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Abstract 

 

In this paper, the origin of {332}<11 3 > twinning, which is a unique twinning mode in 

metastable -Ti alloys, was investigated. The possible twinning modes in metastable -Ti alloys 

are derived by considering lattice instability in addition to the theory of the crystallography of 

deformation twinning. In order to consider lattice instability in the bcc structure, a modulated 
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structure was proposed. We then clarify how the modulated structure facilitates the 

{332}<11 3 > twinning preferentially compared to other possible twinning modes by evaluating 

the magnitude of twinning shear and the complexity of shuffle. It was found that the lattice 

instability makes the {112}<1 11> twinning, which is a major twinning mode observed in 

alloys with stable bcc structure, difficult to occur because the lattice modulation causes 

additional shuffling to form the {112}<1 11> twin. It was also found that the {332}<11 3 > 

twinning is the most possible twinning mode in the modulated structure in terms of the 

magnitude of twinning shear and the complexity of shuffle. The new formation model of the 

{332}<11 3 > twin presented in this study can explain how the lattice instability preferentially 

activates the {332}<11 3 > twinning in metastable -Ti alloys. 

 

 

Keywords: -titanium; Deformation twin; {332} twin; Phase stability; Martensitic 

transformation 

 

 

1. Introduction 

 

Twinning is an important deformation mechanism not only in materials with low 

crystal symmetry such as hcp metals but also in bcc metals and fcc metals with low stacking 

fault energies [1]. It has been reported that deformation twinning simultaneously improves the 

strength and ductility of nanocrystalline materials [2] and also plays a very important role in 

TWIP (twinning-induced plasticity) steels as it results in an extra strain hardening [3]. 

Recently, -type Ti alloys have attracted considerable attention as promising materials 
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for biomedical applications due to their excellent properties such as low Young’s modulus, good 

biocompatibility, high resistance to corrosion, shape memory effect and superelasticity [4-8]. 

However, the strength of -Ti alloys is relatively lower than that of other metallic materials such 

as Ti-6Al-4V, stainless steel or Co-Cr-Mo alloys, which are currently being used for biomedical 

applications. There have been extensive efforts to increase the tensile strength of -Ti alloys 

[9-11]. However, most of the cases the increase of tensile strength resulted in decrease of 

ductility. Min et al. [12,13] reported in Ti-Mo-based alloys that the combination of two 

deformation modes, i.e., twinning and slip, can enhance the uniform elongation with 

maintaining high strength. It has been reported that the deformation by {332}<11 3 > twinning 

in -Ti alloys caused a large elongation through the significant work hardening due to the 

dynamic grain refinement [14-16]. Sun et al. [17] also reported that the combined effects of 

phase transformation and mechanical twinning, {332}<11 3 > and {112}<1 11>, resulted in a 

high work hardening in a metastable  Ti-12 wt.% Mo alloy. It has also been pointed out that the 

{332}<11 3 > twinning is closely related with the stress-induced  phase transformation 

[15,18-20]. It is well known that the  phase significantly affects mechanical properties such as 

Young’s modulus, yield strength and ductility of -Ti alloys. 

In the last decade, deformation mechanisms of -Ti alloys have attracted a great deal 

of interest especially in Gum Metals [21]. A dislocation-free deformation mechanism related 

with the formation of giant faults and the existence of nanodisturbances has been reported in 

Gum Metals [21-25]. An unusual twinning mode, {332}<11 3 > twinning, is one of unique 

deformation mechanisms and has been reported in alloys where the amount of  phase 

stabilizing alloy elements such as Nb and Ta is reduced from that of Gum Metals [26-29]. The 

decrease of the  phase stabilizing alloy elements causes the decrease in the shear modulus c′ 

((c11-c12)/2) which reflects the resistance to shear of {011} planes along <011> directions. 
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This strongly suggests that the lattice instability of  phase activates the {332}<11 3 > twinning. 

Up to now, the {332}<11 3 > twinning has been observed in several metastable -Ti alloys, such 

as Ti-Mo-based alloys [30-34], Ti-V-based alloys [19,35,36], Ti-Nb-based alloys [37-39] and 

binary Ti-Cr [40,41] and Ti-Fe [42] alloys, and considered as an important deformation mode in 

addition to the stress-induced martensitic transformation [17]. 

As described above, the {332}<11 3 > twinning has attracted much interest as an 

important deformation mechanism which strongly influences the mechanical properties of -Ti 

alloys. However, interestingly, the {332}<11 3 > twinning has not been reported to occur as a 

major twinning mode in other bcc metals and alloys. This is because the {332}<11 3 > twinning 

is not the most favorable twinning mode in bcc metals and alloys because one-half of atoms 

must shuffle after the twinning shear to form the {332}<11 3 > twin [43]. Such additional 

movement of atoms is not required in {112}<1 11> twinning which is a well-known twinning 

mode formed in bcc metals and alloys. It was suggested by Hanada et al. [18,37] that the 

stability of  phase plays a key role in the formation of the {332}<11 3 > twinning; however the 

origin of the {332}<11 3 > twinning remains unclear. 

