt! library [4].

A control panel in Fig. 6(b) is mainly used for set-

ting up the robot system and selecting the interaction

mode (3D markers, hand gestures, or body movement

gestures) during the development and during the exper-

iment by an instructor in Section 5. Users can also se-

lect a desired working frame (end effector or workspace

frames), axis (x,y, or z), or plane (x–y, x–z, or, y–z)

on the control panel while interacting with the helping

hand robot.

4 Gesture Development

4.1 Gestures

In this study, we focused mainly on how to allow users

to manually control an end effector when one or both

hands are engaged with other tasks. With suggestions

from [34], we selected body movements and hand ges-

tures for manually controlling the translation and ori-

entation of the end effector.

To be more specific with the manual control, we di-

vide the manual control into two steps. The first step is

setting up an end effector (e.g. moving the end effector

from its initial position to a target working area). The

second step is controlling the end effector around the

working area based on the task’s requirements.

(a) Left/Right (b) Up/Down (c) Front/Back

Fig. 7 One-handed gestures for translation control. The user
can use either the left or right hand to control an end effector
while holding objects in the other hand.

The first step can be seen as a rough control step

that requires speed over precision, for example, moving

the end effector from the rightmost side of the workspace

to a circuit board (working area) in the middle of the

workspace (Fig. 13(a)). On the other hand, the second

step requires precision over speed when both hands are

engaged with tasks such as moving the tip of the solder

wire into a soldering point (Fig. 1).

Body movement gestures as shown in Fig. 1 allow

the users to handle the second step by controlling trans-

lation motions of an end effector without interruption

while dealing with tasks with both hands. Although

body movements are suitable for precision control, they

are limited by working postures (e.g. being seated) and

are not convenient for the first step, which usually deals

with displacement over a large distance.

To overcome limitations of the body movement ges-

tures, one- and two-handed gestures as shown in Fig. 7

and 8 have been selected for the first step to allow the
users to control the translation and orientation of an

end effector with the left and/or right hand from any

position in the workspace. For the orientation control,

a combination of left- and right-hand gestures that re-

semble the action of holding a sheet of paper in both

hands and flipping or rotating the paper around the x,

y, or z axes were chosen based on gestures for CAD

systems from [31].

It is possible for the user to control both translation

and orientation with only body movement gestures (e.g.

twisting the body for controlling the yaw motion of the

end effector). However, from our preliminary testing,

we found that it is inconvenient and difficult to main-

tain good eye–hand coordination when compared with

the body movement gestures that employ a simple tilt-

ing of the body for translation control. The eye–hand

coordination is important for safety and task quality

when working closely with the robot.

Furthermore, there is a requirement for toggling be-

tween the workspace and the end effector frames while
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(a) Roll (b) Pitch (c) Yaw

Fig. 8 Two-handed gestures for orientation control. The
users can use both hands to control the orientation of an
end effector with a “sheet of paper” metaphor while holding
objects in both hands. Note that pinching is not a necessary
condition for gesture articulation.

the user is manually controlling an end effector. The re-

quirement usually arises when the user needs to move

the end effector along its axes (e.g. feeding a solder wire)

or planes (e.g. changing a solder point). We selected a

flapping elbow action as a toggle gesture to allow the

user to switch between frames while working with both

hands (Fig. 9). This gesture is also based on the results

from [34].

(a) (b)

(c) (d)

Fig. 9 The toggle gestures for switching working frames can
be performed by flapping the elbows. Figure (d) shows the
detected flapping elbow motion in the UI.

Detailed discussion about how to recognize the ges-

tures is described in the next section.

Fig. 10 The upper body skeleton detected with Microsoft
Kinect SDK (red dots connected with green lines). The shoul-
der joints are averaged as the body position. The elbows joints
are used to detect flapping elbow gestures.

4.2 Gesture Recognition

In this study we propose a rubber band model for imple-

menting body movement and hand gesture recognition.

The model allows the users to start and stop controlling

an end effector at any point in the workspace. Gesture

recognition states and information such as hand posi-

tions and a recognized user skeleton are displayed in

the rviz display (Fig. 10).

The proposed model can be visualized using the

metaphor of tying an object (e.g. a user’s hands) to a

pivot point with a rubber band. When the user moves

the hand inside the workspace, an initial position (the

smallest circle in Fig. 11(a)) moves with the hand until

it is held for a certain time for initialization (a green

circle at the left hand in Fig. 10). After initialization

the position is fixed as a pivot point for gesturing. At

this stage, the user can articulate gestures to control

the end effector within the area between the middle

and large circles (Fig. 11(b)). If the user wants to stop

controlling, he/she can either move the hand back to

the pivot point (Fig. 11(a)) or move the hand outside

of the large circle (Fig. 11(c)).

