IEICE

TRANSACTIONS

on Information and Systems

VOL. E98-D NO. 7
JULY 2015

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.

The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.

Distribution by anyone other than the author(s) is prohibited.

A PUBLICATION OF THE INFORMATION AND SYSTEMS SOCIETY

-. The Institute of Electronics, Information and Communication Engineers
l Kikai-Shinko-Kaikan Bldg., 5-8, Shibakoen 3 chome, Minato-ku, TOKYO, 105-0011 JAPAN

IEICE TRANS. INFE. & SYST., VOL.E98-D, NO.7 JULY 2015

1275

[PAPER

System Status Aware Hadoop Scheduling Methods for Job

Performance Improvement

Masatoshi KAWARASAKI'®, Member and Hyuma WATANABE', Nonmember

SUMMARY MapReduce and its open software implementation
Hadoop are now widely deployed for big data analysis. As MapReduce
runs over a cluster of massive machines, data transfer often becomes a bot-
tleneck in job processing. In this paper, we explore the influence of data
transfer to job processing performance and analyze the mechanism of job
performance deterioration caused by data transfer oriented congestion at
disk I/O and/or network I/O. Based on this analysis, we update Hadoop’s
Heartbeat messages to contain the real time system status for each machine,
like disk I/O and link usage rate. This enhancement makes Hadoop’s sched-
uler be aware of each machine’s workload and make more accurate decision
of scheduling. The experiment has been done to evaluate the effectiveness
of enhanced scheduling methods and discussions are provided to compare
the several proposed scheduling policies.

key words: Hadoop, MapReduce, distributed computing, task scheduling,
Jjob performance

1. Introduction

There is an increasing demand for handling large-scale data
called Big Data. Because these data can extend from several
tens of terabytes to petabyte, it’s difficult to handle them
in conventional ways. As a platform for big data anal-
ysis, MapReduce [1] and its open source implementation
‘Hadoop’ [2] is widely deployed in recent years.

As MapReduce runs over a cluster of massive ma-
chines, data transfer often becomes a bottleneck in job pro-
cessing. Kandula [3] measured traffic in actual MapReduce
datacenter to find that 86% of the links observe congestion
lasting at least 10 seconds and 15% observe congestion last-
ing at least 100 seconds. Chowdhury [4] pointed out that
data transfer time may consume more than 50% of total job
execution time.

In general, distributed parallel processing is most effi-
cient when the processing on each node is mutually inde-
pendent. If there is any interdependence between nodes,
it may cause delay and prolong the job processing time.
MapReduce is actually such kind of model. In fact, re-
duce computation can only start on a reducer node when all
the relevant map tasks are completed on mapper nodes and
their outputs are transferred over the network. In this paper,
we explore how such interdependence between nodes affects
job performance. In particular, how the partial imbalance in
the usage of cluster resources provokes overall performance

Manuscript received November 19, 2014.
Manuscript revised February 9, 2015.
Manuscript publicized March 26, 2015.
"The authors are with University of Tsukuba, Tsukuba-shi,
305-8550 Japan.
a) E-mail: mkawa@slis.tsukuba.ac.jp
DOI: 10.1587/transinf.2014EDP7385

deterioration.

In recent years, studies on Hadoop performance are be-
coming active. Zaharia [5] proposed “Delay Scheduling” to
increase data local map tasks, thus suppress data transfer
for receiving input data split from other node. Zaharia [6]
also proposed “Copy Compute Splitting” in reduce task as-
signment to mitigate “Slot Hoarding problem” caused by
delayed data transfer. Verma [7] proposed to break the bar-
rier between map stage and reduce stage to improve per-
formance. Xie [8] proposed a data placement scheme that
adaptively balances the amount of data stored in each node
to improve data-processing performance. Konwinski [9]
proposed the speculative task excursion strategy called
“LATE” that reflects estimated finish time of delayed tasks.
Chen [10] proposed some improvements to LATE that use
both the progress rate and the process bandwidth within a
phase to select slow tasks. Polo[11] proposed resource-
aware adaptive scheduling (RAS) that adjust the number of
slots on each machine dynamically based on job profiling
information as well as workload placement across them, to
maximize the resource utilization of the cluster. Recently,
YARN (Yet Another Resource Negotiator) [12] was pre-
sented as a new Hadoop architecture that separates resource
management functions from the programming model, and
delegates many scheduling-related functions to per-job com-
ponents.

However, these solutions have focused on schedul-
ing computation and storage resources, while mostly ignor-
ing data transfer oriented congestion. Furthermore, current
Hadoop’s scheduling does not consider the real time system
status for each machine.

This paper focuses on the influence of data transfer
within Hadoop cluster. We run multiple jobs on our ex-
perimental Hadoop clusters in our laboratory as well as on
Amazon EC2 [13] and track the progress of tasks which pro-
ceed in parallel. Through this experiment, we show that
a delay in a particular task caused by data transfer ori-
ented congestion at disk I/O and/or network I/O retards the
progress of other relevant tasks and deteriorates the over-
all job performance [14]. Based on this result, we update
Hadoop’s Heartbeat messages to contain the real time sys-
tem status for each node, like disk I/O and network usage
rate, so that Hadoop’s scheduler can be aware of each node’s
workload and make more accurate decision of scheduling.
We evaluate the performance of the proposed methods us-
ing our experimental clusters to validate their effectiveness.
Discussions are provided to compare the several proposed

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers

1276

scheduling policies.

The rest of this paper is structured as follows: In
Sect. 2, we overview Hadoop architecture. Section 3 pro-
vides the experiment setting, experiment results and their
analysis. Section 4 discusses mechanism of Hadoop perfor-
mance deterioration caused by data transfer oriented con-
gestion at disk I/O or network I/O. Section 5 proposes some
enhancements to Hadoop scheduler that reflect data transfer
oriented congestion, Sect. 6 gives their experimental results
and section and Sect. 7 provides discussions. Finally, Sect. 8
concludes this paper.

2. Hadoop Overview
2.1 Hadoop Architecture

A Hadoop cluster is constructed by interconnecting general-
purpose computers that implements Hadoop. Hadoop is
composed of Hadoop Distributed File System (HDFS) and
MapReduce engine that runs on it. HDFS consists of a sin-
gle NameNode that manages the name space of the entire
file system and many DataNodes that store the actual file
blocks in themselves. For each file block, replicas (three by
default) are created in different DataNodes to improve data
reachability and fault tolerance. MapReduce engine has a
single JobTracker that manages a job from the user and as-
signs tasks to the TaskTrackers on each machine. In general,
DataNode and TaskTracker are arranged in the same node so
that a map task can be performed on the node having the in-
put data split to be processed. Such map task is called “data
local map task”.