Several models of the movement of atoms required in the {332}<11 3 > twinning have 

been presented so far [38,44-48], and it has been considered that lattice instability of the 

metastable  phase allows such complex movement of atoms and makes the {332}<11 3 > 

twinning possible [18,46,49]. We point out however that if such a large magnitude of shuffle 

required in the {332}<11 3 > twinning is allowed to occur in practice, there are many other 

twinning modes which are considered to be possible in addition to the {332}<11 3 > twinning. 

Therefore in order to clarify a formation model of the {332}<11 3 > twin, it is required to 

consider how the lattice instability preferentially activates the {332}<11 3 > twinning. However, 

such possibility of other twinning modes and the comparison of the possibility of the 
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{332}<11 3 > twinning and other twinning modes have not been argued before. In this paper, 

we first derived the possible twinning modes in metastable -Ti alloys by considering lattice 

instability in addition to the theory of the crystallography of deformation twinning proposed by 

Bilby and Crocker [50]. In order to consider lattice instability in the bcc structure which exhibits 

the martensitic transformation, we propose a double lattice structure model. We then clarify how 

the lattice instability facilitates the {332}<11 3 > twinning preferentially compared to other 

possible twinning modes. 

 

 

2. Shuffle mechanisms of single and double lattice structures 

 

In order to consider the possibility of the {332}<11 3 > twinning, it is important to pay 

attention to atomic shuffles which are closely related to the complexity of the twinning. The 

theory concerning the shuffle mechanism which is based on the deformation twinning theory of 

Bilby and Crocker [50,51] is summarized in this section. Firstly, the shuffles involved in the 

twinning modes of single lattice structures are described below. The single lattice structures are 

built up of atoms placed at the lattice points of a single Bravais space lattice. The complexity of 

the shuffle mechanism is related to the q value. In the case of type I twinning, q corresponds to 

the number of lattice planes parallel to the twinning plane (K1); the lattice planes are intersected 

by a primitive lattice vector in the conjugate twinning direction (2). Similarly, in type II 

twinning, q is the number of planes parallel to the conjugate twinning plane (K2); the planes are 

intersected by a primitive lattice vector in the twinning direction (1). In the case of compound 

twinning modes, both type I and type II orientation relationships can be considered and q is 

calculated from K1 and 2 for the type I orientation relationship and from K2 and 1 for the type 
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II orientation relationship. If the plane of shear of compound twinning modes is a symmetry 

plane of the lattice, the type I and type II orientation relationships are identical. Fig. 1 shows the 

schematic diagram of the twinning in single lattice structures for the case of q = 1, 2, 3 or 4. If q 

= 1 or 2, every point of the Bravais lattice is sheared to its correct twin position as shown in Fig. 

1(a) and (b). On the other hand, some of the lattice points must shuffle if q > 2: when q is odd a 

fraction q
-1

 of the lattice points is sheared correctly, whereas a fraction 2q
-1

 is sheared correctly 

when q is even. For example, as shown in Fig. 1(c) and (d), two-thirds of the atoms must shuffle 

when q = 3 while one-half of the atoms must shuffle when q = 4. This means that the movement 

of atoms for q = 3 is more complex than that for q = 4. 

The double lattice structures have atoms at the lattice points of two interpenetrating 

lattices, or equivalently consist of motif units of two atoms at each lattice point of a single 

lattice. Twinning in the double lattice structures requires the shuffles which correspond to the 

rearrangement or disruption of the motif units, in addition to the shear of the lattice points. Fig. 

2 and 3 illustrate the shuffle mechanisms suggested by Crocker [51] which may occur in 

practice for q = 1 and q = 4, respectively. In general, the atoms comprising a motif unit do not 

lie in the plane of shear, so the atoms represented by open and closed circles lie above and 

below the plane of shear, respectively. The shuffles required in q = 1 modes correspond to the 

rearrangement of the motif units at the lattice points as shown in Fig. 2. Fig. 2(a) represents the 

shear of the lattice points. The motif units of two atoms at the lattice points are considered to 

shear as rigid bodies. After shearing, the rearrangement of the atoms in each motif unit must 

take place by means of mechanism Ia or Ib to produce the type I twin (Fig. 2(b)) or by means of 

mechanism IIa or IIb to give the type II twin (Fig. 2(c)). The shuffles involved in q = 2 modes 

are the same as those in the q = 1 modes because every lattice point is sheared to its correct twin 

position when q = 1 or 2. On the other hand, in q = 4 modes shown in Fig. 3, the rearrangement 
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of the motif units takes place at only one-half of the lattice points which are sheared to their 

correct twin positions. The motif units at the other one-half of the lattice points are required to 

disrupt and form new units of two atoms by means of mechanism Ic or Id and IIc or IId to 

produce the type I twin (Fig. 3(b) and (c)) and type II twin (Fig. 3(d) and (e)), respectively. The 

diagrams of Fig. 2 and 3 illustrate different ways of the rearrangement or disruption of the motif 

units of two atoms for type I orientation relationship (Ia–Id) and type II orientation relationship 

(IIa–IId). 