In other words, at the initial state (Fig. 11(a)) the

rubber band is not stretched enough to enable gesture

control. This allows a gesture recognizer to deal with a

noisy position measurement and unintended initializa-

tion. When the hand is moved further from the pivot

point (Fig. 11(b)), the direction and length of the rub-

ber band can be used to control direction and veloc-

ity. The rubber band will rupture and a replacement

(reinitialization) is needed if the hand is moved too far

from the pivot point (Fig. 11(c)). A certain initializa-

tion time is needed before starting to control the end
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(a) Initial/idle (b) Control (c) Cancel

Fig. 11 Three states of the rubber band model. The red
string is for visualizing the rubber band.

effector to ensure that the manual control is intention-

ally activated.

4.2.1 Body Movement Gestures

Body movement gestures are recognized using skeleton-

detecting functions in Windows Kinect SDK. The de-

tected skeletons are filtered and smoothed before being

sent to be displayed and processed in the main PC.

In this study, we utilize only wrists, elbows, shoulders,

neck, and head joint information as shown with small

red spheres in Fig. 10.

The left and right shoulders of the skeleton are av-

eraged as a reference point for body movement recog-

nition as shown in Fig 10. The average position is used

because both joints are stable for detecting upper body

motions with the SDK version 1.5. The spheres between

the left and right shoulders in Fig. 10 are the visualiza-

tion of the rubber band model and are used as feedback

information for users.

When the participants tilt, lean, or twist their bod-

ies, the averaged shoulder position will move from its
initial position (replace hand in Fig. 11 with the aver-

aged position of the shoulder at a neutral seating posi-

tion). The displacement and direction of the averaged

position is used for computing the moving direction and

speed of the robot end effector.

The gesture of toggling between workspace and end

effector frames is recognized by detecting a flapping

movement of the elbows (Fig. 9). The detection is based

on a one-shot state machine that uses elbows joints

displacement and direction as show in Fig. 9(d) as it

inputs. A completed cycle of the elbow joint (up and

down) is needed for triggering the state machine.

4.2.2 Hand Gestures

Hand gestures are recognized by functions in the PCL.

Arm-like point cloud clusters are classified using prin-

cipal component analysis (PCA) function by searching

for elongated objects floating above the desk. All points

that belong to the structure of the robot are filtered out

Fig. 12 Hand detection with PCL. The white dots are point
cloud clusters of all the objects in the workspace. Hand po-
sitions are the small pink spheres. Hand trajectories are dis-
played with green lines.

with occupancy map monitor functions in the MoveIt

library to make the arm-like point cloud cluster easier

to detect. Hand positions are computed from clusters

of the point cloud near the end of the arm-like cluster

as shown in Fig. 12.

Hand positions are smoothed by the Kalman filter

functions from OpenCV library [7]. The filter smooths

positions and velocities (xk = [x, y, z, vx, vy, vz]T ) of the

hands by using a state transition matrix (Fx) as shown

in Eq. 1. The dt was set to 30 Hz according to frame rate

of the cameras. Inputs for the measurement update are

centroid (x, y, z) of point clouds of each hand as shown

in Fig. 12.

Fx =



1 0 0 dt 0 0

0 1 0 0 dt 0

0 0 1 0 0 dt

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 (1)

The filters are tuned to ensure a balance between the

smoothness and responsiveness of detected hands. Ad-

ditional information about Kalman filter can be found

in [32]. Furthermore, we also implemented a state ma-

chine to track, update, correct, and reset state of the

filters when the participant is moving hand(s) inside,

into or from the working area.

Using the same rubber band model, spheres around

the left hand in Fig. 10 are a visualization of the model

and are used as feedback information for the users while

they are interacting with the robot. The recognizer in-

terprets one- and two-hand gestures for translation (Fig.

7) and orientation control (Fig. 8), respectively.
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5 Experiment

5.1 Introduction and Participants

The experiment focuses on usability testing to validate

the proposed gestures with the helping hand robot. We

set up a soldering task to compare the proposed ges-

tures (hand and body movement gestures) with a 3D

UI (the interactive marker in Fig. 3(b)) as shown in

Fig. 4.