MapReduce performs two functions, map function and
reduce function, which are defined by the user. Figure 1
shows the MapReduce processing flow. When a job is sub-
mitted by a user, JobTracker divides the input data into
splits. Then it generates a map task for each input data split
and assigns a TaskTracker to process it. If the map task is
not data local, the TaskTracker obtains the required data split
from other nodes over the network. When the TaskTracker
completes the map function for a given input data split, it
writes the results to the local disk as a map output data.

When a part of map tasks of a given job (5% by default)
are completed, JobTracker starts to assign reduce tasks to
TaskTrackers. Reduce task collects all the map output data
having the same key over the network and performs reduce
function. The results are stored in HDFS. As reduce func-
tion cannot start until all the map tasks of a given job are
completed, reduce task tends to cause job processing delay.

2.2 Hadoop Task Scheduling

JobTracker and TaskTracker communicate each other using
HeartBeat mechanism. Task scheduling is performed us-
ing this mechanism as shown in Fig. 2. First, a TaskTracker
requests task assignment to JobTracker by sending Heart-
Beat that includes the number of currently running tasks
as well as the number of taskslot of the TaskTracker. The

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.7 JULY 2015

o
. of JobTracker ‘9&:
&'
et Deny

1>b =
2

Input Data Split

lr —— Output 1

I —— Output 2

3 —

4 b -

5 / Parallel Processing Parallel Processing| Oy tput
(Map) (Reduce) utpu

MapReduce Workflow

Fig.1 MapReduce Workflow

Copy ol ~— oOutput 3

HeartBeat
Map: 2
Reduce: 1
Map Slot: 4
Reduce Slot: 4 ap task slo a
= MapTaskl ReduceTaskl
Task Assign

MapTask2 Empty
Empty Empty
Empty Empty

+ TaskTracker sends HeartBeat to JobTracker per 5sec.
+ JobTracker assigns tasks if there are vacant task slots.

Fig.2 HeartBeat Mechanism

JobTracker assigns a task in response to this so that the num-
ber of assigned tasks does not exceed the number of taskslot
whose value is pre-determined according to the performance
of each TaskTracker node. Task scheduling is performed as
described above for each of map task and reduce task. The
order of priority in which the task is assigned is (1) data
local map task, (2) map task and (3) reduce task.

2.3 Job Scheduling

When the job scheduler is choosing the next job to run, it se-
lects one with the highest priority. As FIFO scheduler does
not support preemption, jobs are scheduled in the order of
submission. The Fair Scheduler aims to give every user a
fair share of the cluster capacity. When multiple jobs are
submitted, free task slots are given to the jobs in such a way
as to give each user a fair share of the cluster.

2.4 Data Transfer in Hadoop

In Hadoop, a large amount of data transfer occurs in network
I/O and disk I/O. Regarding network I/O, data transfer over
the network occurs in the following three occasions: (1) non
data local map task receives input data split from other node,
(2) reduce task receives map output from relevant map nodes
(i-e., copy phase of reduce task) and (3) HDFS makes replica
of the job result by sending the copy of reduce output data
to other nodes.

On the other hand, disk I/O appears in the following oc-
casions; (1) receiving map input data split from HDFS, (2)
execution of map or reduce function, (3) sending and receiv-
ing map intermediate output, (4) writing map intermediate
output or reduce output and (5) copying reduce output to

KAWARASAKI and WATANABE: SYSTEM STATUS AWARE HADOOP SCHEDULING METHODS FOR JOB PERFORMANCE IMPROVEMENT

HDEFS.
2.5 Speculative Task Execution

If a particular task is taking a long time for some reason,
JobTracker makes other TaskTracker to perform the same
task as a backup task. This is referred to a speculative task.
If either of original task or speculative task is completed ear-
lier, the other task is terminated immediately.

Conditions of launching a speculative task are as fol-
low: (1) Progress of a task is late than the average minus
0.2 of the entire task, (2) The task has run for at least one
minute, and (3) Speculative task for the task has not been
launched yet.

3. Experiment of Hadoop Performance

To explore how the data transfer affects the overall job per-
formance in Hadoop cluster, we performed experiments in
two different cluster settings: Laboratory cluster (Lab clus-
ter) and EC2 cluster. We added a simple modification to the
original Hadoop program (version 1.1.2) to measure map
output data transfer time for each map-reduce pair. In addi-
tion, we used sysstat command to measure network utiliza-
tion, disk I/O usage and CPU usage of each node.

3.1 Experiment Environment

Specifications of Lab cluster and EC2 cluster are summa-
rized in Tables 1 and 2.

Lab cluster is a single rack cluster which consists of
one switch and seven nodes. It is heterogeneous in terms of
disk and CPU performance. This heterogeneity is reflected
in the number of task slots of respective nodes

EC2 cluster consists of twenty nodes by using
ml.xlarge instance of Amazon EC2. Thus, it’s homoge-
neous in terms of disk and CPU performance. As described
in [4], a set of Amazon EC2 instances provides the network
performance which is equivalent to a single rack cluster. We
measured available network bandwidth between the pair of

Table 1 Lab cluster specifications.
Name Role | cpPU Core RAM | HDD | Task slot
JobTracker | Phenom II
NO | NameNode | x4920 | 4 [4GB | 1 A
N1 Corei7960] 4 6GB 4
N2 Map: 4
Xeon E3 .
N3 TaskTracker 1240 4 4GB 3 |Reduce: 4
E‘S‘ DataNode
Celeron Map: 2
N6 Gsso | 2 | 26B | 2 |Reduce:2
Table2 EC2 cluster specifications.

Core RAM HDD | Task slot

JobTracker

NI~ | TaskTracker . Map: 4
N19 | DataNode (Suitable) Reduce: 4

1277

instances using iperf, and the result was 1~1.2 Gbps.

Regarding the Hadoop setting, we increased the Block-
Size of HDFS from its default 64MB to 256 MB. Accord-
ing to “Hadoop: The Definitive Guide, 3rd Edition” [15],
256MB is a general arrangement for the clusters that han-
dles a large amount of data. As for the number of HDFS
replication, we set it to 1 (default value is 3) because the
scale of our Lab cluster is very small as compared to com-
mon cluster setting. In the EC2 cluster, we kept the default
value 3.