 

 

3. Possible twinning modes in the bcc structure 

 

Firstly, the possible twinning modes in the bcc structure are considered in this section 

without concerning the effect of lattice instability. It is generally acknowledged that the 

magnitude of twinning shear and complexity of shuffle are two important factors in determining 

the deformation twinning modes [1]. The twinning modes with q = 1 or 2 require no shuffling in 

single lattice structures. Among the q > 2 modes in which shuffles of atoms are necessary, q = 4 

modes have the simplest shuffle mechanisms as mentioned in the previous section. Therefore, 

the possible twinning modes with q = 1, 2 or 4 in the bcc structure were calculated using the 

theory of deformation twinning. The calculated twining modes which have twinning shear s < 

0.8 are listed in Table 1 in order of increasing the s value. All the twinning modes are compound 

twinning modes, and the q value of each mode corresponds to the smaller one of either type I or 

type II orientation relationships. There are no q = 1 modes in Table 1 because they have large 

shear magnitudes s > 0.8. 

In Table 1, modes 2, 4 and 7 are conjugates of modes 1, 3 and 6, respectively. The 



 8 

{112}<1 11> twinning (mode 5) is a well-known twinning mode formed in bcc metals and 

alloys. This twinning mode is the only mode which has q = 2 and therefore no shuffling is 

necessary; this explains why the {112}<1 11> twinning is the most preferential twinning mode 

in bcc metals and alloys. Mode 2 is the {332}<11 3 > twinning which has been observed in 

metastable -Ti alloys. The K1 plane of modes 3 and 6 is the {110} plane which is a plane of 

symmetry of the bcc structure. Such planes are not normally recognized as possible twinning 

planes because the twin product has the same orientation as that of the matrix. Among the q = 4 

modes, modes 1 and 2 have the smallest shear s = 1/(2 2 ) (= 0.3536) which is one-half of the 

shear of the {112}<1 11> twinning (mode 5). Fig. 4 shows the shear and the possible shuffle 

mechanisms of modes 1 and 2, i.e., {112}<111> and {332}<11 3 > twinning. The red and green 

arrows indicate the shear and shuffle, respectively. The shuffle mechanism with the smallest 

magnitude of shuffle was chosen as the most possible shuffle mechanism because we consider 

that atoms should move to stable lattice sites with the shortest distance after the shear. The 

{112}<111> and {332}<11 3 > twinning require the same amount of the magnitude of shuffle  

= ( 3 /4)a0 (= 0.4330a0), where a0 is the lattice parameter of the bcc lattice. The magnitude of 

shuffle is denoted as  in this paper. It is noted that the {112}<111> and {332}<11 3 > twinning 

are not observed in metals and alloys with the stable bcc structure although their smaller 

magnitude of shear, implying that the magnitude of shuffle ( = 0.4330a0) is so large that the 

shuffles are unable to occur in practice. In metastable -Ti alloys, it has been considered that 

lattice instability makes the {332}<11 3 > twinning possible [18,46,49]. Considering the 

magnitude of shuffle, it seems possible for the {112}<111> twinning to occur in metastable 

-Ti alloys in addition to the {332}<11 3 > twinning. However the {112}<111> twinning has 

not been reported so far. This result indicates that lattice instability preferentially activates the 

{332}<11 3 > twinning compared to the {112}<111> twinning. This should be taken into 
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account when we consider the formation mechanism of the {332}<11 3 > twin. 

 

 

4. New formation model of the {332}<11 3 > twin 

 

4.1. Lattice modulation and the possible twinning modes in the metastable  phase 

 

Recently, it has been shown that a lattice modulation exists in metastable Ti-Nb-based 

alloys, which is due to the low shear modulus c′ ((c11-c12)/2) of  phase [52-54]. The low shear 

modulus c′ causes the shuffling of parallel adjacent {011} planes to <011> directions since 

the shear modulus c′ reflects the resistance to shear of {011} planes along <011> directions. 

Nii et al. [52] reported the existence of diffused superlattice spots in the electron diffraction 

pattern taken at room temperature from the metastable  phase of a Ti-26 at.% Nb alloy 

(martensitic transformation start temperature, Ms ~280 K). They claimed that such diffused 

spots are originated from the lattice modulation which corresponds to the shuffling of parallel 

adjacent {01 1} planes to <011> directions. However there is almost no contrast in the 

dark-field micrograph obtained using the superlattice spot. It is considered from the result that 

there is a fluctuation between the bcc structure and the modulated bcc structure in the structure 

of the metastable  phase, although the average structure is bcc. We propose that the lattice 

modulation, i.e. the shuffling of parallel adjacent {011} planes to <011> directions, plays a 

critical role in the formation of the {332}<11 3 > twin. 

