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Abstract 

Eigenvector based spatial filtering is one of the well-used approaches to model spatial 

autocorrelation among the observations or errors in a regression model. In this approach, subset of 

eigenvectors extracted from a modified spatial weight matrix is added to the model as explanatory 

variables. The subset is typically specified via the forward stepwise model selection procedure, but it 

is disappointingly slow when the number of observations n takes a large number. Hence as a 

complement or alternative, the present paper proposes the use of the least absolute shrinkage and 

selection operator (LASSO) to select the eigenvectors. The LASSO model selection procedure is 

applied to the well-known Boston housing dataset and simulation dataset, and its performance is 

compared with the stepwise procedure. The obtained results suggest that the LASSO procedure is 

fairly fast compared to the stepwise procedure, and can select eigenvectors effectively even if dataset 

is relatively large (n = 104), to which the forward stepwise procedure is not easy to apply. 
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Introduction 
Spatial autocorrelation is one of the important aspects of spatial data, and analyzing this 

phenomenon has been remarked by researchers in many fields, including, geography (Haining 1990, 

2003), real estate economics (Pace et al. 1998; Dubin et al. 1999), urban analysis (Páez and Scott 

2005), ecology (Dormann et al. 2007), population genetics (Diniz-Filho and Bini 2012), among 

others. From the methodological point of view, both spatial statistics (e.g., Cressie 1993; Banerjee et 

al. 2004; Rue and Held 2005; Schabenberger and Gotway 2005; Gelfand et al. 2010; Chun and 

Griffith 2013) and spatial econometrics (Anselin 1988, 2010; LeSage and Pace 2009; Arbia 2011) 

offer many useful toolboxes. Although Anselin’s (1986) indication that “each approach tends to be 

rather self-contained, with little cross-reference shown in published articles” may be still true, in 

recent years some intensive works have been done to clarify the similarities and differences between 

spatial statistics and spatial econometrics (Griffith and Paelinck 2007, 2010). 

Besides these approaches, spatial filtering approaches have been developed by quantitative 

geographers as the “third way” to model spatial autocorrelation (e.g., Getis 1990; Getis and Griffith 

2002; Griffith 2000, 2003, 2012; Tiefelsdorf and Griffith 2007). These approaches are in particular 

used in the field of ecology (Griffith and Peres-Neto 2006), whereas also have many social science 

applications1. Among these approaches, eigenvector based spatial filtering (ESF) developed by 

Professor Daniel Griffith and co-workers are fairly well-used to model spatial autocorrelation among 

observations or errors in a regression model. In this approach, subset of eigenvectors extracted from 

a modified spatial weight matrix is added to the model as explanatory variables. The subset is 

typically specified by the forward stepwise model selection procedure, but it is disappointingly slow 

when the number of observations n takes a large number.  

Hence as a complement or alternative, the present paper proposes the use of the least 

absolute shrinkage and selection operator (LASSO) (L1-penalized regression) proposed by 

Tibshirani (1996) to select the eigenvectors. Different from L2-penalized model such as ridge 

regression2 where parameters are shrunken toward zero, LASSO automatically sets many of them 

“exactly” zeros; hence it can be used for variable selection. Although original LASSO algorithm is 

computationally very demanding to be used in high-dimensional data (Segal 2006), now several 

remarkably fast algorithms are proposed such as Path algorithm (Park and Hastie 2007), which is the 

direct generalization of least-angle regression (LARS) algorithm, (Efron et al. 2004) and gradient 

ascent algorithm with Newton-Raphson step (Goeman 2010)3. The comparison of computation time 

                                                        
1 Recent social science applications include Fischer et al. (2009), Chun and Griffith (2011), Patuelli 
et al. (2011), Seya and Tsutsumi (2011), Yamagata et al. (2012), and Cuaresma and Feldkircher 
(2013). 
2 Therefore, it is typically used as the countermeasure against the multicollinearity problem 
(Tsutsumi et al. 1997). 
3 Bayesian estimation methods are also proposed (Park and Cassella 2008; Chen et al. 2011), but 
they requires the MCMC simulation, which is computationally intensive. 



of these two algorithms are conducted elsewhere (Keerthi and Shevade 2007; Goeman 2010), and it 

is clarified that it is unlikely that any algorithm is uniformly faster than others, and the computation 

speed of those two algorithms are comparable. 

In this study, the LASSO model selection procedure is applied to the well-known Boston 

housing dataset and simulation dataset, and its performance is compared to the conventional forward 

stepwise procedure proposed by Tiefelsdorf and Griffith (2007). 