As for job scheduler, we used Fair-Scheduler to create
a typical environment of concurrent job execution.

We ran a series of sort jobs which invokes massive data
transfer [16], [17]. Although job types may include search
and index other than sort, index andjor search jobs gener-
ate only a small amount of data transfer. Because we focus
on the impact of data transfer to job performance, the influ-
ence of search and /or index jobs is not of great importance.
Sort job is often used as a benchmark for evaluating Hadoop
cluster throughput [15]. Table 3 summarizes our job specifi-
cations. Input data is a 5GB random file. Jobs are launched
every 5 seconds up to 5 jobs in Lab cluster and 16 jobs in
EC2 cluster. These jobs run in parallel. We performed this
experiment five times and recorded the results.

3.2 Job and Task Execution Time

Figures 3 and 4 show the experiment result about job exe-
cution time in each cluster. Despite the same job, there are

Table3 Experimental Job specifications
Target : —r Map Reduce Concurrent
Clus?er ‘ T)pe‘ LIy gt DY Tasks Tasks Jobs
Lab. cluster | Sort Randso(r}l}sFlles 20 10 5
EC2 cluster | Sort | RandomFiles | 5o 20 16

o

2 600

< 459

£ 454

'_

— 400

.0

=

Q

S

Job ID
Fig.3 Job Execution Time (Lab. cluster)

_ iog 205200193191 189 177 196202194 19
é 5 106103122
5 mo
5

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14
Job ID

Fig.4 Job Execution Time (EC2 cluster)

1278

Table 4 Execution time (sec.) of map and reduce tasks.

Reduce
Max. 0 Avg. Max. Min. Avg.

Target
Cluster

Lab. cluster
EC2 cluster

Table 5 Map output data transfer time (sec.) of reduce tasks

Target Cluster

Lab. cluster 43.416 0.032 4.25.
EC2 cluster 34.61 0.037 0.83
50 45 120.00%
45 . 100.00%
o 40 g 100.00%
e -
% 35 97.00% 99.00% — gops o,
= 30 =
S % e 6000% E
« 20 [s]
2 s 4000% 5
a
E 0 5, 20.00%
Z 5 0 n o 1
0 0.802 - — 000%

0 20 40 60 80 100 120 140 160 180 200

Task Processing Time(s)

Fig.5 Cumulative distribution of Map task execution time (Lab cluster)

96.00% 120.00%
94.00%

100.00%

%]
e . 100.00%0.00%
& 94.009 s
' 60.00% ¥
@

E 3 ' 2 40.00¢ il
£ .
=1 2 20.00%
= R |

0.00%

Task Processing Time(s)

Fig.6 Cumulative distribution of Reduce task execution time (Lab clus-
ter)

differences in job execution time in both clusters. Table 4
shows the max, min., and average values of map task and
reduce task execution time. The difference in task execution
time is very large, especially in Lab cluster. Same holds true
for the map output data transfer time as shown in Table 5. In
the following sections, we analyze the causes of time con-
suming tasks in more detail.

3.3 Analysis of Hadoop Performance in Lab Cluster

Figures 5 and 6 show the distribution of task processing
time in Lab cluster. Map task execution time has a long
tail distribution where some take extremely long time. On
the other hand, reduce task processing time is varied over a
wide range. It should be noted that these data include spec-
ulative tasks. Figure 7 shows the distribution of map output
data transfer time for each map-reduce pair. More than 88%
of data transfers have completed within 10 seconds but oth-

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.7 JULY 2015

1200 019 gs ey 99.39% r 120.00%
1000 -~ 100.00%
. 800 8838y Jo-19% 100.00% 80.00% w
£ 6 | | 60.00% &
o [
§ 400 - - 1000% £
§ 200 - 0 85 35 7 7 [20.00%
04 - 0.00%

0 10 20 30 40 a0
Map Output Data Transfer Time(s)

Fig.7 Cumulative Distribution of map output data transfer time

ers have long tail distribution.

To analyze what’s happening about the time consuming
tasks, we took a Gantt chart of task progress of Job 0, 1 and
2 in Lab cluster. The results are shown in Fig. 8. In Fig. 8,
mark “#” indicates the execution of a map task. Similarly,
mark “%” is the execution of copy in reduce task, and “!”
is the execution of sort & reduce functions in reduce task.
Mark “- is a killed task caused by speculative task.

In JobO (see Fig. 8 (a)), MapTask 6, 8, 13, 14, 18 and
19 took two to six times more execution time as compared to
other map tasks. Because JobO is the first job that enters the
system, all the map tasks are data local. Accordingly, there
is no cause for network congestion. Thus, it is envisaged that
all the time consuming map tasks have been caused by disk
I/O bottleneck. In fact, we found that disk usage maintained
100% during the time of these tasks.

3.3.1 Disk I/O Bottleneck

Then, what are the causes of disk I/O bottleneck? Since
there is no map function in sort job, the execution time of
map task is equal to the time of receiving input split from
HDFS, dividing it into partitions for reduce task, and writ-
ing them into node local disk. Each of node N1~N4 has 4
cores and 4 map task slots. Although node N1 has 4 HDDs,
node N2~N4 has only 3 HDDs (see Table 1). Owing to this
heterogeneity, disk I/O would easy to become a bottleneck
in Lab cluster. We can observe similar phenomenon in other
jobs as well. Therefore, heterogeneity in disk performance
among nodes should have caused disk I/O bottleneck.

3.3.2 Reduce Slot Hoarding Problem

Figure 8 (c) shows that, in Job2, starting time of map tasks
and reduce tasks vary widely. As explained below, this is
because the number of free task slots within the cluster is
decreasing and queued tasks are waiting for the termination
of preceded tasks.