Fig. 5(a) and (b) show the bcc structure and the modulated bcc structure, respectively. 

The shift of the atoms in the modulated structure indicated by the orange arrows is represented 

by <011>, where  is introduced to describe the amplitude of the modulation. It is considered 
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that the fluctuation occurs in the condition that the amplitude of the modulation is smaller than 

that in the martensite structure. The structure of the ′ martensite phase is hcp while that of the 

″ martensite phase is orthorhombic [8,55]. If the amplitude of the modulation in the ′ 

martensite and that in the ″ martensite are represented as ′ and ″, respectively, ′ is 1/6 

while ″ is smaller than ′ and depends on the alloy composition [56-58]. Therefore,  is 

restricted to be 0 <  < ″ < 1/6 (′). The modulated structure can be treated as the double 

lattice structure consisting of atoms at the nodes of two interpenetrating base-centered tetragonal 

lattices as illustrated in Fig. 5(c). In order to calculate possible twinning modes in the double 

lattice structure, the structure is considered as the tetragonal structure shown in Fig. 5(d) which 

consists of motif units of two atoms at each lattice point of a single base-centered tetragonal 

lattice. The crystal axes in the tetragonal lattice were set in a way that the [001]t direction is 

parallel to the directions perpendicular to the shuffling planes {011}c and the [010]t direction is 

parallel to the shuffling directions <011>c, where subscripts t and c indicate base-centered 

tetragonal and body-centered cubic, respectively. There are six lattice correspondences between 

the tetragonal and bcc structures as listed in Table 2. In order to consider the twinning modes in 

the tetragonal structure with simple shuffle mechanisms, the possible twinning modes which 

have q = 1, 2 or 4 were calculated using the theory of deformation twinning, and those with s < 

0.8 are listed in Table 3. Considering the lattice correspondence between the tetragonal and bcc 

structures shown in Table 2, the predicted twinning modes in the tetragonal structure are written 

in the cubic Miller indices as shown in Table 3. For example, if the {130}t< 3 10>t twinning 

(mode 6) occurs in the tetragonal structure, the twinning is observed as the {332}c<11 3 >c 

twinning in  phase. It is noted that all the possible twinning modes of the bcc structure shown 

in Table 1 can be seen in Table 3. Besides, all the possible twinning modes for q = 8 of the bcc 

structure, which were not considered in the previous section, are also included in Table 3. This 
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means that only the twinning modes which are possible in the bcc structure can be observed 

after twinning in the tetragonal structure. In the next section, we discuss the most possible 

twinning mode in the tetragonal structure, i.e., the most possible twinning mode in the 

modulated bcc structure. 

 

4.2. Shuffle mechanisms of the possible twinning modes in the modulated bcc structure 

 

In contrast to single lattice structures, atomic shuffles are necessary for twinning in 

double lattice structures even if the twinning modes have q = 1 or 2. Therefore, the complexity 

of the atomic shuffles is closely related to the possibility of the twinning modes. In Table 3, the 

{110}t<11 0>t twinning of mode 29 is the only q = 1 mode, which corresponds to the 

{112}c<1 11>c twinning. It is important to note that the {110}t<110>t twinning requires the 

shuffles corresponding to the rearrangement of motif units although the {112}c<1 11>c twinning 

does not need any shuffles, implying that the lattice modulation makes the {112}c<1 11>c 

twinning difficult to occur. There are two twinning modes {110}t<110>t and {130}t< 3 10>t 

twinning (modes 5 and 6) which have the smallest shear for q = 2. These q = 2 modes require 

simple shuffle mechanisms of only the rearrangement of motif units similar to the {110}t<110>t 

twinning with q = 1. The {110}t<1 10>t and {130}t< 3 10>t twinning correspond to the 

{112}c<111>c and {332}c<11 3 >c twinning of q = 4, respectively. Modes 1, 2, 3 and 4 with q = 

4 have smaller magnitudes of shear compared to modes 5 and 6, although the shuffle 

mechanisms are more complex. Among the four q = 4 modes, the {110}t<1 1 0>t and 

{350}t<5 3 0>t twinning (modes 1 and 2) have the smallest shear s = 1/(4 2 ) (= 0.1768), which 

is one-half of the shear of modes 5 and 6. The twinning shear of modes 3 and 4 is slightly 

smaller than that of modes 5 and 6. The twinning plane (K1) of the mode 3 is (001)t which is a 
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plane of symmetry of the tetragonal structure; therefore the mode 3 is unlikely to occur in 

practice because the twin product has the same orientation as that of the matrix. In the mode 4, 

the K1 plane is the high Miller index plane of {8, 16, 3}t. Twinning on such high Miller index 

planes is not considered to be reasonable because higher Miller index planes have smaller 

interplanar spacing. As a result, the modes 1, 2, 5 and 6 can be considered as the strong 

candidates for the preferentially operative twinning modes in the tetragonal structure. We 

examine in detail the shuffles of the above twinning modes 1, 2, 5 and 6 to discuss their 

possibility. 