 

Introduction of the Eigenvector based spatial filtering approach 
 This section first introduces a basic multiple regression model and conventional spatial 

econometric models, followed by the ESF approach. 

 

Basic multiple regression model 

 Let the following standard multiple linear regression model represent the basic model 

(BM): 

 εβεβ +=++= Xx1y 10β , (1) 

where y is an 1×n  vector of the observations, 1 is an 1×n  vector of ones, ];[ x1X =  is an 

kn ×  matrix of explanatory variables (including intercept at the first column), ];[ 10 ′′= ββ β  is a 

1×k  regression coefficient vector (where A′ denotes transpose of a matrix or a vector A), ε  is 

an 1×n  vector of zero-mean independently and identically distributed (i.i.d.) errors with variance 

σε2. All of these parameters can be estimated by the ordinary least squares (OLS) method.  

 

Spatial econometric models 

In order to control the spatial autocorrelation among observations or errors, the spatial lag 

model (SLM) and spatial error model (SEM) are typically used in the field of spatial econometrics4. 

The former is occasionally called the spatial autoregressive (response) model (e.g., LeSage and Pace, 

2009) and the latter is known as the simultaneous autoregressive model in the spatial statistics 

literature (e.g., Cressie 1993). 

The SLM is expressed as  

 εβ ++= XWyy ρ , ),(~ 2I0 σNε , (2) 

where ρ is a spatial parameter and W is an nn ×  spatial weight matrix. Several methods have been 

proposed to obtain the elements of W (see Anselin 1988; Getis 2009; Stakhovych and Bijmolt 2009; 

Bhattacharjee and Jensen-Butler 2013; Seya et al. 2013). W is usually normalized to avoid 

                                                        
4 From the view point of identification, some econometricians recommend the use of spatial cross 
regressive model, in which spatial lag of the explanatory variables WX is incorporated in the model 
(Gibbons and Overman 2012). 



singularity of the term (I–ρW). Although there are various methods for normalization (e.g., Ord 

1975; Kelejian and Prucha 2010), the one most widely used is row-normalization, in which the rows 

sum to unity. ε is typically assumed to be normally distributed to estimate the parameters of the 

model by the maximum likelihood method. 

The SEM is expressed as 

 uXy += β , ε+= Wuu λ , ),(~ 2I0 σNε , (3) 

where λ is a spatial parameter. The consistent estimators of the parameters of SLM and SEM are not 

obtained by the OLS method (Anselin 1988); therefore the parameters are usually estimated by the 

maximum likelihood method (Ord 1975; Anselin 1988; Lee 2004), the generalized method of 

moments (Kelejian and Prucha 1998; Lee 2007), or the Bayesian MCMC method (LeSage 1997; 

Kakamu and Wago 2008), among others. For more details, see LeSage and Pace (2009). 

 

Eigenvector based spatial filtering (ESF) approach 

 As its own name suggests, the ESF approach tries to filter out the global and local spatial 

autocorrelations from the observations or errors, and subsequently conducts parameter estimation 

with the standard OLS method. Thus, the ESF does not require the special parameter estimation 

method, which is one of the remarkable merits of this approach. 

 The ESF utilizes eigenvectors },...,{ 1 nee  that are extracted from a modified spatial weight 

matrix. Assume that there are two different types of projection matrices, 1111IN 1 ′′−= −1][ )(  and 

XXXXIN X ′′−= −1][ )( . Tiefelsdorf and Griffith (2007) indicate that the set of eigenvectors 

SEMn},...,{ 1 ee  that is extracted from 

 ])(
2
1[},...,{ ][][

1
XX NWWNee ′+= evecSEMn , (4) 

is orthogonal to the explanatory variables X, where, evec[∙] denotes the eigenvectors of [∙]. In 
contrast, the set of eigenvectors SLMn},...,{ 1 ee  that is extracted from  

 ])(
2
1[},...,{ ][][

1
11 NWWNee ′+= evecSLMn , (5) 

is potentially correlated with the explanatory variables X. Let ESEM and ESLM be matrices whose 
vectors are subsets of SEMn},...,{ 1 ee  and SLMn},...,{ 1 ee , respectively.  

 Then it is important to note that the OLS estimate of β in εβ += Xy coincident with the 

OLS estimate of β in εγβ ++= SEMEXy , because X and SEME are mutually orthogonal 5 . 

                                                        
5 Recently similar ideas are discussed by statisticians in “spatial confounding” literatures. For more 
details, see Hodges and Reich (2010), and Hughes and Haran (2013). 



However, such property does not hold for εγβ ++= SLMEXy , in which ESLM correlate with X. 