Eight participants, all students of Keio University,

volunteered for the experiment. Three of them were

women. The average age of the participants was 26.3,

SD = 2.2. All participants were familiar with com-

puter systems but had no experience with an industrial

robot. They had experience with a manual soldering

tasks before the experiment. All participants had expe-

rience with 3D games or 3D CAD software and had 3D

gesture control experience with a modern game console

such as Wii, Xbox, or PlayStation.

5.2 Experimental Procedure

The experiment began with an explanation of the pur-

pose of the study before a demonstration of the pro-

posed gestures and system usage by an instructor. The

instructor demonstrated how to manually control an

end effector with body movement (Fig. 1), hand move-

ment (Fig. 7 and 8), by flapping elbows (Fig. 9), and

by using the interactive marker (see Section 3.2). After

the demonstration, the participants practiced the use

of all the gestures and the interactive marker to ensure

that they knew how to control the helping hand robot

manually using all methods (Fig. 13).

(a) (b)

Fig. 13 (a) The participant tries to set up the end effector
with hand gestures and then (b) tries to control the robot
with body movement gestures.

After finishing all the practice runs, the participants

were asked to perform a simulated soldering task with

an unplugged soldering iron (for safety reasons). The

task had two steps, as mentioned in Section 4.1. The

first step was to set up an end effector by manually

controlling it from its start position to an area above

the circuit board (Fig. 13(a)). In the second step, the

participants were asked to try to solder a cable to three

specified points on the circuit board with help from the

robot (Fig. 14).

(a) Controlling the robot with body move-
ment gestures to feed a solder wire to a sol-
dering point on the circuit board.

(b) Trying to use only the interactive
marker (controlled with the mouse) to con-
trol the robot.

(c) Trying to set up the orientation of the
end effector with hand gestures.

Fig. 14 The experiment showed the advantage of the body
movement gestures in that the participant can hold a tool and
an object in the working pose while engaging with the task
(a) without having to switch back and forth when compared
with other methods (b and c).
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The participants were not explicitly asked to hold

the soldering iron and the cable in their hands before

performing the experiment; this was to observe how the

participants grasped and released objects in three sol-

dering task trials using the interactive marker, hand

gestures, and body movement gestures. The order of

the experiment was not randomized because all partic-

ipants already practiced all controlling methods (hand,

body, and interactive marker) under supervision of the

authors before participating in the experiment.

After the experiments, the participants answered a

questionnaire and discussed their opinions and sugges-

tions for the system with the instructor. The instructor

took notes during the experiment and all sessions were

video recorded for further analysis.

5.3 Metrics

The participants were asked to rate the tasks using a set

of seven-point Likert scales (1 – disagree to 7 – agree)

and to answer a number of demographic questions af-

ter the experiment. The Likert scales begin with three

pairs of scales for measuring an opinion about the pro-

posed gestures. The scales can be read as “x gestures

are suitable for the purpose” and “x gestures are easy to

remember and use” where “x” are “hand”, “body move-

ment”, and “elbow”. The purposes of hand, body, and

elbow movements are translation and orientation con-

trol, translation control, and working frame toggling,

respectively.

The questionnaire continues with six additional Lik-

ert scales for comparing the use of the hand and body

movement gestures with the interactive marker in both

steps of manual control. The scales were divided into

two groups that read “x is suitable for manually con-

trolling the robot from the start position” (step 1) and

“x is suitable for manually controlling the robot during

the soldering task” (step 2) where “x” are “hand ges-

tures”, “body movement gesture”, and “the interactive

marker”.

The participants were asked if “it is acceptable to

change the method for controlling the robot during the

task”, for example, switching between hand and body

movement gestures and the interactive marker as they

see fit.

5.4 Statistical Results

The average score from Likert scales indicated that

the hand ((M = 5.6, SE = 0.32), (M = 5.8, SE =

0.31), body movement ((M = 5.9, SE = 0.40), (M =

5.8, SE = 0.49)) , and flapping elbow gestures ((M =
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Fig. 15 The average score of suitability and ease of remem-
bering and using the hand, body movement, and flapping
elbow gestures.
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Fig. 16 Average scores of the suitability of the proposed
gestures and the interactive marker in the first and second
steps of the manual control experiment.

6.1, SE = 0.35), (M = 6.1, SE = 0.40)) are suitable for

their purposes and can be remembered and used with-

out difficulty. The average scores and standard error

bars are shown in Fig. 15.

Because each participant performed all manual con-

trol methods, we conducted a one-way within-subjects

ANOVA to compare the preferences of the participants

regarding manual control in the first and second steps.