Reduce tasks begin allocated to Task Tracker nodes
when 5% of total map tasks are completed. These nodes
start to obtain map output over the network (i.e., copy
phase). The imbalance in map task processing time influ-
ences this copy phase execution time of the reduce task.
All reduce tasks cannot end their copy phase and proceed

KAWARASAKI and WATANABE: SYSTEM STATUS AWARE HADOOP SCHEDULING METHODS FOR JOB PERFORMANCE IMPROVEMENT

MapTasko i
MapTask1l HitHH
MapTask2 [
MapTask3 it
MapTas
MapTas

4 it

5
MapTask6

7

8

it
S
MapTas it
MapTask S
MapTask9 #iH#
MapTask10 i
MapTask11l #ith
MapTask12 I
MapTask13 S,
MapTask14 S
MapTask15 #HHH
MapTask16 #ith
MapTask17 Y
MapTask18 S
MapTask19 S
ReduceTask0 1
ReduceTask1 RSN R NN RSN
ReduceTask2
ReduceTask3

ReduceTask7
ReduceTask8
ReduceTask9

| | | | | [
15:04:25 15:05:15 15:06:05 15:06:55 15:07:45 15:08:35
15:09:25

(a)

[MapTasko
MapTas
MapTas
MapTas|
MapTas|
MapTas|
MapTas|
MapTas
MapTas
MapTas|
MapTask10 i
MapTask1l | ###
MapTask12
MapTask13
MapTask14
MapTask15 i

MapTask16 | ##

MapTask17 HitH#

MapTask18 | e
MapTask18_1 S
MapTask19 i

ReduceTask0 !
ReduceTask1 1"
ReduceTask2 1
ReduceTask3 1
ReduceTask4 ISERREEN
ReduceTask5
ReduceTaské
ReduceTask7
ReduceTask8
ReduceTask9

HHHHHHHHAHE
HHIHHHE
it
#it
#it#h
#it#h
HIHHHHHHR I
HIHHH
R

boNahiwNR

I
I

]]] | |]]
15:04:31 15:05:31 15:06:31 15:07:31 15:08:31 15:09:31 15:10:31

(b)

MapTasko HHHE
MapTask1l HHHHY
MapTas|
MapTas
MapTas
MapTas
MapTas|
MapTas|
MapTas|
MapTas
MapTas
MapTask10 HHH

MapTask11l #HtHH

MapTask12 HHHE
MapTask13
MapTask14
MapTask15
MapTask16 i
MapTask17
MapTask18
MapTask18_1
MapTask19
MapTask19_1

H#itiH
A
HitH
HitH

=
(XTI IONATN)

HitHHHEH?
I

H#itH
IR

##
HHHHHHHHAE

S
ReduceTasko BRI IIIIRA%% 1 |
ReduceTask1 IIIIIHIIIIRRRI%% 1 1
ReduceTask2 RIIIIIRRRI%%61 1 111
ReduceTask3 BRH%% ! |
ReduceTask4 RRRIRIIRIRIIIR ! 1 |
ReduceTask5 Prrsr s AR RN RN
ReduceTask5_1 R T |
ReduceTaské K%L L 1L)
ReduceTask7 ISR 1
ReduceTask7_1
ReduceTask8
ReduceTask8_1
ReduceTask9
ReduceTask9_1

15:04:38 15:05:38 15:06:38 15:07:38 15:08:38 15:09:38 15:10:38
15:11:38

©

Fig.8 (a) Task Progress of JobO (Lab Cluster), (b) Task Progress of Jobl
(Lab cluster), (c) Task Progress of Job2 (Lab cluster)

to sort & reduce phase until all the map tasks have com-
pleted. The phenomenon can be observed in Fig. 8 (b) where
all reduce tasks are waiting at copy phase for completion of

1279

MapTask18 without doing anything. This is exactly the “re-
duce slot hoarding problem” that is explained in [6]. This
problem worsen reduce task slot starvation and cause a long
delay in reduce task starting time which can be observed in
Fig. 8 (¢).

3.3.3 Map Output Data Copy Time

As shown in Fig.7 and Table 5, most of map output data
transfer ends within 10 seconds. Since 5 GB of input data is
split into 20 map tasks and map output data are partitioned
for 10 reduce tasks, each map output data which a reduce
task receives become 25 MB. As link speed is 1Gbps, trans-
fer time of each data file should not become so long. Never-
theless, some data transfer took more than 20 seconds. This
is because of disk I/O congestion at the sender node which
has map output data. In the receiver node which runs re-
duce task, disk I/O would not become a bottleneck because
a reduce task first receives map output data on its memory.
However, subsequent sort & reduce phase (as shown by “!”
in Fig. 8) would require frequent disk I/O.

3.3.4 Effect of Speculative Execution

MapTask18_1 of Job2 is a speculative task for MapTask18
which is a data local map task. JobTracker recognized
MapTask18 as slow task compared to other map tasks of
Job2, and launched MapTask18_1 to make job execution
time shorter. However, as MapTask18_1 is not data local
map task because the number of HDFS replication is one in
Lab cluster, it further increases the congestion of disk I/O in
the original node, thus prolongs the execution time of both
original and speculative tasks. Same phenomenon was also
observed in other jobs.

Speculative reduce tasks: ReduceTask5_1, 7_1, and 9_1
of Job2 were terminated before they complete their tasks be-
cause their original tasks ended earlier. It means that these
speculative tasks have used the task slot and resource of the
cluster vainly. The conditions to launch speculative tasks
as described in Sect.2.5 do not work well when the clus-
ter is suffering task slot starvation. As we can see from
Fig. 8 (¢), the original tasks were not taking long time for
its completion compared to other tasks. They just started
late. By the current conditions for speculative task execu-
tion, JobTracker recognizes late-started tasks as slow tasks,
and executes unnecessary speculative tasks.

3.3.5 Summary

In Lab cluster, owing to the heterogeneity in disk perfor-
mance among nodes, disk I/O bottleneck may appears in a
particular node and prolongs map task execution time of the
node. Delayed map task caused by disk I/O incurs reduce
slot hoarding problem in relevant reduce nodes as well as
useless speculative map task execution that accelerates disk
I/O congestion.

1280

160 ; 120.00°

4 Py 99.06% 100.00%
s s 220 100.00%
w 120 95 o
=100 26.25% 99.69% 80.00% 2
5 50 60.00% @
- . 33 40.00% B

4
2 2 9 5 4 2000%

0 - 000%

0 V 10 20 30 40 50 60 70
Task Execution Time(s)

Fig.9 Cumulative distribution of map task execution time (EC2).

