
Dang Ba Khac Trieu · Tsutomu Maruyama

Real-time color image segmentation based on Mean Shift
Algorithm using an FPGA

Received: date / Revised: date

Abstract Image segmentation is one of the most im-
portant tasks in the image processing, and mean shift
algorithm is often used for color image segmentation be-
cause of its high quality. The computational cost of the
mean shift algorithm, however, is high, and it is diffi-
cult to realize its real time processing on microproces-
sors, though many techniques for reducing the cost have
been researched. In this paper, we describe an FPGA
system for the image segmentation based on the mean
shift algorithm. In the image segmentation based on the
mean shift algorithm, the image is once over-segmented,
and then the small regions are merged considering the
similarity between the over-segmented regions in order
to obtain better segmentation. In our system, the mean
shift filter is accelerated using a cache memory which can
access to all pixels in a ws × ws pixel window at arbi-
trary position. This cache memory allows us to process
ws × ws pixels in parallel every clock cycle. The region
merging is also accelerated by not strictly managing the
list structures used for the merging. This loose manage-
ment introduces the redundant and out-of-date data into
the list structures, but it makes the pointer dereferences
unnecessary, and the overhead by those data can be hid-
den by pipeline processing. The performance for 768 ×
512 pixel images is fast enough for real-time applications.

Keywords Mean shift algorithm · Segmentation ·
Region merging · Real time · FPGA

1 Introduction

Image segmentation is the process of partitioning an im-
age into multiple regions of interest, and it is generally

D. B. K. Trieu · T. Maruyama
Systems and Information Engineering, University of
Tsukuba,
1-1-1 Ten-nou-dai, Tsukuba, Ibaraki 305-8573, Japan
E-mail: maruyama@darwin.esys.tsukuba.ac.jp

D. B. K. Trieu
E-mail: dangtrieu@darwin.esys.tsukuba.ac.jp

the first task in many automated image understanding
applications. Many algorithms for the image segmenta-
tion have been proposed to date, such as [9][10][11][?][?].
Several hardware systems have been proposed to accel-
erate those algorithms, such as [14][15][12][13].

Mean shift algorithm is a procedure which is often
used for color image segmentation because of its high
quality. In the segmentation based on mean shift algo-
rithm, first, the gradient of each pixel in a given image
is calculated using a window centered by the pixel, and
then, the pixel is moved along the gradient. This pro-
cedure is repeated until no movement will happen, and
pixels which reach to the same bottom form a region. In
general, many small regions are generated in this step
(called over-segmentation). Then, the small regions are
merged considering the similarity between the regions
in order to obtain better segmentation (if we try to re-
duce the number of the regions by only the mean-shift,
the results are far from what we expected in most cases).
This over-segmentation and merging method is also used
in other segmentation techniques such as watershed, K-
mean clustering and so on.

The computational cost of a naive implementation of
a mean shift algorithm is very high (O(X × Y × ws ×
ws × Nr), where X × Y is the image size, ws × ws is
the window size and Nr is the average number of the
repetitions). Therefore, many technique for reducing the
computational complexity have been researched (for ex-
ample, [4][5][6]). However, it is still difficult to realize
real-time processing on microprocessors. Nevertheless,
only few papers about the acceleration of the mean shift
algorithm by FPGA and GPU have reported to date be-
cause of the irregular memory access sequences required
for tracing the movement of pixels along their gradients.
In [7][8], the mean shift algorithm was used for object
tracking, but the algorithm was applied only to the re-
gions of interest. As for the region merging, to the best
of our knowledge, no hardware systems have been pro-
posed (in [17], a method for the labeling was proposed)
probably because of the inherent sequentially and com-
plex data management (this means that we can not ex-

2

pect high performance gain). However, this merging step
should also be executed on the same platform in order
to achieve higher performance in total.

In this paper, we describe FPGA implementation of
both steps, over-segmentation using a mean shift algo-
rithm and the region merging. The main difficulties in
the segmentation are (1) how to read ws × ws pixels at
arbitrary position in the image in parallel for tracing the
movement of the pixels, and (2) how to fulfill the pipeline
circuit (the pipeline depth for calculating the gradient is
deep, and we need to interleave the calculation of several
pixels), and the difficulties in the region merging are (3)
the dynamic management of the lists which hold the con-
tiguous regions (those regions are gradually changed as
the merging progresses), and (4) the sorting of the pairs
of two contiguous regions which are used to choose the
two regions to be merged.

For (1) and (2), we have designed a special cache
memory which can access to ws ×ws pixels at arbitrary
position in parallel. Typically, ws is 15 to 31. Thus, this
cache memory reads out 225 to 961 pixels of different po-
sition every clock cycle. In our implementation, the given
image is scanned from top to bottom, and the pixels
on L lines are cached into this cache memory. Accord-
ing to our experiments, most images can be processed
during one scan (when a pixel moves out of the cached
region toward the already processed area, another scan
from bottom to top is executed). As for (3) and (4), we
have chosen not to manage the data in the list structures
strictly. By this loose management, redundant and out-
of-date data may continue to stay in the data structures,
and increases the amount of the computation. However,
this relaxation makes it possible to manage those data
in block without pointer dereferences (all data in the
block can be accessed continuously), and the increase of
the computation time by those data can be hidden by
pipeline processing.

This paper is organized as follows. The mean shift
algorithms are introduced in Section 2, and its FPGA
implementation is described in Section 3. In Section 4,
an algorithm for the region merging is introduced and its
implementation is described in Section 5. Experimental
results are shown in Section 6, and the conclusions are
given in Section 7.

2 Mean Shift Algorithm

Mean shift analysis is a novel and powerful clustering
approach originally reported in [1]. In spite of its ex-
cellent performance, it had been nearly forgotten until
[2] extended it and introduced it to the image analy-
sis community. In recent years, comprehensive analysis
and successful applications of the mean shift occurred in
the fields of tracking, image segmentation, information
fusion, edge detection, clustering and classification, and
video processing [4].