When examining shuffles in practice, the choice of the motif unit is important. There 

are only six crystallographically distinct pairs of atoms comprising the motif unit in the 

tetragonal structure, namely , , , ,  and , similar to the motif units presented in 

–uranium [51]. The projections of the motif units on the (001)t plane are shown in Fig. 6(a). 

The vector joining the two atoms comprising a motif unit is represented by [xyz]t, and the motif 

units are listed in Table 4 in order of increasing the magnitude of the units. The units  and  

have two crystallographically equivalent variants and the units , ,  and  have four each, 

thus twenty possible units arise in all. The different variants are distinguished by subscripts. The 

(001)t plane is the plane of shear of the twinning modes 1, 2, 5 and 6. The possible twinning 

plane position and the possible motif unit of the twinning modes are shown in Fig. 6(b)-(d). The 

gray dotted lines represent the planes parallel to the twinning plane in the two interpenetrating 

lattices. We set the twinning plane in the middle of the two planes which have smaller 

interplanar spacing. The smallest motif unit lying approximately parallel to the twinning plane 

was chosen as the possible motif unit in all cases so that the motif unit can be considered to 

shear as a rigid body. The magnitudes and directions of the possible shuffles associated with the 

twinning modes 1, 2, 5 and 6 were examined in detail. The magnitude of shuffle depends on the 
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 value, where the range of  is restricted to be 0 <  < 1/6 as mentioned in the previous section. 

The shuffle mechanisms which have the smallest magnitude of shuffle in the whole range of 0 < 

 < 1/6 were chosen as the most satisfactory shuffle mechanisms, and summarized in Table 5. 

Figure 7 shows the magnitude of shuffle plotted in the range of 0 <  < 1/6. The details of the 

calculation procedure of the magnitude of shuffle are described in Ref. [51]. In Table 5, type I 

and type II orientation relationships are given for each mode since both the orientation 

relationships have the same q value. Mode 1 and 2 involve two shuffle mechanisms for each 

orientation relationship: one corresponds to the rearrangement of the motif units and the other 

corresponds to the disruption of them. In order to calculate the magnitudes of shuffles Ic and Id, 

a lattice vector lying in the twinning plane has to be chosen which defines the relative positions 

of the two parent motif units which disrupt to produce a single motif unit of the twin. We set the 

vector equal to [1/2 , 1/2, 0]t for Id of mode 1 and [ 2/5 , 3/2, 0]t for Ic of mode 2 so that the 

magnitude of shuffle has the smallest value. In modes 5 and 6, the disruption of the motif units 

is not required since the modes have q = 2. 

As we can see in Fig. 7, the shuffling of the {110}t<110>t twinning is expected to 

occur for the type II orientation relationship, if possible, due to the smaller magnitude of shuffle 

compared to the type I orientation relationship. The magnitude of shuffle for the mechanism IIb 

in the {110}t<110>t twinning is the same as that in the {110}t<110>t twinning shown in Fig. 

7(c). Therefore, it is obvious that the {110}t<110>t twinning is more difficult to occur when 

compared to the {110}t< 1 10>t twinning because the {110}t<1 1 0>t twinning requires 

mechanism IIc together with IIb. The {350}t<5 3 0>t twinning involves shuffle mechanism Ic or 

IIa which have a very large magnitude  > 0.7a0 as shown in Fig. 7(b). Thus the {350}t<5 3 0>t 

twinning is considered not to be able to occur in practice due to the larger magnitude of shuffle. 

Referring to the shuffle mechanism involved in the {130}t< 3 10>t twinning, mechanism Ia has 
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a small magnitude in the whole range of  as shown in Fig. 7(d). It is also apparent that the 

{130}t< 3 10>t twinning is expected to occur more easily when compared to the {110}t<110>t 

twinning due to the smaller magnitude of shuffle. As a result, it is concluded that the 

{130}t< 3 10>t twinning is the most possible twinning mode in the tetragonal structure. The 

{130}t< 3 10>t twin formed in the tetragonal structure will be observed as the {332}c<11 3 >c 

twin in  phase. 