100 88 00 25 120.00%
7 8469 -28%
v 3.0 0
% 0 7 00.06%°° o
a0 000, @
: 60 80.00% ‘E’
o 60.00% &
= o
g . 4000% G
E 90 1.06_.0 90,000 (=W
S = U 0
e 0 0 0
0 6 0.00%

0 10 20 30 40 50 60 70 80 90 100
Task Execution Time(sec)

Fig.10 Cumulative distribution of reduce task execution time (EC2)

8000 - 433 T - 120.00%

7000 - % 100.00%
g 1000 ji : i” > 10000%
2 6000 - _
© 5000 25% - 80.00% o
b =
S 4000 - - 60.00% £
g 3000 - 4000% S
£ 2000 - i
3 1000 o 1 10 . 20.00%

0 - . . ; 0.00%
0 10 20 30 40

Map Output Data Transfer Time(sec)

Fig.11 Cumulative distribution of map output transfer time (EC2)

3.4 Analysis of Hadoop Performance in EC2 Cluster

We made a similar analysis for the experimental results from
EC2 cluster. Figures 9, 10 and 11 show processing time
distribution of map task, reduce task and map output data
transfer, respectively. Both of map and reduce tasks show a
long tail distribution.

In EC2 cluster, we found a big gap in job execution
time between job3 and its following jobs. Figure 12 (a), (b)
is task progress Gantt chart of JobO and Job4. As Fig. 12 (b)
shows, task progress of Job4 is quite slow because of the de-
lay of MapTask8 and the shortage of reduce task slot stem-
ming from it.

We could not find the reason why MapTask8 took such
a long time. There was room on the disk and CPU in the
node on which MapTask8 was running, and since the task
was data local, it should not have been affected by net-
work I/O. At all events, MapTask8 was delayed significantly
and its speculative task (MapTask8_1) was launched. But it
seemed to be too late owing to the condition that the original
task should have run for at least one minute before launching

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.7 JULY 2015

MapTasko #HE
MapTask1l #it#h
MapTask2 H#it#h
MapTask3 #itHH
MapTas|
MapTas|
MapTas|
MapTas|
MapTas|
MapTask9
MapTask10
MapTaski1l
MapTask12
MapTask13
MapTask14
MapTask15
MapTask16
MapTask17
MapTask18
MapTask19
ReduceTask0
ReduceTask1
ReduceTas
ReduceTas
ReduceTas
ReduceTas
ReduceTas
ReduceTas

XN RO
*
ki3
*

=
LoNakhlwn

ReduceTas
ReduceTas
ReduceTas
ReduceTas
ReduceTas
ReduceTask13
ReduceTask14
ReduceTask15
ReduceTask16
ReduceTask17
ReduceTask18
ReduceTask19

BiRR
NR O

69:01:42 69:02:22 69:03:02

(a)

MapTasko THITHHH
lapTas HHtH###
MapTas Hitithi
MapTask3 B

#itHi#

MapTas it
apTas| HIHHHHH
MapTas| HtHHHH

o
k=)
M
n
(Y
]
F®
#*
#®

it
HitH I
R
HIHHHHHH
I
T
HIHHH]
HIHHH]
it
HiHH#]
HIHHHI
9696%%%3%%%%%3%%%%1 1 1 11111
|

[

o

@

n
VONAUNAWNRO |

o
a
c
a
o
M
n

o
a
c
a
o
M
n
RR LN

o

X

c

a

o

M

n
WVWEENNAANAWNRO
B R R R

ReduceTas|

| I I I I I
©9:02:08 09:02:48 09:03:28 ©9:04:08 09:04:48 09:05:28

(b)
Fig.12 (a) Task progress of JobO (EC2), (b) Task progress of Job4 (EC2)

its speculative task. As a result, reduce task slots were con-
sumed ineffectively on the reduce nodes just waiting for the
completion of MapTask8, thus invite reduce slot hoarding
problem. Reduce slot hoarding retards the start of subse-
quent reduce tasks and provokes useless speculative reduce
task executions, thus leads to job performance deterioration.
Variation in reduce task starting time was caused by reduce
slot starvation, and ReduceTask16_1, 17_1, 18_1, and 19_1
in Fig. 12 (b) were useless speculative reduce tasks. This
phenomenon was observed in three of other jobs. The same
phenomenon was also observed in Lab cluster.

Since EC2 cluster have many HDDs (five per node) and
its node performance was uniform as compared with our Lab
cluster (see Table 2), the large variation in task execution

KAWARASAKI and WATANABE: SYSTEM STATUS AWARE HADOOP SCHEDULING METHODS FOR JOB PERFORMANCE IMPROVEMENT

time was not observed. Still, more than 80% of relatively
slow tasks were caused by disk IO, and the rest was caused
by network congestion.

4. Performance Deterioration Mechanism
4.1 Deterioration Mechanism of Hadoop Performance

By summing up our analysis of experiment results, Hadoop
performance deterioration is thought to occur by the follow-
ing mechanism as shown in Fig. 13.

i. Map task is delayed caused by disk I/O congestion or
map output data transfer is delayed caused by network
congestion.

ii. Reduce task hoards a reduce slot without doing any-
thing.

iii. Reduce slot starvation occurs and incurs a large varia-
tion in the start time of reduce tasks..

iv. Useless speculative reduce tasks are launched and con-
sume I/O resources and reduce task slots of the cluster.

v. Useless speculative reduce tasks delay other tasks and
worsen reduce slot shortage.

Figure 13 shows that the mechanism of job performance de-
terioration is the same regardless that it was caused by disk
I/O congestion or network I/O congestion.

4.2 Impact of Imbalanced Node Performance

Regarding the nodes in our Lab cluster, there is a large vari-
ation in disk and CPU performance. In this cluster, map out-
put data transfer takes longer time compared to EC2 cluster.
This comes from the imbalanced node performance.

The high performance TaskTracker can complete rel-
atively many map tasks. Since map output data exist only
in the node which completed map task, data read-out re-
quest from many reduce tasks concentrates to this node. As
a result, network link and disk I/O become congested thus
delays relevant reduce tasks. Speculative task execution fur-
ther promotes this congestion and prolongs the reduce tasks.
To cope with this problem, map task scheduling needs to be
performed considering the amount of map output data which
has not been sent to reduce tasks yet. However, it will be

Job Performance
Deterioration

Slow map tasks
(Caused by I/0)

e

Reduce tasks wait for Map Output Data
(Reduce slot hoarding problem)

Start of Reduce tasks
will be delayed

Fig.13 Job performance deterioration mechanism

Slow reduce tasks
(Caused by 1/0)

Reduce Slot
starvation

Unnecessary speculative
tasks execution

1281

better to build a Hadoop cluster with nodes having uniform
performance.