Hence the use of SEME instead of ESLM implies that there is no omitted variable, which correlate 

with the X. This assumption corresponds to the SEM specification (LeSage and Pace 2009). Besides, 

Brasington and Hite (2005) demonstrate that using the SLM may contribute to the mitigation of 
omitted variable (or spatial-confounding) bias in the estimate of β , because omitted variables are 

typically spatially autocorrelated, and thus it correlate with spatial lag variable Wy. However, as 

discussed in Paciorek (2010) intensively, whether the incorporation of spatial effects will improve 
the spatial-confounding bias/precision of β or not depends on the scale of the spatial 

autocorrelation in the omitted variables. In this regard, the introduction of ESLM may be useful 

because it captures various distinct scales of spatial variations. In fact, the eigenvector which 

correspond to large eigenvalue represents large positive spatial autocorrelation, whereas the one with 

small positive eigenvalue in absolute value correspond to small scale spatial autocorrelation (Griffith, 

2003; 2012). Hence the incorporation of γSLME may correct the omitted variable bias of OLS 
estimates of β . 

 Now we are required to analyze the manner in which the subset of the eigenvectors must 

be selected. Tiefelsdorf and Griffith (2007) propose two practical forward step-wise procedures for 

identifying the subset of eigenvectors; maximizing the explained variation or minimizing the 

residual spatial autocorrelation in terms of standardized Moran’s I, which termed Moran’s Z. In these 

procedures, the next eigenvector el is identified from the search set Ec (initially, this set contains all 

the eigenvectors) that would continue to increase the proportion of explained variation or reduce the 

standardized Moran’s I, until some criterion is met. 

 

Application of the LASSO to the eigenvector selection problem 
 This section first briefly explains the LASSO, subsequently applies it to the eigenvector 

selection problem. 

 

LASSO 
The OLS estimators of β  is given by minimizing residual some of squares as: 

 ||}min{||argˆ ββ Xy −= , (6) 

where ||∙|| is the Euclidean norm, and argmin(∙) denotes the argument of the minimum, that is to say, 

the set of points of the given argument for which the given function attains its minimum value. 

Tibshirani (1996) proposes the algorithm termed the LASSO, which minimizing residual some of 

squares subject to a constraint of the sum of absolute values of the regression coefficient (usually 
except intercept). Hence the LASSO estimators of β  is given by: 

 }||||||min{||argˆ 1
1βββ θ+−= Xy , (7) 



where || 1β ||1 is the L1 norm given by: 

 ∑
−

=

1

1
||

k

q
qβ , (8) 

where | ∙ | denotes the absolute value of (∙). Because the value of each qβ  depends on the scale, 

explanatory variables are usually standardized to have mean 0 and unit length, and the dependent 

variable is also demeaned to have mean 0. If regularization term is given by L2 norm, then the 

estimator is termed the Ridge estimator6. Although an L2 penalty shrinks parameters toward zero, L1 

penalty shrinks many of them “exactly” zeros (Tibshirani 1996). Hence it can be used for variable 

selection. As discussed below, the proportion of regression coefficients set to zero depends on the 

LASSO regularization parameterθ . 

 The LASSO estimator can also be regarded as the penalized likelihood estimator. Let  is 
the likelihood of the model. Then the LASSO estimator of the regression coefficients vector is 

defined in terms of the penalized likelihood optimization 

 maxargˆ =β { pen( β ) =  ( β ) }|||| 1
1βθ− . (9) 

Goeman (2010) proposes efficient Gradient ascent algorithm with Newton-Raphson step to compute 

the LASSO estimates in eq. (9) with givenθ . This study utilizes this algorithm. 

 

Application of the LASSO to the eigenvector selection problem 

Let the ESF given by: 

 εγβ ++= ~~
pEXy , (10) 

where pnp },...,{~
1 eeE =  (p = SEM or SLM) are nn ×  matrix 7  with corresponding 1×n

coefficients vector, γ~ . The marked merit of the LASSO is that it is feasible even if the number of 

coefficients exceed the number of observations. The LASSO estimators of β and γ~ is given by: 

 }||~||||~~min{||arg]~̂;ˆ[ 1γγβγβ θ+−−=′′′ pEXy . (11) 

In terms of penalized likelihood optimization, the LASSO estimators of coefficients are given by 

 maxarg]~̂;ˆ[ =′′′ γβ { pen( β ; γ~ ) = ( β ; γ~ ) }||~|| 1γθ− . (12) 

                                                        
6 If we introduce both of the L1 norm and L2 norm, then the model is termed the elastic net (Zou 
and Hastie 2005). Another famous method is Dantzig selector (Candes and Tao 2007), which is a 
slightly modified version of the LASSO. 
7 Strictly speaking, some vectors which associated with the eigenvalues around zero (< 1e-10 in our 
case) are excluded in advance.  