 

4.3. Effect of the lattice modulation on the {332} twinning 

 

The effect of the lattice modulation, which correspond to the shuffling of parallel 

adjacent {0 1 1} planes to <011> directions, on twinning in the metastable  phase is 

summarized in this section. In the stable bcc structure, it is reasonable that the {112}c<1 11>c 

twinning is the most possible twinning mode because no shuffling is necessary for this twinning 

mode. However, if the lattice modulation exists in the bcc structure, the {112}c<1 11>c twinning 

is considered to become difficult to occur, since the {110}t<110>t twinning, which corresponds 

to the {112}c<1 11>c twinning, requires shuffles of atoms. In the modulated bcc structure, the 

{130}t< 3 10>t twinning, which corresponds to the {332}c<11 3 >c twinning, requires a smaller 

magnitude of shuffle compared to the other twinning modes, and is considered as the most 

possible twinning mode as shown in the previous section. The most possible shuffle mechanism 

(Ia) of the {130}t< 3 10>t twinning is illustrated in Fig. 8. In this figure,  was set equal to 1/24 

for example. It is clear from Fig. 8 that the {130}t< 3 10>t twinning requires the small and 

simple shuffle of atoms. We can understand the lattice correspondence between the 

{130}t< 3 10>t twinning and {332}c<11 3 >c twinning by comparing Fig. 8 and Fig. 4(b). The 

correspondences between the twinning planes ({130}t and {332}c) and twinning directions 
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(< 3 10>t and <11 3 >c) can be seen in the twinned lattices represented by the black lines in Fig. 

8 and Fig. 4(b). When we compare the magnitude of shuffle required in the {130}t< 3 10>t 

twinning and {332}c<11 3 >c twinning, the magnitude of shuffle of the {130}t< 3 10>t twinning, 

Ia = (1/ 22 −6/ 22 )a0 (= (0.2132−1.2792)a0) with 0 <  < 1/6, is smaller than one-half of 

that of the {332}c<11 3 >c twinning ( = 0.4330a0). It should be noted here that if  is set equal 

to 0 (bcc structure), we get Ia = 0.2132a0 which does not correspond to the magnitude of 

shuffle of the {332}c<11 3 >c twinning ( = 0.4330a0). This is because that there are motif units 

of two atoms which are considered to shear as rigid body in the {130}t< 3 10>t twinning (Fig. 8). 

If  = 0, the atoms should shear as shown in Fig. 4(b) in contrast to Fig. 8 since the interplanar 

spacing of the planes parallel to the K1 plane is constant in contrast to the  > 0 case (Fig. 6(e)). 

Therefore, when  = 0, the {130}t< 3 10>t twinning cannot be caused by the shuffle mechanism 

Ia with Ia = 0.2132a0 because of the different shear mechanism. When the lattice modulation 

exists ( > 0) due to the low shear modulus c′, the decrease of c′ increases  and makes the 

{130}t< 3 10>t twinning easier to occur. As a result, we propose that the lattice modulation in 

the metastable  phase, i.e. the shuffling of parallel adjacent {011} planes to <011> directions, 

facilitates the formation of the {332}<11 3 > twin. 

 

 

5. Conclusions 

 

The possible twinning modes in metastable -type Ti alloys were discussed by 

considering lattice instability on the basis of the theory of the crystallography of deformation 

twinning proposed by Bilby and Crocker. The possibilities of the {332}<11 3 > twinning and 

other twinning modes were compared by taking account of the shear and shuffle mechanisms of 
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the twinning modes. The lattice modulation due to the low shear modulus c′ ((c11-c12)/2) of the  

phase, i.e. shuffling of parallel adjacent {011} planes to <011> directions, was considered as 

the lattice instability of metastable  phase. A tetragonal structure which consists of motif units 

of two atoms at each lattice point of a single base-centered tetragonal lattice was proposed for 

the description of the modulated bcc structure. It was found that the lattice instability makes the 

{112}< 1 1 1> twinning more difficult to occur because the lattice modulation causes 

additional shuffling to form the {112}<1 1 1> twin. The {130}t< 3 10>t twinning, which 

corresponds to the {332}c<11 3 >c twinning in the bcc structure, was found to be the most 

possible twinning mode in the tetragonal structure because it requires a smaller magnitude of 

shuffle compared to the other twinning modes. In conclusion, it was proposed that the lattice 

modulation plays a key role to facilitate the formation of the {332}<11 3 > twin and to 

suppress the formation of {112}<1 11> twin. 
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List of figures 

Fig. 1. Twinning modes with q = 1 (a), q = 2 (b), q = 3 (c) and q = 4 (d) in single lattice 

structures. The red dotted arrows indicate the shear of the lattice points, and the green dotted 

circles indicate the lattice points of the twin. No shuffling is necessary to produce the twin when 

q = 1 or 2. 

 

Fig. 2. Twinning mode with q = 1 in a double lattice structure. Shear of the lattice points (a) and 

shuffle mechanisms correspond to the rearrangement of the motif units required to produce the 

type I twin (b) and type II twin (c). The atoms represented by open and closed circles lie above 

and below the paper, respectively. 

 

Fig. 3 Twinning mode with q = 4 in a double lattice structure. Shear of the lattice points (a) and 

shuffle mechanisms correspond to the disruption of the motif units required to produce the type 

I twin (b and c) and type II twin (d and e). The rearrangement of the motif units is also required 

at one-half of the lattice points by means of one of the mechanisms shown in Fig. 2. The atoms 

represented by open and closed circles lie above and below the paper, respectively. 