4.3 Effect of Increasing Reduce Slots

In our experiment, many of the slot hoarding problems oc-
curred in reduce phase. To cope with this problem, although
using the copy compute splitting algorithm [6] is a good so-
lution, it will also be effective to increase the number of
reduce slot more than the number of cores of nodes when
reduce function has little computation amount. This sim-
ple method can suppress reduce slot starvation by prevent-
ing “copy waiting reduce tasks” occupy all available reduce
slots. In our settings, increasing reduce slot count by twice
improved average job execution time by 20%.

4.4 Adverse Effect of Speculative Execution

As we described before, the conditions for launching specu-
lative tasks that are used in current Hadoop implementation
needs some improvement. The problems are as follow:

e When the reduce task in copy phase is delaying ow-
ing to congestions in sender’s disk I/O or network 1/O,
speculative tasks worsen the situation and further dete-
riorates job performance.

o It misidentifies late started task as slow task.

e When the most tasks end within 1 minute, launch of
speculative task execution would be too late.

To cope with these problems, following modifications to
launching conditions would be effective.

o Take account of delaying reason. (If the delay is caused
by unavoidable I/O bottleneck, speculative task should
not be executed.)

e Prioritize and limit the number of concurrent specula-
tive task.

5. Enhancement of Hadoop Scheduler

Based on the analysis in Sect.4, we propose the enhanced
Hadoop scheduling methods that proactively react to the
congestion at disk I/O or network I/O so that the cluster per-
formance is improved.

5.1 Basic Idea

Except for priority control and fairness control in job
scheduling, current scheduler is only controlling the num-
ber of taskslots to be assigned so as not to exceed the pre-
allocated fixed value for each TaskTracker node. However,
the amount of node resources (e.g., CPU, disk I/O, network)
that a particular task consumes is different depending on job
type, task progress and data volume. As a result, current
Hadoop scheduler cannot reflect the actual loading state of
TaskTracker resources and may cause a large imbalance in
the loading state between TaskTracker nodes in the cluster.

1282

As explored in Sect. 3, congestion in a particular network
link or disk I/O may retard the progress of relevant tasks
and lowers the throughput of the entire cluster.

Based on these observations, for the purpose of short-
ening the Job execution time of Hadoop, we propose three
kinds of Task scheduling methods that mitigate the resource
usage heterogeneity within a cluster, namely “Receive Rate
Scheduling”, “Disk Rate Scheduling” and “Potential Recep-
tion Scheduling”. The idea behind these three methods is the
same. While maintaining current task-slot based schedul-
ing, these methods take into account the actual usage of data
1/O (network I/O and disk I/O) in the TaskTracker as a con-
trol index for task scheduling. If the data I/O usage rate
of a given TaskTracker exceeds the pre-determined thresh-
old value, some sorts of task are not assigned to the Task-
Tracker. Data I/O usage rate is transmitted to JobTracker by
using HeartBeat mechanism.

5.2 Implementation of Proposed Methods

We made small modifications to the TaskTracker to add the
capability to retrieve data I/O usage rate. We also modi-
fied HeartBeat to add the notification capability of the ob-
tained usage rate information. We implemented our pro-
posed methods by modifying the Fair Scheduler mounted
on Hadoop version 1.1.2. We also made it possible to en-
able and disable each scheduling method or to set threshold
value by describing in Hadoop configuration file.

5.3 Receive Rate Scheduling

This scheduling method monitors and controls the usage of
reception bandwidth, so as not to transfer additional data
through a congested link. At the time of receiving HeartBeat
from a TaskTracker, the JobTracker calculates the reception
bandwidth utilization (RBU) at the network interface and, if
it exceeds the threshold value, it does not assign additional
non-data-local map task nor reduce task to the TaskTracker.
It is because these tasks oblige the TaskTracker to receive
additional data immediately after task assignment. Data lo-
cal map task is excluded from the control because it does
not generate data transfer through the congested link. RBU
is calculated as follows:

RBU = 8 + Rd/(T % B) (1)

where Rd is the total amount of received data (byte) from
the last HeartBeat transmission, T is the HeartBeat interval,
and B is the network interface rate (bps).

5.4 Potential Reception Scheduling

In this scheduling method, JobTracker monitors the total
volume of map output data (copy traffic) that each Task-
Tracker is receiving and, if it exceeds the threshold value,
JobTracker does not assign additional reduce task to the
TaskTracker. This is a proactive control so as not to send
too much copy traffic to a specific TaskTracker. JobTracker

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.7 JULY 2015

does not assign non-data-local map task to the TaskTracker
neither, but data local map task can be assigned, because the
former requires the TaskTracker to receive additional data
but the latter not.

TaskTracker sends the total volume of copy traffic
that it is receiving as “Potential Reception Amount” to
JobTracker using HeartBeat.

5.5 Disk Rate Scheduling

While above two scheduling methods relates to network 1/0,
this scheduling method aims at the dispersion of disk I/O
workload. At the time of sending HeartBeat to JobTracker,
TaskTracker calculates disk I/O usage rate based on disk I/O
waiting time and sends it to JobTracker. If multiple disks are
installed in a TaskTracker node, the average usage rate of all
disks is used. When the average disk I/O usage rate exceeds
the threshold value, JobTracker does not assign additional
map task to the TaskTracker.

It should be noted that only map task is controlled by
this scheduling method because map task receives map input
data split in HDD that generates disk I/O workload immedi-
ately after task assignment. On the other hand, in the reduce
task, the received map output data is stored in memory for
merging and then recorded in HDD. Accordingly, there are
more than several seconds of delay from the assignment of
reduce task until the occurrence of disk I/O workload. As
our method uses disk I/O usage rate at the time of HeartBeat
transmission, disk I/O rate that this scheduler uses would be
different from that when disk I/O workload actually occurs.
Therefore, in order to avoid miss-regulation, reduce task is
removed from the scope of this control.

6. Experiment of Enhanced Schedulers

To validate the effectiveness of proposed scheduling meth-
ods, we performed experiments on Lab cluster and EC2
cluster under the same conditions as in Sect. 3. The thresh-
old values for the proposed scheduling methods are shown
in Table 6. These values were obtained empirically to max-
imize the effect of each proposed method. They need to be
adjusted depending on the size, topology and performance
of the cluster as well as the job characteristics.

We compared in total five kinds of scheduling method;
default Fair Scheduling, Receive Rate Scheduling, Potential
Reception Scheduling, Disk Rate Scheduling and Integrated
Scheduling that applies three proposed methods at the same
time.

Table 6 Threshold Values in Proposed Scheduling Methods.