2.1 Original Mean Shift Algorithm

First, we briefly review the mean shift algorithm intro-
duced in [3] mathematically. Given n data points xi, i =
1, 2, ..., n in the d-dimensional space Rd, the kernel den-
sity estimator with kernel function K(x) and a symmet-
ric fixed bandwidth h can be written as

f̂h,K(x) =
ck,d
nhd

n∑
i=1

k(
∥x− xi∥2

h
) (1)

where k(x) is the profile of kernel K such that K(x) =
ck,dk(∥x∥2), and ck,d is a normalization constant. When
the derivative of k(x) exits, g(x) = −k′(x) can be used
as a profile to define a new kernel G(x) = cg,dg(∥x∥2)
with normalization constant cg,d. Take the gradient of
(1), we can obtain

mh,G(x) = C
∇̂fh,K(x)

f̂h,G(x)
(2)

C(= 1
2h

2c) is a constant. mh,G(x) can be rewritten

mh,G(x) =
Σn

i=1xig(∥x−xi

h ∥
2)

Σn
i=1g(∥

x−xi

h ∥2)
− x (3)

and is called the mean shift vector. The expression (2)
shows that, at location x, the mean shift vector com-
puted with kernel G is proportional to the normalized
density gradient estimate obtained with kernel K. The
mean shift vector thus always points toward the direc-
tion of maximum increase in the density. As the result,
the mean shift iteration

x(k+1) = x(k) +mh,G(x
(k)), k = 1, 2, ... (4)

is a hill climbing process to the nearest maximum of

f̂h,K(x).

2.2 Mean Shift Algorithm Implemented in Our System

An improved mean shift algorithm for the joint spatial-
range domain is proposed in [3]. We implemented this al-
gorithm in our system, because of its high performance,
and the simplicity. Let rc be r(x, y) (r(x, y) is a pixel in a
given image), xc = x, yc = y and ws = 2w+1. Then, rn,
dxn and dyn are calculated as follows. In the equations
below, LUV color space is used, and hr is a constant
which gives the threshold for choosing pixels close to rc.

m =

w∑
dx=-w

w∑
dy=-w

h(r(xc + dx, yc + dy), rc)

h(p, q) = 1 if |pL−qL|<hr & |pU−qU |<hr & |pV−qV |<hr

0 otherwise

rn =
1

m

w∑
dx=-w

w∑
dy=-w

(r(xc + dx, yc + dy)− rc)×
h(r(xc + dx, yc + dy), rc)

3

ws

A

B

C

ws

ws

ws

Fig. 1 Moves of the pixels by mean-shift

dxn =
1

m

w∑
dx=-w

w∑
dy=-w

dx× h(r(xc + dx, yc + dy), rc)

dyn =
1

m

w∑
dx=-w

w∑
dy=-w

dy × h(r(xc + dx, yc + dy), rc)

If |dxn|< δ and |dyn|< δ, p(x, y) is considered to con-
verge to (xc, yc). Otherwise,

rc ← rn & xc ← xc + dxn & yc ← yc + dyn
and the steps above are repeated from the beginning. In
the steps above, first, the number of pixels (m) which
are similar to rc is counted. Then, the average of those
pixels (rn) and the movement of the coordinate (dxn and
dyn) are calculated. If the movement is very small, it is
considered that the pixel converges to (xc, yc), and other-
wise, the movement is repeatedly calculated by assigning
rn, xc+dxn, yc+dyn to rc, xc, yc respectively.

By applying this procedure, pixels in the image are
moved along to their gradients, and converged to one of
the bottoms of the gradients. Fig.1 shows an example
how the pixels are moved. In Fig.1, pixel (A) and (B)
are moved to the same bottom (C), and are considered
to belong the same region.

The computational cost of this algorithm is O(X ×
Y × ws × ws × Nr) (Nr is the average number of the
repetitions).

3 Implementation Method of Mean Shift
Algorithm

The computation of the mean shift algorithm described
in Section 2.2 can be summarized as follows.

1. (xc, yc)← (x, y) and rc ← r(x, y).
2. For each pixel at (xc, yc), read out ws × ws pixels

centered by (xc, yc) in parallel, and count the number
of pixels similar to rc.

3. At the same time, calculate
(a) the sum of LUV of those pixels, and
(b) the sum of their coordinates
and calculate the average of them (rn and (dxn, dyn)).

4. check the convergence, and repeat the steps above if
not converged by assigning rn and (xc+dxn, yc+yn)
to rc and (xc, yc).

<
 h

r
<

 h
r

y-
ta

bl
e

x

0 yoffset = 3

yoffset = 2

yoffset = 1

yoffset = 0

xoffset = 3 xoffset = 2 xoffset = 1 xoffset = 0

321

fc

6 5

e

5

d

5
8

6 5

ba

5

9

5
4

6 5

76

5

5

5

dx table

0 1 2 3
4 5 6 7
8 9 a b
c d e f

0 1 2 3
4 5 6 7
8 9 a b
c d e f

0 1 2 3
4 5 6 7
8 9 a b
c d e f

0 1 2 3
4 5 6 7
8 9 a b
c d e f

0 1 2 3
4 5 6 7
8 9 a b
c d e f

0 1 2 3
4 5 6 7
8 9 a b
c d e f

0 1 2 3
4 5 6 7
8 9 a b
c d e f
0 1 2 3
4 5 6 7
8 9 a b
c d e f
0 1 2 3
4 5 6 7
8 9 a b
c d e f