 

Fig. 4.  011  projection of the   111112  twinning (a) and   311332  twinning (b) in the 

bcc structure. Closed circles represent atoms in the projection plane, and open circles are atoms 

0.7071a0 above or below the projection. The red and green arrows indicate the shear and shuffle, 

respectively. 

 

Fig. 5. Schematic diagram of the bcc structure (a) and the modulated bcc structure (b). The 

modulated structure can be treated as the tetragonal structure shown in (c) or (d). The orange 
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arrows indicate the shift of the atoms due to the modulation. The blue lines indicate motif units 

of two atoms. 

 

Fig. 6.  t001  projection of the motif units (a), and the possible motif unit of the    t011t110  

twinning (b),    t035t350  twinning (c),    t101t110  twinning (d) and    t103t130  

twinning (e). Closed circles represent atoms in the projection plane, and open circles are atoms 

0.7071a0 above or below the projection. The red lines indicate the possible twinning planes and 

directions. 

 

Fig. 7. Magnitude of shuffle normalized by the lattice constant (/a0) of the    t011t110  

twinning (q = 4) (a),    t035t350  twinning (q = 4) (b),    t101t110  twinning (q = 2) (c) and 

   t103t130  twinning (q = 2) (d) as a function of . 

 

Fig. 8.  t001  projection of the    t103t130  twinning in the tetragonal structure ( = 1/24). 

Closed circles represent atoms in the projection plane, and open circles are atoms 0.7071a0 

above or below the projection. The red arrows indicate the shear of the lattice points. The blue 

lines and arrows indicate the motif units and the shear of the atoms comprising the units, 

respectively. The green arrows indicate the shuffle. 
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Table 1 

Mode s K1 K2 1 2 q 

1 0.3536 ^ `112  ^ `233  111  113  4 

2 0.3536 ^ `332  ^ `211  311  111  4 

3 0.6124 ^ `110  ^ `8,11,5  111  153  4 

4 0.6124 ^ 8̀,11,5  ^ `101  135  111  4 

5 0.7071 ^ `112  ^ `211  111  111  2 

6 0.7071 ^ `110  ^ `114  001  122  4 

7 0.7071 ^ `114  ^ `110  122  001  4 

 

 

 

  



Table 2 

Variant  t100   t010   t001  

1  c100   c011   c110  

2  c100   c110   c110  

3  c010   c101   c110  

4  c010   c110   c101  

5  c001   c110   c101  

6  c001   c101   c011  

 

 

 

  