Or equally,  

 maxarg]~̂;ˆ[ =′′′ γβ { pen( β ; γ~ ) = ( β ; γ~ ) }|~|
1

∑
=

−
n

q
qγθ . (12)’ 

The optimal value of regularization parameter θ , say θ̂ is selected using prediction 
accuracy as the criterion. More specifically, we use the K fold cross-validation combined with Brent 

algorithm (Brent, 1973) to select θ̂ . The algorithm proceeds as follows:  
[1] Set the minimum and maximum values for θ̂ . The minimum value minθ  usually 

takes zero, and the maximum value maxθ  usually takes the smallest value that shrinks all regression 

coefficients γ~ to zero.  

[2] Set the initial value of θ̂  as 0
ˆ θθ = , where 0θ  satisfies max0min θθθ ≤≤ .  

[3] Randomly divide the observations into K roughly equal groups (in this study, we use 20 

fold validation), then for each k = 1, …, K with given θ̂ , obtain the parameter estimates for 

regression coefficients, )ˆ(ˆ θk−β and )ˆ(~̂ θk−γ  by maximizing the penalized likelihood function, 

where k−â  is a estimates for a obtained using the observations not belonging to kth group.  

[4] Evaluate cross-validation score as: ∑ ∑= ∈ −− ′−′−K
k kgroupi kikiiy1

2})ˆ(~̂)ˆ(ˆ{ θθ γβ ex , where 

xi and ei are vectors of explanatory variables and eigenvectors, respectively associated with the 

observation i. 

[5] Update θ̂  by using the Brent algorithm (Goeman et al., 2012), and set newθθ =ˆ , 
where newθ  satisfies maxmin θθθ ≤≤ new .  

 

[6] Repeat [3] ~ [5] until convergence. 

 

Based on the optimum value of optθ̂ , we have the coefficients estimates on the explanatory 

variables and eigenvectors as )ˆ(ˆ
optθβ , and )ˆ(~̂

optθγ , respectively. Because it is problematic for the 

frequentist LASSO to produce valid standard errors (Kyung et al. 2010), we construct the ESEM or 

ESLM from eigenvectors associated with non-zero values of )ˆ(~̂
optθγ , and it is introduced to the BM as 

in usual ESFs. Thus, the LASSO in this study is used just for the eigenvectors selection. With regard 

to the direct use of the LASSO estimates as the final results, Bayesian framework may be one of the 

useful options because it is fairly straightforward to derive standard errors of coefficients estimates 

(Kyung et al. 2010). 

Generally, the applicability of one method critically depends on the availability of the 



useful software. Geographical analyses itself also have evolved with the development of excellent 

software (Anselin 2012). Fortunately, there already exist some useful packages to calculate the 

parameters in eqs. (11) or (12). For example, if we use the penalized package of R, optL1() function 

can be used to select optimum value of θ  via above explained cross validation combined with 

Brent algorithm, and the maximization of penalized likelihood can be performed using penalized() 

function. The remarkable merit of penalized() function is that it has the option to allow some 

unpenalized parameters using the algorithm proposed by Goeman (2010)8. Hence we can regulate 

the coefficients of the eigenvectors only as discussed above. 

 In the geographical analysis related literatures, few studies have employed the LASSO. 

Wheeler (2009) applies the LASSO to geographically weighed regression (GWR) model to consider 

the problem of local multicollinearity. Huang et al. (2010) extends the LASSO to the geostatistical 

model, and employs the proposed model to the GIS model selection. Demšar et al. (2013) is a review 

article of principal component analysis (PCA) of spatial data. In this paper, they point out that sparse 

PCA has not often been used but seems proposing for problems where there are a large number of 

variables and there is a need to determine the key factors. 

 

Empirical illustration 
 This section shows two illustration of the LASSO algorithm for the eigenvector selection 

problem using the Boston housing dataset and simulation dataset. 