0 1 2 3
4 5 6 7
8 9 a b
c d e f
0 1 2 3
4 5 6 7
8 9 a b
c d e f
0 1 2 3
4 5 6 7
8 9 a b
c d e f

y

dy table

3 0 1 2
0 1 2 3

3 0 12
2 031

0
1

2
3

3
0

1
2

2
0

3
1

1
3

0
2

x

y

X

image

m
em

or
y

ar
ra

y

rc

rn

dxn

dyn

su
m

 a
nd

 a
ve

ra
ge

mean shift unit

Y

&

&
&

&

ABS&SUM unit

x-
ta

bl
e

addr=0 addr=1 addr=2 addr=3

addr=4 addr=5 addr=6 addr=7

addr=8 addr=9 addr=10 addr=11

addr= addr= addr= addr=

addr=

addr=

addr= addr= addr=

addr= addr= addr=

ABS&SUM unit array

 + + +
A

B
S

A
B

S
A

B
S

<
 h

r

10addr= 9addr= 9addr= 9addr=

Fig. 2 The computation method

For processing these steps efficiently, we need a data
mapping method which enables the parallel access to
ws × ws pixels centered by any (x, y).

3.1 Data mapping method

Fig.2 shows a data mapping method used in our system.
In Fig.2, ws=4 and all pixels in the image are mapped on
a memory array which consists of ws×ws memory banks.
Pixels labeled ’k’ (k = ’0’ − ’f ’) in the image are stored
in the memory banks labeled ’k’ (’0’−’f ’), and ws × ws

pixels (each being labeled one of ’0’−’f ’) can be accessed
in parallel. In this mapping method, the first ws × ws

pixels on the upper-left corner of the image are placed
on the same plain (addr=0) of the memory array, the
next ws × ws pixels are on the next plain (addr=1) and

4

ws

......

......

......

......

...
...

...
...

...
...

...
...

ws

ws

w
s

D

X = Nx x ws

Y = Ny x ws

L = D x ws x ws / X

Fig. 3 Actual mapping of the image on the memory array

so on. Suppose that we are going to read ws ×ws pixels
from (x, y) (the gray box in the image) (here, ws × ws

pixels whose upper left corner is (x, y) are used in order
to simplify the explanation). This box lies down on four
plains (addr=5, 6, 9, 10). To each of the ws×ws memory
banks, different addresses are given as follows.

addr = ⌊(y + yoffset)/ws⌋ × ws + ⌊(x+ xoffset)/ws⌋
xoffset and yoffset are constants given to each column and
row in advance. Then, the pixels in the gray box are read
out from the memory banks using the different addresses.

rn, dxn and dyn are calculated on the mean shift
unit. In this computation, the positions of the pixels that
appear on the memory array are different from those in
the gray box in the image. In order to calculate dxn and
dyn correctly, we need to give the true dx and dy to the
mean shift unit. For this purpose, two kinds of tables
are used (dx and dy table, and x and y table). There
are only ws patterns of dx and dy (the range of dx and
dy is [0, ws−1]). Therefore, the patterns are stored in dx
and dy table (their depth is ws), and these tables are
accessed via x and y table whose depth is X and Y .

In an actual implementation, ws is an odd number
(ws= 2w+1), and the coordinate of the center pixel is
given. In this case, x−w and y−w are given to the circuit
instead of x and y, and the range of dx and dy is changed
to [−w,+w]. Then, dx=−w−1 and dy=−w−1 are used
to mask the data on the memory array. With this data
mapping method, we can apply the mean shift to any
pixel in the image with a simple circuit.

3.2 Actual data mapping on FPGA

The size of on-chip memory banks is, however, not so
large in practice, and we can not store the pixels of
whole image. Therefore, pixels of only L lines can be
store in the memory array (Fig.3). When the depth of
each memory banks of the memory array is D, L be-
comes D×ws×ws/X. In this case, the processing order
of the pixels in the image becomes very important. In
our implementation, the image is scanned twice (or once
if all pixels converged during the first scan) as shown in
Fig.4. In Fig.4(A), the pixels are scanned from top to
bottom. When, the pixels of first l+1 lines are read into
FPGA, the mean shift filter is applied to the pixels on
y=0. Then, the pixels on the next lines are read from
the image, and the filter is applied to the pixels on y=1.

target line
cached area

image
scan direction

target line
cached area

image

scan direction

(A) (B)

L

Ll
l

Fig. 4 scanning method

memory
array

ABS&SUM
 unit array

tree adder

average unit

ws x ws

de
pt

h
=

 d

input
mage

FPGA

m
ea

n
sh

if
t u

ni
t

qu
eu

e-
d

qu
eu

e-
u

ws x ws

output
image

Fig. 5 A block diagram of our system

This sequence is repeated, and pixels of up to L lines
are cached on the FPGA. The mean shift filter contin-
ues to be applied on the pixel on lth line in the L lines
(Fig.4(A)).

Three cases happen during the computation.

1. the pixel converges to the bottom in the L lines,
2. the pixel moves upward, and goes out of the L lines,
3. the pixel moves downward, and goes out of the L

lines.

When the second case happens, the pixel (rn, (xc+dxn,
yc+dyn) and its original coordinate) is put in queue-u,
and the processing of the pixel is suspended. After scan-
ning the image to the bottom, the scan is restarted from
the bottom. When the target line of this scan reaches
to yc+dyc, the processing of the pixel is resumed. This
is because the pixel will continue to move upward with
high probability.

When the third case happens, the pixel is put in
queue-d, and the processing is suspended. The process-
ing of the pixel is resumed when the target line reaches
to yc+dyn+L/2. This is because the pixel will continue
to move downward, and if we resume the processing of
the pixel immediately, the pixel will move out of the L
lines again.

3.3 System architecture

Another problem of this implementation is the long delay
caused by the long feedback in the mean shift unit. In

5

BRAM 0 BRAM 1

18 ws=15

pixel pixel pixel

Fig. 6 A mapping to reduce block RAMs

the mean shift filter, we need to sum up values of ws×ws

pixels to calculate rn, dxn and dyn, and the depth of the
mean shift unit becomes deeper than log(ws × ws).