Receive Rate Potential Reception| Dsik Rate
Scheduling Scheduling

100Mbytes 30%
150Mbytes 40%

Scheduling

Lab cluster
EC2 cluster

160Mbps
300Mbps

KAWARASAKI and WATANABE: SYSTEM STATUS AWARE HADOOP SCHEDULING METHODS FOR JOB PERFORMANCE IMPROVEMENT

6.1 Job Excursion Time

Tables 7 and 8 show the job execution time of above five
scheduling schemes in Lab cluster and EC2 cluster, respec-
tively. For each scheduler, the total number of submitted
jobs is 35 for Lab cluster and 98 for EC2 cluster. We can
see that Disk Rate Scheduling shortened the average job ex-
ecution time by 5% in Lab cluster and by 6% in EC2 cluster,
compared to the default Fair Scheduling.

Both of two scheduling methods that focus on network
I/O, namely Receive Rate Scheduling and Potential Recep-
tion Scheduling, were effective in EC2 cluster rather than
in Lab cluster. However, the reduction of the job execution
time was only 2.6% in Lab cluster and less than 1% in EC2
cluster, compared to the default Fair Scheduling. The effect
of Potential Reception Scheduling was limited and within
the range of statistical variations. Furthermore, when ap-
plying the three proposed methods together, the job perfor-
mance was slightly decreased as compared with the case of
applying Disk Rate Scheduling only in both clusters.

6.2 Task Processing Time

Table 9 shows the average processing time of map task and
reduce task in EC2 cluster for each scheduling method.

The Receive Rate Scheduling shortened map task pro-
cessing time by 3.5% and reduce task processing time by 5%
compared with default Fair Scheduling. The reason why the
control effect of map task was poor was that non-data-local
map task was only about 20%.

1283

The Potential Reception Scheduling brought almost no
performance improvement to map task, because it focuses
on reduce task improvement. However, contrary to our ex-
pectation, control effect of this scheduling method to the re-
duce task was low.

The Disk Rate Scheduling improved the average pro-
cessing time of map task significantly by 11% and that of
reduce task by 6.5% in average. This is because, by pre-
venting disk I/O congestion, it prevented the delay in reduce
task processing that is caused by disk I/O congestion.

The Integrated Scheduling resulted in the superposition
of the control effects provided by each scheduling scheme.
It shortened the average task processing time by 9.4% in
map task and 7.6% in reduce task.

As a whole, Disk Rate Scheduling was effective in
shortening processing time of both map task and reduce
task, thus shortened overall job execution time. Receive
Rate Scheduling was effective in shortening reduce task pro-
cessing time, thus shortened job execution time. In contrast,
the effect of Potential Reception Scheduling was quite poor.

6.3 Distribution of Map/Reduce Task Processing Time

Figures 14 and 15 show the cumulative distribution of the
map /reduce task processing time of the job that was the last
job submitted to EC2 cluster, under the default Fair Schedul-
ing and the combined Receive Rate and Disk Rate Schedul-
ing, respectively. The job submitted at the end is normally
most susceptible to the delay caused by the jobs submitted
earlier. As these figures show, the proposed method shortens
the job execution time by improving the worst value of map
and reduce task processing time, thus achieves the reduction
of task processing time by average 20% in map tasks and by

Table 7 Job execution time in Lab cluster
Default Receive Potent'ial Disk Rate ALL
Rate Reception L00.00%
Avg. 4655 | 461s 464s 4435 | 4565 50.00%
Job time 50.00°
Max 563 584 574 582 575 . DG(’
Min 243 295 318 250 344 o EC(’
A - -4s -1s -22s -9s ’
50.00%
40.00%
30.00%
Table 8 Job execution time in EC2 cluster 20.00%
10.00%
Receive Potential Disk Receive Rate 0.00%
Default Rate Reception Rate + Disk Rate ALL PP R PR E PRSP PS
Avg. e
Job time 538s 534s 524s 507s 506s 511s AMap Processing Time (sec)
Max 616 596 595 600 575 589 Default Disk + Receive
Min 440 430 457 369 380 385
A - -14s -4s -31s -32s -27s Fig.14 CDF of map task processing time on EC2 Cluster
Table9 Task processing time in EC2 cluster.
Receive Rate Potential Reception Disk Rate Reg:ls\ll(eRRaat:e *
Map Reduce Map Reduce Map Reduce Map Reduce
Avg.Tasktime | 33.27 318.49 32.06 301.99 32.55 316.26 29.54 | 297.84 30.70 299.61 30.13 294.26
A - - -1.21 -16.50 -0.72 -2.23 -3.73 -20.65 -2.57 -18.88 -3.14 -24.22

1284

100.00%
20.00%
20.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

-

NN NN

3.0 © LD S
DD H D 5 &
F N S S

S.EH D
P&

)

%

-
$
&

~

Reduce Proceasing Time (zec)

e Default Disk + Receive

Fig.15 CDF of reduce task processing time on EC2 Cluster

average 10% in reduce tasks.
7. Discussion and Future Issues
7.1 Characteristics of the Combined Scheduling

As can be seen from Tables 8 and 9, the combined sched-
uler of three scheduling methods reveals longer job execu-
tion time than the Disk Rate Scheduler only. However, look-
ing at Table 9, the average reduce task processing time itself
is made shorter. This can be interpreted that, by operating
two types of scheduling namely Receive Rate Scheduling
and Potential Reception Scheduling, reduce task assignment
was over-regulated.

Therefore, we implemented Receive Rate Scheduling
and Disk Rate Scheduling under the same conditions. As a
result, the average job execution time was shortened by 32
seconds. When implementing both Receive Rate and Po-
tential Reception Scheduling, it might be possible to pre-
vent excessive control by relaxing threshold values of each
scheduling method.

7.2 Poor Performance of Potential Reception Scheduling

As described in Sect. 6.2, the effect of Potential Reception
Scheduling was very poor. This scheduling method aims to
achieve proactive control to mitigate network I/O conges-
tion in TaskTracker caused by map output data reception.
But the network I/O load of TaskTracker is not only due to
copy traffic of reduce task. Percentage of input traffic to the
map task and replication traffic of HDFS is often critical.
We consider these to be the cause of poor performance of
Potential Reception Scheduling.

However, we still think that proactive control like this
scheduling method would be effective and we are paving the
way to improve it.