 

Example with Boston housing dataset 

 Here, we use the well-known Boston housing dataset. This dataset was originally provided 

by Harrison and Rubinfield (1978), and Gilley and Pace (1996) augment the dataset with 

longitude-latitude of the observations. Pace and Gilley (1997) suggest that these data exhibit various 

problems common to many hedonic pricing or mass appraisal models. For example, not all variables 

have the proper sign, that is, the AGE variable (see Table 1) is insignificant and positive, and a high 

positive spatial autocorrelation exists among the observations. Pace and Gilley (1997) construct two 

hedonic pricing models based on BM and SEM with this dataset and found that SEM would 

successfully yield the significantly negative estimate of the AGE variable. This curious result may be 

caused by the impacts of spatially autocorrelated omitted variables on the included variables are 

successfully incorporated into the model by using the SEM. Kostov (2010) indicate that this dataset 

is one of the most popular datasets, and it has stimulated a whole industry that has used this and 

other datasets to examine and compare alternative statistical methods. We adopt the same variables 

as Kostov (2010), as indicated in Table 1. Following Kostov (2010), the natural logarithms of MEDV 

(see Table 1), DIS, RAD, and LSTAT are taken, while the squares of NOX and RM are taken to capture 

                                                        
8 glmnet package in R also have similar option. 



some of the underlying nonlinearities, resulting in ln(MEDV), ln(DIS), ln(RAD), ln(LSTAT), NOX2, 

and RM2. For the descriptive statistics of the data, see Kostov (2010). The numbers of observations 

and the explanatory variables (including the intercept) are 506 and 14, respectively.  

 

 

 Using the Boston housing dataset, we compare the empirical performance of the LASSO 

(ESFLe or ESFLl, hereafter, e: SEM, and l: SLM) procedure with the forward stepwise procedure. 

Stepwise eigenvector selection based on minimizing standardized Moran’s I (ESFMe or ESFMl, 

hereafter) can be implemented using SpatialFiltering() function of the spdep package in R9. Also, 

the selection based on maximizing explanation power can be implemented using basic step() 

function in R (ESFBe or ESFBl, hereafter). In the step() function, we set the option of penalty term 

as “k = log n”, which corresponds to the BIC (Bayesian information criterion)10. Thus, for 

                                                        
9 Griffith and Peres-Neto (2006) also provide MATLAB code. 
10 AIC (Akaike information criterion) over-selected eigenvectors in our study. Generally speaking, 
when number of parameters exceed number of observations, AIC performed badly and BIC or 
corrected AIC should be used. 

Table 1. Variable description (Kostov, 2010) 

 

Variable Description 

MEDV Median values of owner-occupier housing in thousands of US dollars 

LON Tract point longitude in decimal degrees 

LAT Tract point latitude in decimal degrees 

CRIM Per capita crime 

ZN Proportion of residential land zoned for lots over 25 000 ft2 per town 

INDUS Proportion of nonretail business acres per town 

CHAS An indicator: 1 if tract borders Charles River; 0 otherwise 

NOX Nitric oxides concentration (parts per 10 million) per town 

RM Average number of rooms per dwelling 

AGE Proportion of owner-occupied units built prior to 1940 

DIS Weighted distance to five Boston employment centres 

RAD Index of accessibility to radial highways per town 

TAX Property-tax rate per US $10 000 per town 

PTRATIO Pupil – teacher ratio per town 

B 
Calculated as 1000(NBlack – 0.63)2 where NBlack is the proportion of 

Blacks 

LSTAT Percentage of lower status population 

 



implementing stepwise procedure based on maximizing explanation power, we use not the 

conventional F- or t- statistics but the information criterion because the former criteria require 

arbitral parameters such as inclusion probability. Our all calculations are implemented on the 

Windows 7 64bit system with 24GB memory, and coded using R (version 3.0.1). 

The Table 2 represents the parameter estimation results. It is noted that the estimate of the 

AGE variable of the BM is positive, but those of the ESFMl, ESFBl, and ESFLl are negative 

(although they are not statistically significant). These results may be caused by the omitted variables 

biases are improved as in the case of Pace and Gilley (1997).  

The residual spatial autocorrelation of the ESFs in terms of Moran’s Z are improved 

compared to that of the BM (BM: 14.5; ESFMe: –1.02; ESFMl: –0.800; ESFBe: 4.37; ESFBl: 1.94; 

ESFLe: 4.12; ESFBl: 2.95), but not random except for the ESFMs. However, some coefficient 

estimates of the selected eigenvectors of the ESFMs are not statistically significant at 5 % level, 

although those of the ESFBs and ESFLs are all statistically significant at least 10% level (Table 3). 

The performance of the ESFL is comparable to that of the ESFB in terms of Moran’s I and adjusted 

R2, and that computation time is much shorter (ESFMe: 34.01; ESFMl: 30.72; ESFBe: 87.94; 

ESFBl: 172.17; ESFLe: 17.89; ESFBl: 25.33). Hence, the results suggest that LASSO can be a 

useful compliment or alternative to the stepwise procedure.  