Fig.5 shows a block diagram of our circuit. Suppose
that pixels of l+1 lines have been buffered in the memory
array. Then, the pixel at (0, 0) is processed first by the
mean shift unit. ws × ws pixels centered by (0, 0) are
given to the ABS&SUM unit array (pixels out of the
image are masked in the ABS&SUM unit array), and
rn, dxn and dyn for the pixel at (0, 0) are calculated. In
this case, rc (namely, the pixel at (0, 0)) is given from
the memory array to the mean shift unit. It takes d (d >
log(ws×ws)) clock cycles to calculate them. In order to
hide this long latency, the computation of the next pixel
(the pixel at (0, 1)) is started immediately. Then, pixels
to (0, d−1) are processed continuously. At clock cycle d,
rn, dxn and dyn for the pixel at (0, 0) come out of the
average unit, and they are given to the ABS&SUM unit
array and the memory array (to read out ws×ws pixels
centered by (0+dxn, 0+dyn)) to trace the movement of
the pixel at (0, 0). At the next clock cycle, rn, dxn and
dyn for the pixel at (0, 1) come out of the average unit,
and is processed in the same way. In this way, d pixels
are continuously processed in the mean shift unit. When
one of them converges, or moves out of the L lines (it
is put in one of the queues), the pixel at (0, d) is newly
processed. By repeating this sequence, the mean shift
unit can always be filled by d pixels. The pixels in the
queues are processed before starting the calculation of
the pixels on the target line.

3.4 An method to reduce the memory size

The problem of the implementation described in the pre-
vious section is the large number of the on-chip memory
banks used for the memory array. When we consider to
implement the circuit on Xilinx FPGAs, 15 × 15 block
RAMs are necessary when ws=15, and 961 when ws=31.

Block RAMs in Xilinx FPGAs can be configured as
512 × 36b. Therefore, by using 2 block RAMs, we can
store pixels of three columns (the data width of a pixel
is 24b). In this case, however, three pixels on the two
banks have to be read as one set. As shown in Fig.6, ws

is expanded to a multiple of three (18 when ws=15, and
36 when ws=31).

Fig.7 shows how to access ws×ws pixels with this im-
plementation method. Suppose that we are going to read
15× 15 pixels centered by (x, y). These pixels lie on four

x-
ta

bl
e

y-
ta

bl
e

18

addr=0 addr=1 addr=2 addr=3

addr=4 addr=5 addr=6 addr=7

addr=8 addr=9 addr=10 addr=11

18
dx table

dy
 ta

bl
e

15

x

y

Array
Address

Array
Address

x

y

4

5

6

7

 X X X -
7

 -
6

 -
5

 -
4

 -
3

 -
2

 -
1

0

1

2

3

addr = 6 addr = 5

addr = 2 addr = 1

 -2
 -1
 0
 1
 2
 3
 4
 5
 6
 7
 -7
 -6
 -5
 -4
 -3

Fig. 7 A mapping to reduce block RAMs (1)

memory plains of the memory array (addr=1, 2, 5, 6), and
three pixels in the array have to be read as one set.
Therefore, 18 × 15 pixels are read out from the mem-
ory as shown in Fig.7, and three columns are masked
using dx table (in Fig.7, X shows the mask, and other
values show dx). In order to give the addresses to the
memory array, we need to divide x by 18 and y by 15.
In order to avoid this divide operation, the addresses are
stored in x and y tables as well as the addresses to dx
and dy tables.

Fig.8 shows the actual data mapping on the mem-
ory array. The memory array consists of 6 × 15 block
RAMs when ws=15. The first 6 column of each memory
plain are stored in the first 2× 15 block RAMs (the first
three columns are stored in the first half of the block
RAMs, and the next three column (gray parts in Fig.8)
are stored in the second half), and these 6 columns are
read out in parallel using the dual read of block RAMs.
Other columns are also grouped by 6 columns, and stored
in the block RAMs in the same way. With this implemen-
tation, we can not update the data in the memory array,
while the pixels on the target line are processed access-
ing the memory array. In order to reduce the time for
updating data in the memory array, shallow buffers are
provided, and the pixels of the next line are downloaded
to these buffers, while the pixels on the target line are
processed. Then, the mean shift unit is stopped (it is still
filled by d pixels while it is stopped), and the data in the

6

15

15

18

.........

buffers for updating
the memory array

im
ag

e
da

ta

memry
array

addr=5

addr=1

addr=9

addr=4

addr=0

addr=8

addr=6

addr=2

addr=10

addr=7

addr=3

addr=11

2BRAMs

 9 x 2 pixels

Fig. 8 A mapping to reduce block RAMs (2)

buffers are moved to the memory array in parallel. The
time for updating the memory array is very small (only
X/(90× 1.5) clock cycles per line when ws = 15).

4 Region merging

In the image segmentation based on mean-shift algo-
rithm, the image is once divided into many small re-
gions (over-segmentation), and then, the small regions
are gradually merged to obtain better segmentation. Many
region merging algorithms have been proposed[18][19][20].
The merging algorithms can be summarized as follows.

1. For each region labeled ’u’, make a list lc(
′u′) which

holds the regions contiguous to ’u’.
2. List up all pairs of regions (’u’, ’v’) which are con-

tiguous each other.
3. Calculate the distance between the two regions in the

pairs using a given function f .
4. Choose the pair which gives the minimum distance,

and merge the two regions.
5. Update lc of the merged regions.
6. Repeat step 2 to 5 while the minimum distance is

smaller than a given threshold.