The average scores of the first and second steps of the

manual control are shown in Fig. 16 and differences be-

tween the two steps were found to be statistically sig-

nificant at the p < 0.05. Post hoc analysis adjustments

are based on the Bonferroni method.

For the first step, there was a significant difference

between the control methods, F (2, 14) = 9.00, p <

0.05. The post hoc analyses (Table 1) indicated that

the interactive marker (M = 6.4, SE = 0.18) was pre-
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Table 1 T-test results of the first step. The (*) indicates
that the difference is significant.

Pair Result

Hand & Body t(7) = 0.75, p = .24, (β − 1) = 0.15
Hand & Marker* t(7) = −3.91, p < .01, (β − 1) = 0.99
Body & Marker* t(7) = −3.21, p < .01, (β − 1) = 0.98

Table 2 T-test results of the second step. The (*) indicates
that the difference is significant.

Pair Result

Hand & Body* t(7) = −5.16, p < .01, (β − 1) = 1.00
Hand & Marker t(7) = 0.00, p = .50, (β − 1) = 0.05
Body & Marker* t(7) = 3.64, p < .01, (β − 1) = 1.00

ferred over the hand (M = 4.5, SE = 0.50) and body

movement (M = 4.1, SE = 0.61) gestures with statisti-

cal power (β − 1) greater than 0.8. Hand gestures were

slightly more preferred over body movement gestures,

but the differences were not statistically significant in

the first step of manual control with power less than

0.2. The statistical power or (β − 1) is used to deter-

mine the type II error rejection of the test. Normally,

(β − 1 < 0.2) is too weak and (β − 1 > 0.8) is strong

enough for validating the study.

For the second step, there was a significant differ-

ence (F (2, 14) = 10.93, p < 0.05) between body move-

ment gestures (M = 6.4, SE = 0.26), hand gestures

(M = 4.0, SE = 0.46), and the interactive marker

(M = 4.0, SE = 0.56). The post hoc analysis (Table

2) showed that body movement gestures were preferred

over hand gestures and the interactive marker with sig-

nificant differences and have statistical power greater

than 0.8. There was no significant difference between

the hand and interactive marker in the second step with

statistical power less than 0.2.

The statistical power computation is based on a post

hoc power analysis that computes archived power us-

ing mean and standard deviation of each pair of the

experiment [10].

Furthermore, the participants also showed that they

were willing to switch between control methods if it

helped complete the task and made their work easier

(M = 5.8, SE = 0.59).

6 Discussion

6.1 Results from the Experiment

In summary, the participants were able to manually

control the end effector with the proposed gestures with-

out noticeable difficulty. The results showed that the

body movement gestures were preferred in the second

step, whereas the interactive marker was preferred over

gestures for setting up the end effector in the first step.

The behavioral observation shows that the partic-

ipants have two distinguishable ways of holding and

releasing objects during the experiment. For the in-

teractive marker and hand gestures, all participants

grasped and held the soldering iron and the cable only

when they were performing the soldering task on each

soldering point. The participants released the objects

(putting them on the table) immediately before start-

ing to control the movement of the robot to the next

soldering point. For the body movement gestures, af-

ter picking up the soldering iron and the cable for the

first soldering point, only one participant released the

soldering iron and the cable before starting to control

the robot to the next soldering point. These findings

emphasize that body movement gestures can be useful

for manual tasks when there is a need to continuously

hold tools and objects.

The participants also commented during an inter-

view that it would make more sense for the first step to

be performed automatically by the robot and it is ac-

ceptable if fine-tuning is needed. This qualitative data

informs that the participants expected the robot to

move automatically when the robot have to move in a

large distance. However, gestures are acceptable when

the robot is struggling in complicated situations. This

comment supports the use of gestures in the example

scenario in Fig. 2, which addressed a glitch in the in-

teractive function of the robot system.

Although hand gestures showed no significant dif-

ference between the first and second steps, the average

score of the gestures and the participants’ comments

still encourage the use of hand gestures as a supplemen-

tary or alternative control method when other methods,

such as the interactive marker or body movement ges-

tures, are not appropriate.

6.2 User Preferences

The proposed gestures utilize the rubber band model

(Fig. 11) for gesture state recognition. The distance

from the initial position for idle, control, and cancel

states must be specified. From observation of and dis-

cussions with the participants, we found that the partic-

ipants exhibited noticeable preferences over the prede-

fined distances. Many participants preferred small and

precise displacement control, while others requested large

and explicit hand and body movements.