Here, we see whether the ESFs select the eigenvectors associated with large eigenvalues or 

whether these are often associated with small eigenvalues. Figure 1 represents the cumulative 

number of selected eigenvectors (Left: ESFe, Right: ESFl). Associated eigenvalues are sorted in 

descending-order, and shown as a thick solid line on right vertical axis. We can find that ESFMs 

tend to select the eigenvectors associated with large eigenvalues for reducing the residual spatial 

autocorrelation, but ESFBs or the ESFLs sometimes select the eigenvectors associated with small 

eigenvalues, which contribute to the improvement of fit to the observations.  

Figure 2 represents differences in cumulative number of selected eigenvectors by ten 

different kinds of random seed in the cross-validation procedure (Left: ESFe, Right: ESFl). 

Associated eigenvalues are also sorted in descending-order, and shown as a thick solid line on right 

vertical axis. The figure shows that the differences in the LASSO regulation parameter by the 

selection of random seed is fairly minor, and corresponding differences in the selected eigenvectors 

are small compared to the differences due to the selection of methods (ESFMs or ESFBs) (see Fig. 

1). Hence, we can say that the LASSO is reasonably insensitive to the small changes in the 

regulation parameter produced by the cross-validation procedure. 

 



Table 2. Parameter estimation results 

Model   BM   ESFMe   ESFMl 

Variable   Coef. t p   Coef. t p   Coef. t p 

(Intercept)   4.558 29.5  0.00    4.558 44.5  0.00    4.135 31.2  0.00  

CRIM   -0.01186 -9.53  0.00    -0.01186 -14.4  0.00    -0.008429 -9.27  0.00  

ZN   0.00008016 0.159 0.87    0.00008016 0.239 0.81    -0.0003881 -0.917 0.36  

INDUS   0.0002395 0.101 0.92    0.0002395 0.153 0.88    0.003344 1.73  0.08  

CHAS1   0.09140  2.75  0.01    0.09140  4.15  0.00    0.01930  0.759 0.45  

NOX   -0.6380  -5.64  0.00    -0.6380  -8.51  0.00    -0.4736 -5.32  0.00  

RM   0.006328 4.82  0.00    0.006328 7.28  0.00    0.009408 9.51  0.00  

AGE   0.00009074 0.172 0.86    0.00009074 0.260  0.79    -0.0005576 -1.31  0.19  

DIS   -0.1913 -5.73  0.00    -0.1913 -8.64  0.00    -0.1405 -4.61  0.00  

RAD   0.09571 5.00  0.00    0.09571 7.55  0.00    0.07805 5.28  0.00  

TAX   -0.0004203 -3.43  0.00    -0.0004203 -5.17  0.00    -0.0005423 -5.67  0.00  

PTRATIO   -0.03112 -6.21  0.00    -0.03112 -9.37  0.00    -0.02183 -5.60  0.00  

B   0.0003637 3.53  0.00    0.0003637 5.32  0.00    0.0004333 4.71  0.00  

LSTAT   -0.3712 -14.8  0.00    -0.3712 -22.4  0.00    -0.3373 -17.5  0.00  

Adjusted R2   0.801    0.913    0.912  

Residual variance   0.0333    0.0146    0.0146  

Moran I   0.4364    -0.1633    -0.1257  

Moran Z   14.5    -1.02    -0.800  

 

  



Table 2. Parameter estimation results (cont.) 

Model   ESFBe   ESFBl   ESFLe   ESFLl 

Variable   Coef. t p   Coef. t p   Coef. t p   Coef. t p 

(Intercept)   4.466 39.9  0.00    3.849 34.4  0.00    4.558 43.0  0.00    4.138 34.5  0.00  