In most software algorithms, a global functions is de-
fined, and the distances between two regions are calcu-
lated considering the global balance among the pairs.
In some cases, this distance calculation may become the
bottle-neck of the merging, and not be able to imple-
ment on hardware systems easily. In this paper, in order
to give a general framework, we focus on the other steps
than the distance calculation, and we consider a simple
function f which calculates the distances using only local
information.

a b

1 2 3

4

(y,x)

m

m

m m

n

n

(y,x)

(A) (B)

Fig. 9 A method for giving unique labels to the regions

5 Our approach of region merging

In our implementation described in Section 3, the out-
puts by the mean shift unit are color images in which
the number of colors are reduced from the original im-
age. Therefore, first, we need to give a unique label to
the pixels which are contiguous each other and have same
color.

Our approach consists of the four steps below.

1. The image is scanned, and the unique labels are given
to the regions (a region consists of the contiguous
pixels of the same color). The regions which consist
of only one pixel are put aside, and are processed in
the last step.

2. The image is scanned again, and for each region ’u’,
the list which holds their neighbor regions lc(

′u′) is
generated. At the same time, the distances between
the two contiguous regions are calculated, and the
pairs of the two regions are sorted according to their
distances.

3. Two regions are repeatedly merged according to their
distances. lc(

′u′) is updated when ’u’ and ’v’ (’u’ <
’v’) are merged.

4. Regions which consist of only one pixel are merged
to their larger neighbor regions.

5.1 The first scan

First, we need to give a unique label to each region. In our
approach, the image is scanned from (0, 0) to (Y−1, X−1).
In this scanning, the color of the pixel at (y, x) (I(y, x))
is compared with the color of its four neighbors as shown
in Fig.9(A). If the color of I(y, x) is different from its all
four neighbors, a new region label is given to I(y, x). If
the same as one of its neighbors, its region label is copied
to I(y, x) (in Fig.9(A), if I(y, x) has the same color as
the pixel 2, the region label of the pixel 2 is copied to
I(y, x)). Then, the region label of I(y, x) is output to the
off-chip memory bank. During this first scan, the regions
which consists of only one pixels are also detected, and
their addresses ((y, x)) are stored in the queue in the off-
chip memory bank. According to our experiments, the
number of those one-pixel regions is 1% to 13% of the
total pixels in the image when ws=15 or 31 for all tested
benchmark images. In our current implementation, these
regions are left unprocessed in the queue, and after other

7

addr color

48K

20b 24b 1b

tagindex weight len

n

m

18b 18b 10b

Fig. 10 The region table

regions are merged, the one-pixel regions are merged to
them, in order to improve the performance of the system.
It may seem that 1-13% of the image is not negligible,
and those one-pixel regions should be merged from the
beginning. However, those regions usually exist among
larger regions (namely, around the edges of the objects
in the image), and do not have the significant affect on
the final result.

Suppose that there is a u-shaped region in the image
as shown in Fig.9(B). Then, the region label ’m’ is give
to the pixel ’a’, and ’n’ is given to ’b’, because their
color is not same as their four neighbors, though ’a’ and
’b’ are parts of the same region. When comparing the
color of I(y, x) with its four neighbors, the color of the
pixel at ’1’ and ’3’, and ’4’ and ’3’ (see Fig.9(A)) are also
compared, and if they are equal, they are recognized to
belong to the same region. In Fig.9(B), when comparing
the color of I(y, x), it is found that the label ’m’ and ’n’
were given to the same region. The region table shown
in Fig.10 is used to record the equality among the region
labels. This table has seven fields, and is used to store
other in formations about the regions.

weight & color The weight field shows the number of the
pixels which belong to the region. When a new region
label is assigned to a pixel, the weight is set to one,
and the color of the pixel is copied to the color field.

index When we notice that two labels (’m’ > ’n’) were
given to the same region, a pointer is set in the index
field of ’m’ in order to record that ’m’ and ’n’ are the
same region as shown in Fig.10. The weight of ’m’
are added to the weight of ’n’.

addr & len The addr field is used to hold the address of
a block which stores the labels of the regions which
are contiguous to this region. In the first scan, the len
field is used to estimate the maximum number of the
regions which are contiguous to the region (namely,
the length of lc(

′u′)). Then, in the second scan, it
shows how many labels has been stored in the block
pointed by addr.

tag The tag is used to remove the redundancy in lc.

When the first image scan is finished, the index in the
region table is scanned from the top, and the pointers are
dereferenced. Suppose that a pointer from ’c’ to ’b’ (’c’

c

x

xX

a b

xx-2 x+2

comparator

buf0

buf1

buf2

buf3

yca
a b

(c,a)(c,b)(c,b)(c,c)

Fig. 11 The label pair comparator

> ’b’) was linked first, and then another pointer from
’b’ to ’a’ (’b’ > ’a’) during the image scan. This means
that ’c’, ’b’ and ’a’ are given to the same region. During
the scan of the region table, ’a’ is tested first, because
the scan started from the top, and ’a’ is written into the
index of ’a’, because ’a’ did not point anywhere. Then,
when testing ’b’ (or ’c’),

1. the index of ’b’ (or ’c’) is read out (in this case ’a’ (or
’b’)),

2. using the read-out value (’a’ (or ’b’)), the index of ’a’
(or ’b’) is read out (’a’ (or ’a’)), and

3. the read-out value (’a’ (or ’a’)) are set into the index
of ’b’ (or ’c’).

With this dereference, every index directly points to the
true region label.