7.3 Influence of Network I/O Bottleneck

The effect of the proposed scheduling methods that focused
on network I/O was limited. Many studies point out that

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.7 JULY 2015

data transfer influences significantly to Hadoop job process-
ing performance. In spite of this, the number of and the
duration of network congestion that has been observed in
our experiments were very small. One reason for this is that
network congestion was hard to occur in our experiment en-
vironment. In Lab cluster, as disk I/O bandwidth of the
TaskTracker was very small, disk I/O congestion occurred
before the network congestion occurs. In EC2 cluster, as
many nodes having a bandwidth of more than 1Gbps are
connected in star topology, rack-to-rack links that tend to be
a bottleneck do not exist compared to the Hadoop typical
cluster made up of a plural racks. The scheduling method
focused on network I/O would be more effective in actual
Hadoop cluster. Once severe network I/O congestion oc-
curs, the proposed scheduling methods would evade the re-
duce slot hoarding problem and reduce slot starvation, thus
prevent performance deterioration (see Fig. 13).

8. Conclusion

This paper discussed the impact of data transfer in Hadoop
task scheduling and analyzed the mechanism of perfor-
mance deterioration caused by disk I/O congestion or by
network I/O congestion. It further showed that speculative
task executions bring adverse effects in some cases. Based
on these observations, this paper proposed three kinds of
system status aware Hadoop Task scheduling methods, two
methods focusing on network bandwidth usage rate and one
method focusing on disk I/O usage rate. We validated their
effectiveness in our experiment clusters using sort bench-
mark. Further improvement of Hadoop job performance
would be expected by reflecting real time status of other re-
sources than disk I/O and/or network I/O in the system to
task scheduling like our proposals.

Today, Solid State Disks (SSDs) are common espe-
cially for data processing purposes like MapReduce. The
use of SSDs in the experimental cluster is a subject for fur-
ther study. This may mitigate disk I/O congestion. The use
of resource-based scheduling like YARN as a Hadoop plat-
form is also a subject for further study.

References

[1] J.Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” In OSDI, vol.51, no.1, pp.107-113, San Fran-
cisco, USA, Jan. 2008.

[2] The Apache Software Foundation, “Apache Hadoop,” http://hadoop.
apache.org

[3] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The Nature of Datacenter Traffic: Measurements & Analysis,”
Proc. ACM SIGCOMM conf. on Internet measurement conference,
pp-202-208, Chicago, USA, Nov. 2009.

[4] M. Chowdhury, M. Zaharia, J. Ma, M.I. Jordan, and I. Stoika, “Man-
aging data transfers in computer clusters with orchestra,” Proc. ACM
SIGCOMM conf., vol.41, no.4, pp.98—109, Toronto, Canada, Aug.
2011.

[S] M. Zaharia, D. Borthakur, J.S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achiev-
ing locality and fairness in cluster scheduling,” EuroSys conf.,
pp-265-278, Paris, France, April 2010.

http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1644893.1644918
http://dx.doi.org/10.1145/2043164.2018448
http://dx.doi.org/10.1145/1755913.1755940

KAWARASAKI and WATANABE: SYSTEM STATUS AWARE HADOOP SCHEDULING METHODS FOR JOB PERFORMANCE IMPROVEMENT

(6]

(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

JAML

M. Zaharia, D. Borthakur, J.S. Sarma, K. Elmeleegy, S. Shenker,
and 1. Stoica, “Job Scheduling for Multi-User MapReduce Clus-
ters,” Technical Report of EECS Department, University of Cali-
fornia, Berkeley, 2009.

A. Verma, B. Cho, N. Zea, I. Gupta, and R.H. Campbell, “Break-
ing the MapReduce Stage Barrier,” Cluster computing, vol.16, no.1,
pp.191-206, 2013.

J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares,
and X. Qin, “Improving MapReduce performance through data
placement in heterogeneous Hadoop clusters,” IEEE International
Symposium on Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), pp.1-9, 2010.

A. Konwinski, “Improving MapReduce Performance in Heteroge-
neous Environments,” Technical Report of EECS Department, Uni-
versity of California, Berkeley, no.UCB/EECS-2009-183, Dec. 2009
Q. Chen, C. Liu, and Z. Xiao, “Improving MapReduce Performance
Using Smart Speculative Execution Strategy,” IEEE Trans. Comput.,
vol.63, no.4, pp.954-967, 2014.

J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder,
J. Torres, and E. Ayguadé, “Resource-aware Adaptive Scheduling
for MapReduce Clusters,” Middleware 2011, vol.7049, pp.187-207,
Springer, 2011.

V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
0. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
Hadoop YARN: Yet Another Resource Negotiator,” Proc. 4th annual
Symposium on Cloud Computing - SOCC *13, pp.1-16, 2013.
Amazon Web Services, Inc., “Amazon Web Services, Cloud Com-
puting: Compute, Storage, Datababase,” http://aws.amazon.com

H. Watanabe and M. Kawarasaki, “Impact of Data Transfer to
Hadoop Job Performance - Architectural Analysis and Experiment -,
ACMSE2014, March 2014.

T. White, Hadoop: The Definitive Guide, 3rd Edition, O’Reilly Me-
dia/Yahoo Press, California, 2012.

Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The Case for
Evaluating MapReduce Performance Using Workload Suites,” Proc.
MASCOTS, pp.390-399, Singapore, July 2011.

O’Malley, Owen, “Terabyte sort on apache hadoop,” Yahoo,
http://sortbenchmark.org/Yahoo-Hadoop.pdf, May 2008.

Masatoshi Kawarasaki received the B.E.,
M.E. and Ph.D degrees in Electrical Engineering
from Kyoto University in 1975, 1977 and 1991,
respectively. From 1977 to 2004, he was with
NTT and was engaged in the research of net-
working architecture and network control. He
moved to University of Tsukuba as a professor
in 2004. His research interests locate in ubiqui-
tous networking, including virtual networking,
mobile health system and distributed processing
platform. He is a member of IEEE, IEICE and

1285

Hyuma Watanabe received the B.S. and
M.S. degrees in Informatics from University of
Tsukuba in 2012 and 2014, respectively. He en-
gaged in the development of mobile health sys-
tem and the study of Hadoop performance im-
provement. He is now with Microsoft Develop-
ment, Ltd.

http://dx.doi.org/10.1007/s10586-011-0182-7
http://dx.doi.org/10.1109/ipdpsw.2010.5470880
http://dx.doi.org/10.1109/tc.2013.15
http://dx.doi.org/10.1007/978-3-642-25821-3_10
http://dx.doi.org/10.1145/2523616.2523633
http://dx.doi.org/10.1109/mascots.2011.12