CRIM   -0.01186 -13.6  0.00    -0.007867 -9.61  0.00    -0.01186 -13.9  0.00    -0.009278 -10.3  0.00  

ZN   0.00008016 0.226 0.82    -0.0002603 -0.707 0.48    0.00008016 0.231 0.82    -0.0001728 -0.473 0.64  

INDUS   0.0002395 0.144  0.89    0.005486 3.27  0.00    0.0002395 0.148 0.88    0.001252 0.727 0.47  

CHAS1   0.09140  3.92  0.00    0.00471  0.217 0.83    0.09140  4.01  0.00    0.05853 2.61  0.01  

NOX   -0.6380  -8.03  0.00    -0.4333 -5.75  0.00    -0.6380  -8.22  0.00    -0.5114 -6.21  0.00  

RM   0.006328 6.86  0.00    0.01027 11.7  0.00    0.006328 7.03  0.00    0.009680  10.2  0.00  

AGE   0.00009074 0.245  0.81    -0.0005719 -1.64  0.10    0.00009074 0.251 0.80    -0.0002386 -0.623 0.53  

DIS   -0.1913 -8.15  0.00    -0.02877 -1.18  0.24    -0.1913 -8.35  0.00    -0.1497 -5.67  0.00  

RAD   0.09571 7.12  0.00    0.08393 6.71  0.00    0.09571 7.29  0.00    0.06919 5.18  0.00  

TAX   -0.0004203 -4.88  0.00    -0.0005175 -6.26  0.00    -0.0004203 -5.00  0.00    -0.0004140  -4.73  0.00  

PTRATIO   -0.03112 -8.84  0.00    -0.02062 -6.17  0.00    -0.03112 -9.05  0.00    -0.02336 -6.48  0.00  

B   0.0003637 5.02  0.00    0.0004582 6.37  0.00    0.0003637 5.14  0.00    0.0003814 4.42  0.00  

LSTAT   -0.3712 -21.1  0.00    -0.3271 -19.3  0.00    -0.3712 -21.6  0.00    -0.3289 -18.1  0.00  

Adjusted R2   0.902    0.934    0.906    0.918  

Residual variance   0.0164    0.0110    0.0157    0.0138  

Lasso parameter                   15.66    15.35  

Moran I   0.06420    -0.02638    0.05282    0.02035  

Moran Z   4.37   1.94   4.12    2.95  

 



Table 3. Computation time and selected eigenvectors 

 

Model ESFMe   ESFMl   ESFBe   ESFBl   ESFLe   ESFLl 

Computation time (sec.) 34.01   30.72   87.94   172.17   17.89   25.33 

Total # of eigenvectors 72   54   41   64   46   45 

Significant at 0.1% level 21   21   20   31   21   23 

Significant at 1% level 16   9   14   23   14   13 

Significant at 5% level 12   14   7   10   11   8 

Significant at 10% level 12   6   0   0   0   1 

Not significant 11   4   0   0   0   0 

 

  



 

   

Figure 1. Cumulative number of selected eigenvectors (Left: ESFe, Right: ESFl) 

(Associated eigenvalues are sorted in descending-order, and shown as a thick solid line on right vertical axis) 

 



  

Figure 2. The differences in cumulative number of selected eigenvectors by random seed in the cross-validation procedure (Left: ESFe, Right: ESFl) 

(Associated eigenvalues are sorted in descending-order, and shown as a thick solid line on right vertical axis) 

 

  



Example with simulation dataset 

In this section, we try to apply the LASSO procedure for the eigenvector selection problem 

of much bigger dataset. As the model, here we only consider the ESF with ESEM because 

computation time of ESF with ESLM and ESEM is expected to be similar. Also, as the stepwise 

procedure, we only use the ESFM because the ESFB was much slower than ESFM in the previous 

experiment. 

Subsequently, as the data generating process (DGP), we consider the spatial error process 

(SEP) expressed in the following manner; see Arbia (2006) for more details with regard to the 

spatially dependent DGPs.  

 SEP: i
p

pipi uxy ++= ∑
=

10

1
0 ββ , i

n

j
jiji uwu ελ += ∑

=1
, (13) 

The error term in eq. (13) is assumed to obey a standard normal distribution N(0,1). 

Sample size is set to n=50, 1000, 2000, and 104. Ten explanatory variables are independently 

generated from a standard normal distribution, and an intercept term is added. A spatial weight 

matrix is constructed using four-nearest-neighbors criterion where the (x, y) coordinates are 

generated from a standard normal distribution, and is row-normalized. With regard to the spatial 

parameter λ , we consider a positive and medium magnitude spatial autocorrelation ( λ = 0.6). The 

true values of the parameters are set to βp = 1 (p = 0, …, 10). Similar to the illustration with Boston 

housing dataset, we assume that the explanatory variables are always included in the model. 

Tables 4 summarizes the parameter estimation results for n = 500 scenario. It is shown that 

adjusted R2 values are improved in the ESFs compared to the BM (from 0.875 to 0.942 or 0.957); 

and correspondingly, the t-values are much larger in ESFs. Eigenvectors selected by the LASSO are 

all statistically significant at 5 % level (Table5), resulting in the high R2 value compared to the 

ESFM. However, just as the Boston housing data experiment, the residual spatial autocorrelation of 

the LASSO in terms of Moran’s Z is not random although rather improved (from 15.5 to 3.28). 

Hence as expected, if we hope to minimize residual autocorrelation, not ESFB or ESFL but ESFM is 

the first best choice. Instead, if we hope to maximize fit to observations, maybe ESFB or ESFL are 

the better choice in medium sample size (e.g., n = 500).  