During the image scan, if the label given to I(y, x) is
different from the labels of its four neighbors, the len of
the label is counted up in order to estimate the length
of lc(

′u′). Suppose that the labels of its four neighbors
are ’a’, ’a, ’b’ and ’c’, and the label of I(y, x) is ’c’, the
len is counted up by 2 (’c’ is contiguous to ’a’ and ’b’).
However, if we repeat this counting up on every pixel,
the len is counted up many times by the same pairs of
the labels. For example, if I(y, x) and I(y, x+ 1) belong
to the same region labeled ’c’, and they are contiguous
to ’a’, then, the len of ’c’ is counted up twice. In order
to prevent this redundant counting up strictly, we need
to manage lc(

′u′) strictly using list structures. However,
this strict management of lc is not easy on hardware sys-
tems. In stead, we have used the unit shown in Fig.11 to
prevent the redundant counting up as much as possible.
In Fig.11, suppose that the label of I(y, x) was set to ’c’,
because its color is the same as I(y, x−1). Then, I(y, x)
is contiguous to ’a’ and ’b’, and the len of ’c’ has to be
counted up by 2. However, I(y, x−1) is also contiguous
to ’a’ and ’b’, and the len of ’c’ has already counted up
for ’a’ and ’b’. In Fig.11, in order to prevent this redun-
dant counting up, four buffers and the comparator unit
is used. Here, we denote a pair of the two contiguous
regions as (’a’,’b’). When the len of ’c’ is counted up by
(’c’,’a’) at (y−1, x), it is recorded at x−1 of one of the four
buffers. When (’c’,’a’) is given from the upper-left pixel,
it is written into buf0. In the same way, buf1,2,3 are used

8

ta
g

in
de

x

w
ei

gh
t

co
lo

r
’a’

’c’

3

1

l (’a’)c l (’c’)c

’c’ ’a’

10

11

FP
G

A

init_addr

re
gi

on
 ta

bl
e

b_tail#r addrlen

head tail
0

MAX_DIST-1

d 0 6

dist. table

off-chip memory banks

’c’ and ’a’

FIFO

Fig. 12 Generating the list lc

for the upper, upper-right and left pixels. These pairs are
kept in the buffers until they are overwritten. The pairs
in the four buffers are read out onto the register array
(its size is 5 × 4, and the pairs which were detected at
x−2 to x+2 are held on it), and are compared with
the four new pairs in the comparator unit in parallel. In
Fig.11, the four pairs (’c’,’a’),(’c’,b’),(’c’,b’) and (’c’,’c’)
are compared with the 20 pairs on the shift registers
((’c’,’c’) is discarded immediately). If a new pair is equal
to one of the 20 pairs on the registers, the new pair is
discarded. The four new pairs are also compared each
other, and the redundant pairs are discarded. According
to our experiments, the average length of lc is 7-10, and
about 20% longer than when strictly managed. This is
short enough for our purpose. When two regions (’a’ <
’b’) are merged, the len of ’b’ is added to that of ’a’ as
well as the weight. Note that the length of lc is evaluated
in this phase, but lc itself is not constructed.

5.2 The second scan

In the first scan, the region label of (y, x) are stored in the
off-chip memory bank. In the second scan, those labels
are read back, and dereferenced using the region table in
order to obtain the true labels. Then, the unit shown in
Fig.11 is used again to detect which region is contiguous
to which region. Suppose that

1. the pair of two contiguous regions (’c’,’a’) is detected,
2. this is the first pair for ’c’, and the third for ’a’, and
3. b tail is an address to the other off-chip memory bank,

which is initialized to init addr > 0.

Then, the following operations are applied to ’c’ and ’a’
(Fig.12 shows what happens by the operations).

1. Because this is the first pair for ’c’ (this can be checked
if its addr is zero or not), its addr is set to b tail, and
b tail is incremented by its len+δ (δ is a margin for
the estimated length of lc, because in some cases,
it can not be estimated correctly in the first scan).
By allocating a block of len+δ words in advance, we
can store all contiguous regions to ’c’ in this block.
Then, ’a’ is stored in the off-chip memory bank using

le
n

#r addr

in
de

x

weight

co
lo

r

’a’

’c’

6

5

l (’a’)c l (’c’)c b_tailinit_addr

re
gi

on
 ta

bl
e } }

ca

cc

w a

w c

l (’a’)c b_tail

}}

temporal
buffer

ta
g

le
n

#r addr

in
de

x

weight

co
lo

r

’a’

’c’

8

0

ca

cc

w a

w c

’ ’

ta
g

temporal
buffer

Fig. 13 Merging regions

its addr as the address of the off-chip memory bank,
and its len is reset to one.

2. As for ’a’, ’c’ is stored in the off-chip memory bank
using its addr+len as the address, and len is incre-
mented.

3. At the same time, the distance d between ’c’ and ’a’ is
calculated, and if the distance is smaller than a given
threshold MAX DIST, the pair (’c’ and ’a’) is sorted
in the queue pointed by d. The queue are managed
using their heads and tails in the dist.table.

As described in the previous subsection, the pairs of
the contiguous regions are not managed strictly. There-
fore, some same pairs may be stored in the queue of the
same distance.

5.3 Region merging

In this step, first, the dist.table is scanned from dmin

(the current minimum distance), and a pair with the
minimum distance is read out from its queue. Suppose
that the pair is (’c’,’a’) and ’a’ < ’c’. Then, the following
operations are applied to ’a’ and ’c’ (Fig.13 show what
happens by the operations).

1. The weight of ’c’ (wc) is updated to w
′

a = wa+wc

2. The color of ’a’ is updated to c
′

a = (ca×wa+ cc×
wc)/(wa + wc)

3. The weight of ’c’ is changed to zero, which means
that this region is discarded (out-of-date).

4. Each region label in lc(
′a′) and lc(

′c′) is read out se-
quentially from the off-chip memory bank, and writ-
ten into the temporal buffer,
(a) if the region label is not ’a’, not ’c’, and not out-

of-date (its weight is not zero), and
(b) if the tag of the region is zero.
Otherwise, the region label is discarded. When the
region label is copied into the buffer, its tag is set
to one. The tag is used to prevent to copy the same
region more than once.