Table 3 

  Base-centered tetragonal Corresponding body-centered cubic 

Mode s K1 K2 1 2 q K1 K2 1 2 q 

1 0.1768 ^ t̀110  ^ t̀053  
t

011  
t

530  4 ^ c̀112  ^ c̀655  
c

111  
c

335  8 

2 0.1768 ^ t̀350  ^ t̀011  
t

035  
t

110  4 ^ c̀556  ^ c̀211  
c

533  
c

111  8 

3 0.3062  t001  ^ t̀3,16,8  
t

011  
t

181  4 ^ c̀110  ^ c̀16,19,13  
c

111  
c

971  8 

4 0.3062 ^ t̀3,16,8   t001  
t

811  
t

110  4 ^ c̀16,19,13  ^ c̀101  
c

719  
c

111  8 

5 0.3536 ^ t̀110  ^ t̀301  
t

101  
t

310  2 ^ c̀112  ^ c̀233  
c

111  
c

113  4 

6 0.3536 ^ t̀130  ^ t̀101  
t

103  
t

110  2 ^ c̀332  ^ c̀211  
c

311  
c

111  4 

7 0.3536 ^ t̀113  ^ t̀153  
t

011  
t

112  4 ^ c̀112  ^ c̀233  
c

111  
c

113  4 

8 0.3536 ^ t̀351  ^ t̀311  
t

211  
t

110  4 ^ c̀332  ^ c̀211  
c

311  
c

111  4 

9 0.3536  t001  ^ t̀140   t100  
t

401  4 ^ c̀110  ^ c̀118  
c

001  
c

144  8 

10 0.3536 ^ t̀401   t100  
t

041   t100  4 ^ c̀118  ^ c̀110  
c

144  
c

001  8 

11 0.3953 ^ t̀112  ^ t̀365  
t

125  
t

312  4 ^ c̀321  ^ c̀3,10,9  
c

153  
c

331  8 

12 0.3953 ^ t̀536  ^ t̀121  
t

123  
t

512  4 ^ c̀3,10,9  ^ c̀123  
c

133  
c

351  8 

13 0.4678 ^ t̀021  ^ t̀568  
t

215  
t

132  4 ^ c̀310  ^ c̀16,11,1  
c

531  
c

511  8 

14 0.4678 ^ t̀865  ^ t̀102  
t

231  
t

512  4 ^ c̀16,11,1  ^ c̀310  
c

151  
c

351  8 

15 0.4678 ^ t̀261  ^ t̀232  
t

8,3,13  
t

110  4 ^ c̀754  ^ c̀415  
c

13,5,11  
c

111  8 

16 0.4678 ^ t̀223  ^ t̀612  
t

101  
t

8,3,13  4 ^ c̀514  ^ c̀457  
c

111  
c

13,5,11  8 

17 0.5000  t001  ^ t̀041   t010  
t

410  4 ^ c̀110  ^ c̀035  
c

011  
c

350  8 

18 0.5000 ^ t̀041   t001  
t

410   t010  4 ^ c̀530  ^ c̀011  
c

053  
c

110  8 



19 0.5863  t001  ^ t̀11,16,24  
t

013  
t

318  4 ^ c̀110  ^ c̀48,5,27  
c

311  
c

793  8 

20 0.5863 ^ t̀11,16,24   t001  
t

813  
t

310  4 ^ c̀48,5,27  ^ c̀011  
c

397  
c

113  8 

21 0.6124  t001  ^ t̀384  
t

011  
t

114  4 ^ c̀110  ^ c̀8,11,5  
c

111  
c

153  8 

22 0.6124 ^ t̀483   t001  
t

411  
t

110  4 ^ c̀8,11,5  ^ c̀101  
c

135  
c

111  8 

23 0.6124 ^ t̀111  ^ t̀3,19,5  
t

101  
t

512  4 ^ c̀110  ^ c̀8,11,5  
c

111  
c

153  8 

24 0.6124 ^ t̀3,19,5  ^ t̀111  
t

215  
t

110  4 ^ c̀8,11,5  ^ c̀101  
c

135  
c

111  8 

25 0.6847 ^ t̀023  ^ t̀618  
t

2,3,13  
t

112  4 ^ c̀510  ^ c̀16,5,7  
c

13,5,1  
c

311  8 

26 0.6847 ^ t̀861  ^ t̀023  
t

121  
t

2,3,13  4 ^ c̀16,5,7  ^ c̀015  
c

113  
c

13,5,1  8 

27 0.6847 ^ t̀221  ^ t̀11,6,2  
t

387  
t

310  4 ^ c̀431  ^ c̀5,17,4  
c

5,11,7  
c

311  8 

28 0.6847 ^ t̀11,6,2  ^ t̀212  
t

103  
t

738  4 ^ c̀5,17,4  ^ c̀134  
c

113  
c

5,11,7  8 

29 0.7071 ^ t̀110  ^ t̀011  
t

011  
t

110  1 ^ c̀112  ^ c̀211  
c

111  
c

111  2 

30 0.7071  t001  ^ t̀012   t001  t
102  2 ^ c̀110  ^ c̀114  

c
001  

c
122  4 

31 0.7071 ^ t̀201   t001  
t

021   t100  2 ^ c̀114  ^ c̀110  
c

122  
c

001  4 

32 0.7071 ^ t̀131  ^ t̀131  
t

011  
t

110  2 ^ c̀112  ^ c̀211  
c

111  
c

111  2 

33 0.7071 ^ t̀113  ^ t̀311  
t

101  
t

101  4 ^ c̀112  ^ c̀211  
c

111  
c

111  2 

34 0.7071  t010  ^ t̀102   t001  t
120  4 ^ c̀110  ^ c̀114  

c
001  

c
122  4 

35 0.7071 ^ t̀210   t010  
t

201   t100  4 ^ c̀114  ^ c̀110  
c

122  
c

001  4 

36 0.7906 ^ t̀421  ^ t̀021  
t

845   t100  4 ^ c̀831  ^ c̀031  
c

4,12,5  
c

100  8 

37 0.7906 ^ t̀021  ^ t̀421   t100  
t

845  4 ^ c̀031  ^ c̀831  
c

100  
c

4,12,5  8 

 

  



Table 4 

Unit x y z 

1 1/2  1/2 

2 1/2  �1/2 

3 �1/2  1/2 

4 �1/2  �1/2 

1 0 �1/2 1/2 

2 0 �1/2 �1/2 

1 0 +1/2 1/2 

2 0 +1/2 �1/2 

1 1 �1/2 1/2 

2 1 �1/2 �1/2 

3 �1 �1/2 1/2 

4 �1 �1/2 �1/2 

1 1 +1/2 1/2 

2 1 +1/2 �1/2 

3 �1 +1/2 1/2 

4 �1 +1/2 �1/2 

1 1/2 �1 1/2 

2 1/2 �1 �1/2 

3 �1/2 �1 1/2 

4 �1/2 �1 �1/2 

 

  



Table 5 

Mode K1 1 q Unit Mechanism 

     Type I Type II 

1 ^ t̀110  
t

011  4 3,4 Ia IIb 

     Id IIc 

2 ^ t̀350  
t

035  4 3,4 Ia IIa 

     Ic IIc 

5 ^ t̀110  
t

101  2 3,4 Ia IIb 

6 ^ t̀130  
t

103  2 3,4 Ia IIb 

 