A conclusion from the discussions with the partici-

pants also shows that the main reason that the interac-
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tive marker was preferred over both types of gestures in

the first step was the moving speed of the end effector

(it was much slower when controlled with gestures for

safety reasons); this, in fact, can be altered to match

each participant’s preferences. However, additional ef-

fort for the safety and reliability of gesture recognition

will be necessary.

6.3 User-defined Gestures

All selected gestures were based on a user-centered de-

sign approach. The gestures were derived from a previ-

ous study [34] in which an experiment was conducted

using a virtual robot. The present study implemented

both the helping hand robot and gesture recognition to

realize user-defined gestures for manual control of an

end effector of the helping hand robot. With the intu-

itive gestures, users can start and stop controlling the

end effector whenever they need to. The body move-

ment gestures allow the users to control the end effec-

tor with high precision while both hands are engaged

with tasks. Without restriction on hand and initial po-

sitions, users can articulate one- or two-handed gestures

while holding objects in their hands. The implementa-

tion also allows users to articulate dexterous body and

hand gestures without additional devices such as gloves

(e.g. [27]) or sensing devices (e.g. [19]).

6.4 System Implementation

The current system is designed based on ease of im-
plementation and flexibility for the experiment. It uses

mostly off-the-shelf software and hardware. A more spe-

cific and efficient software implementation should be

able to help reducing the number of devices.

6.5 Limitations and Future Work

This study described the detailed implementation of a

set of user-defined gestures for manual control of help-

ing hand robots. The experiment showed that users

could freely control the end effectors of a helping hand

robot with the proposed gestures.

However, as suggested by a number of participants,

an additional UI that would allow them to know the

current state of the system, such as robot joint limits

or the state of gesture recognition, without looking at

the screen would enhance the efficiency of the system.

This suggestion implies that the implemented UI (Fig.

6) might influence how the participants use gestures to

control the robot. Although we expect that the pro-

posed gestures for manual control are natural for the

participants, additional studies of the system without

a traditional UI or a robot that can elicit gestures (e.g.

[9]) are needed.

User preferences in Section 6.2 emphasize the need

of customization functions for various aspects of the

system. From the implemented system point of view,

these kinds of adjustments are tedious, and hence au-

tomatic calibration functions or setting methods will

surely enhance the system efficiency and user experi-

ence. Rubber band model and robot moving speed are

also the important topics that should be able to cus-

tomize by users.

The current implementation was limited to a robot

that was mounted on a table and facing its user. Differ-

ent robots and configurations, such as a robot that is

mounted on a linear unit for extending the working en-

velope, a mobile manipulator robot, or a robot working

side-by-side with the user, will require additional ges-

tures and sensing effort to handle the additional DOFs

and the variety of user positions with respect to the

robot.

Switching between control methods was not a signif-

icant burden, as indicated by the results in Section 5.4,

and hence multimodal manual control for assisting or

setting up a helping hand robot with various methods,

such as gestures and 3D user interfaces, could be more

useful than using just one particular method. However,

additional effort and further studies would be required

to confirm this.

Gestures or interaction methods that allow users to

control the trajectory of the robot will open a new per-

spective for use of the helping hand robots. Industrial

robots have already been used in various art-related

domains such as cinematography, architecture, and in-

stallation arts. In such domains, expressing one’s cre-

ativity, in activities such as drawing robot trajectories

or setting camera direction through direct interaction

with a robot using natural gestures might be more in-

tuitive than tedious work with mouse clicks through a

3D virtual world in traditional UI.

The hand and body movements gestures could help

specific handicapped persons such as deaf or semi-paralysis

to interact with robots or machines easier. Furthermore,

rehabilitation such as a process for recovering motor

skills (e.g. hand/arm movement) after injury could also

benefit from robot motions if the robot could sense and

move according to quality of patient motions (the anal-

ogy of user-defined gestures). This applications would

require additional experimental trials for validating and

adjusting before clinical testing.
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7 Conclusion

We have presented an implementation of a helping hand

robot system that can be manually controlled with a set

of user-defined gestures that were derived from a pre-

vious study. The implemented system and selected ges-

tures allow users to control an end effector while work-

ing closely with the robot using body movement and

hand gestures. The gesture-recognition module allows

the user to start and stop controlling at any position

within the workspace. In particular, the users were able

to control the helping hand robot with body movement

gestures even though both their hands were occupied

with the task. In addition, we conducted an experiment

to confirm the benefit of our proposed system. The re-

sults show that the proposed gestures can be useful as

a complementary feature for the development of mul-

timodal communication in HRI and HRC to make the

helping hand robot interact more naturally with hu-

mans.
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