5. When the region label ’u’ is copied into the buffer, the
distance d between ’a’ (its color has been updated)

9

and ’u’ is recalculated. In this case, the pair (’a’, ’u’)
may already be in one of the queues according to
the distance which were calculated using the previ-
ous color of ’a’. Normally, the pair (’a’,’u’) should be
removed from the queue, and put in queue[d] which
corresponds to the new distance d. However, in our
approach, the old (’a’,’u’) is not removed, and the
new (’a’,’u’) is just put into the queue[d]. This means
that two (’a’,’u’) exist in two different queues (or in
the same queue if the color of ’a’ is not changed by
this merging).

6. The len of ’a’ is set to the number of the regions which
are copied into the temporal buffer (8 in Fig.13).

7. A new block whose size is the len of ’a’ is newly al-
located in the off-chip memory bank, and the addr
of ’a’ points the block. Then, the region labels in the
temporal buffer is written back into the block. Dur-
ing this copying, the tag of the regions are reset to
zero.

8. Then, the dist.table is scanned from dmin again, and
a pair with the minimum distance is read out from
one of the queues. As described above, the out-of-
data pairs are not removed from the queues in our
approach. Suppose that the pair (’a’,’b’) is given from
queue[d]. In order to verify that the pair is valid one,
(a) the weight of ’a’ and ’b’ is checked if they are zero

or not, and
(b) the distance between ’a’ and ’b’ is recalculated,

and checked if it becomes d.
If the pair is not valid, it is discarded, and the next
candidate is read out from the queues. In our imple-
mentation, several candidates are read out, and they
are checked if they are valid or not on the pipelined
unit. Then, the merging procedure is repeated from
the step 1.

The two blocks which were used to hold lc(
′a′) and lc(

′c′)
become unnecessary when they are merged, but they are
not garbage-collected in our approach. According to our
experiments, their total size is less than 512K words, and
can be easily stored in an off-chip memory bank.

The merging procedures above are repeated while
pairs whose distance is less than MAX DIST exist.

5.4 Region merging of the small regions

After merging regions whose size is greater than one, the
small regions which consists of only one pixel are merged
to their neighbor larger regions. First, the address of a
small region is read out from the buffer in the off-chip
memory bank. Then, its color is read out from the image
data in another off-chip memory bank. At the same time,
the region label of its eight neighbors are read out from
the region label array (label ’0’ is given to the small re-
gions during the first scan) sequentially, and the distance
to it is calculated on the pipelined unit. The colors of the

neighbors are given from the region table. Then, the clos-
est neighbor is chosen, and the small label is merged to
the neighbor.

6 Experimental results

We have implemented the circuits for the mean-shift al-
gorithm and the region merging on Xilinx XC4VLX160
on RC2000-4 FPGA board. The circuit for the mean-
shift algorithm uses 23.3 KLUTs and 96 block RAMs
when ws=15 (90 as the memory array). When ws=31,
the circuit size becomes almost fourfold, and the number
of block RAMs required for the memory array becomes
372. The circuit for the region merging uses about 9.5K
LUTs. 92, 183, and 274 block RAMs are used when the
size of the region table (Nrt) is 16K × 1, 16K × 2, and
16K×3 (one block RAM is used for dist.table). Because
of the limitation of the number of block RAMs, the com-
bination of the circuits which can be implemented on
one XC4VLX160 is limited. The possible combinations
are ws = 15 and Nrt ≤ 32K. The performance of the
filter circuit for ws = 31 was evaluated using a software
simulator, and that of the merging circuit for Nrt=48K
was evaluated separately from the filter circuit. The op-
erational frequency of the two circuits is 138.8MHz and
166.6 MHz respectively, and 138.8MHz was used for the
performance evaluation.

Table 1 shows the performance of the circuits for four
bench mark images[21]. ’average’ and ’max’ show how
long each pixel is moved by the mean shift filter until
it stops, and Nr shows how many times the mean shift
is applied to each pixel in average (the performance is
almost proportional to Nr). ’in’ and ’out’ show the num-
ber of the regions before and after the region merging,
and ’execution time’ shows the ratio spent in the four
steps described in Section 5. ’fps1’ and ’fps2’ show the
processing speed of the mean shift filter and the region
merging, and ’fps3’ shows the total performance when
the two circuits are applied sequentially to the images.

In all tested cases, all pixels converge during the first
scan of the mean shift filter. Table 2 shows the number
of the lines (L) which can be stored in the memory array.
L becomes smaller as X becomes larger, because the
number of the block RAMs is kept constant. When X =
768 and ws=15, L is 75 (l is 5), and this is larger than
the maximum move along the y axis (40). When ws=31,
the maximum becomes 80, but L=372 in this case.

’fps2’ becomes almost half by enlarging ws, because
Nr becomes larger, but the number of the regions gen-
erated by the filter (’in’) becomes smaller, and ’fps2’ be-
comes faster. As the result, ’fps3’ is fast enough for real-
time applications when the image size is not larger than
768× 512.

Fig.14 shows the original, mean-shifted, and region-
merged images (ws = 31) for two benchmarks, peppers
and tulips.

10

Table 1 Movement of the pixels and the performance of our circuit (when hr=9)

mean shift filter region merging total
move distance/pixel #regions execution time (%)

ws average max Nr fps1 in out 1st 2nd merge small fps2 fps3
x y x y

peppers 15 1.46 1.37 31 28 2.71 193.9 26450 553 22.9 17.6 41.9 17.6 93.2 62.8
512× 512 31 6.45 5.90 92 80 6.14 85.6 15773 289 25.3 21.5 34.2 19.0 113.6 48.8
tulips 15 2.17 2.14 30 40 3.49 100.5 42907 773 23.0 17.3 42.4 17.3 61.1 38.0
768× 512 31 7.62 7.55 71 64 6.94 50.4 25744 489 25.1 21.0 34.5 19.4 74.0 30.0
monarch 15 1.42 1.50 32 35 2.70 129.6 34393 705 24.3 19.2 37.3 19.2 67.9 44.6
768× 512 31 5.48 5.43 89 62 5.51 63.6 22517 430 26.9 23.0 33.2 16.9 81.1 35.6
serrano 15 2.00 1.98 39 34 3.30 83.6 21322 540 36.2 32.1 28.6 3.1 89.2 43.2
629× 794 31 7.01 6.66 70 65 6.87 40.2 12840 444 42.1 39.1 17.3 1.5 108.6 29.3

peppers (original) tulips (original)

peppers (mean-shift) tulips (mean-shift)

peppers(region-merging) tulips (region-merging)