However, the SpatialFiltering() function becomes disappointingly slow when sample size 

becomes large. For example, for n = 2000 scenario, ESFM requires 7800 second for selecting 

eigenvector whereas the ESFL requires only 349 second (Table6). In such case, our proposed 

application of the LASSO can be an important alternative to the stepwise procedures. The LASSO is 

feasible even the sample size is n = 104 (45942.71 sec.), which is a plausible sample size for applied 

researches.  

One of the future challenges is dealing with much bigger dataset order of n = 105 or n = 

106. In such scenarios, ex-ante determination of the number of eigenvectors added to a model may be 



needed. Pace et al. (2013), proposed the use of ARPACK proceeds in such direction. Also, because 

majority of computation time is devoted to the cross-validation combined with the Brent algorithm, 

the other ways to select eigenvectors not depending on cross-validation, such as Fan and Tang 

(2013), may needed to be further developed. 

 



Table 4. Parameter estimation results (n = 500) 

Model   BM   ESFMe   ESFLe 

Variable   Coef. t p   Coef. t p   Coef. t p 

(Intercept)   3.414  62.2  0.00    3.414  91.5  0.00    3.414  106  0.00  

x1   0.9908  18.3  0.00    0.9908  26.9  0.00    0.9908  31.0  0.00  

x2   0.9716  18.7  0.00    0.9716  27.5  0.00    0.9716  31.7  0.00  

x3   0.9504  17.5  0.00    0.9504  25.7  0.00    0.9504  29.7  0.00  

x4   0.9422  18.4  0.00    0.9422  27.1  0.00    0.9422  31.3  0.00  

x5   1.028  19.5  0.00    1.028  28.7  0.00    1.028  33.1  0.00  

x6   1.040  19.3  0.00    1.040  28.4  0.00    1.040  32.7  0.00  

x7   0.9454  18.3  0.00    0.9454  27.0  0.00    0.9454  31.1  0.00  

x8   0.9868  18.1  0.00    0.9868  26.7  0.00    0.9868  30.8  0.00  

x9   0.9557  17.0  0.00    0.9557  25.0  0.00    0.9557  28.8  0.00  

x10   1.101  19.9  0.00    1.101  29.2  0.00    1.101  33.7  0.00  

Adjusted R2   0.875    0.942    0.957  

Residual variance   1.48    0.685    0.514  

Lasso parameter   ---   ---   12.02  

Moran’s I   0.4574    -0.09128    0.02849  

Moran’s Z   15.5    0.0909    3.28  

 

 

 

  



Table 5. Computation time and selected eigenvectors 

 

  ESFMe ESFLe 

Computation time (sec.) 26.07 15.15 

Total # of eigenvectors 43 68 

Significant at 0.1% level 16 24 

Significant at 1% level 11 23 

Significant at 5% level 10 21 

Significant at 10% level 6 0 

Not significant 0 0 

 

Table 6. Computation time and sample sizes 

Computation time (sec.) ESFMe ESFLe (P1) (P2) (P3) 

n = 500 26.07 15.15 0.28 0.47 14.4 

n = 1000 424.18 64.52 1.94 2.1 60.48 

n = 2000 7800.02 349.09 17.09 14.9 317.1 

n = 10000 --- 45942.71 2455.97 2676.78 40809.96 

 

(P1): Calculating projection matrix N[x]; (P2): Extracting eigenvectors; (P3): Cross validation with Brent algorithm 

 

 

 



Concluding remarks 
The ESF is one of the well-used used approaches to model spatial autocorrelation among 

observations or errors in a regression model. In this approach, subset of eigenvectors extracted from 

a modified spatial weight matrix is added to the model as explanatory variables. The subset is 

typically specified by the forward stepwise model selection procedure, but it is disappointingly slow 

when the number of observations n takes a large number. Hence the present paper proposed the use 

of the LASSO to select the eigenvectors. The LASSO model selection procedure was applied to the 

well-known Boston housing dataset and simulation dataset, and its performance was compared to the 

stepwise procedure. The obtained results suggest that the LASSO procedure is fairly fast compared 

the stepwise procedure, and can select eigenvectors effectively even if dataset is relatively large (n = 

10000), to which the forward stepwise procedure is not easy to apply. The results suggest that the 

LASSO can be a useful complement or even alternative to the stepwise procedures. 

In the future research, we are going to test the feasibility of the LASSO under the huger 

dataset with combining the large scale eigenvalue problem solver such as ARPACK (Pace et al. 

2013). Also, applying the LASSO based eigenvector selection approach to the other models such as 

generalized linear model (GLM) is an important remains researches. Furthermore, we are now trying 

to develop a more efficient approach for the eigenvector selection based on subspace method (Bagan 

et al. 2009).  
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Appendix  
R code for the illustration with Boston housing dataset 
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