Fig. 14 the original, mean-shifted, and merged images

Table 2 The number of the lines cached on FPGA

X 640 720 768 1024 1920
ws=15 105 90 75 60 30
ws=31 465 372 372 279 124

We need an FPGA with 400 block RAMs (the block
RAMs can be shared between the two circuits, though
in this experiment, we did not share them for the design
simplicity) for achieving all combination of ws and Nrt

on one FPGA. Recent FPGAs have more than 1000 block
RAMs, and are large enough.

7 Conclusions

In this paper, we have described an image segmentation
method on FPGA using the mean shift algorithm. In the
image segmentation based on the mean shift algorithm,
the image is once over-segmented, and then the small re-
gions are merged. By caching L lines of the given image,
and by processing the pixels in them in proper order, we
can apply the mean shift filter to all pixels in the image
efficiently. The region merging is an inherently sequential
process, and the acceleration by hardware systems is not
easy. We have shown that we can achieve real-time pro-
cessing by relaxing the data management and enabling
the pipeline processing of the data. Our implementation
requires a number of block RAMs (about 400), but re-
cent FPGAs support more number of block RAMs, and
our implementation is feasible for those FPGAs.

In our current implementation, the distance between
two regions is calculated using only local relation of the
two regions. We need to calculate the distance by consid-
ering the global relation of the regions in order to obtain
better segmentation. That is our main future work.

References

1. K. Fukunaga and L.D. Hostetler: The Estimation of the
Gradient of a Density Function, with Applications in Pat-
tern Recognition. IEEE Transactions on Information The-
ory, vol. 21, pp. 32-40 (1975)

2. Yizong Cheng: Mean Shift, Mode Seeking, and Cluster-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 17, no. 8 (1995)

3. Dorin Comaniciu and Peter Meer: Mean Shift: A Robust
Approach Toward Feature Space Analysis. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol.
24, no. 5, pp. 603-619 (2002)

4. Huimin Guo, Ping Guo, and Hanqing Lu: Fast Mean Shift
Procedure with New Iteration Strategy and Re-sampling.
IEEE International Conference on Systems, Man and Cy-
bernetics, pp.2385-2389 (2006)

5. Zhiming Qian, Changren Zhu and Runsheng Wang: An
Improved Fast Mean Shift Algorithm for Segmentation.
International Conference on Computer Application and
System Modeling, pp.116-120 (2010)

6. K. Bitsakos, C. Fermuller and Y. Aloimonos: An Exper-
imental Study of Color-Based Segmentation Algorithms

11

Based on the Mean-Shift Concept. European conference
on Computer vision, pp.506-519 (2010)

7. Peihua Li and Lijuan Xiao: Mean Shift Parallel Tracking
on GPU. Iberian Conference on Pattern Recognition and
Image Analysis (2009)

8. U. Ali and M. B. Malik: Hardware/software co-design of a
real-time kernel based tracking system. Journal of Systems
Architecture, vol. 56, pp. 317–326 (2010)

9. W. Ma and B. Manjunath: Edge flow: A framework of
boundary detection and image segmentation. Computer
Vision and Pattern Recognition, pp. 744–749 (1997)

10. J. Shi and J. Malik: Normalized cuts and image segmen-
tation. Computer Vision and Pattern Recognition, 1997,
pp.731–737 (1997)

11. S. Zhu and A. Yuille: Region competition: unifying
snakes,region growing, and bayes/mdl for multiband im-
age segmentation. Pattern Analysis and Machine Intelli-
gence, vol. 18, no. 9, pp. 884–900 (2002)

12. K. Appiah, A. Hunter, P. Dickinson, and H. Meng: Ac-
celerated hardware video object segmentation: From fore-
ground detection to connected components labeling. Com-
puter Vision and Image Understanding, vol. 114:11, pp.
1282–1291 (2010)

13. P. Dillinger, J. Vogelbruch, J. Leinen, S. Suslov, R.
Patzak,H. Winkler, and K. Schwan: Fpga-based real-time
image segmentation for medical systems and data process-
ing. IEEE Transactions on Nuclear Science, vol. 53, no. 4,
pp.2097–2101 (2010)

14. T. Saegusa and T. Maruyama: An fpga implementation
of real-time k-means clustering for color images. Journal of
Real-Time Image Processing, vol. 2:4, pp. 309–318 (2007)

15. D. B. K. Trieu and T. Maruyama: Real-time image seg-
mentation based on a parallel and pipelined watershed al-
gorithm. Journal of Real-Time Image Processing, vol. 2:4,
pp. 319–329 (2007)

16. D. B. K. Trieu and T. Maruyama: An implementation of
the mean shift filter on fpga. International Conference on
Field Programmable and Applications,pp. 219–224 (2010)

17. Christian Schmidt and Andreas Koch: Fast Region La-
beling on the Reconfigurable Platform ACE-V. Interna-
tional conference on Field Programmable Logic and Ap-
plications, 2003.

18. L. G. Ugarriza, E. Saber, S. R. Vantaram, V. Amuso,M.
Shaw, and R. Bhaskar: Automatic image segmentation
by dynamic region growth and multiresolution merging.
IEEE TRANSACTIONS ON IMAGE PROCESSING, vol.
18, no. 10,pp. 2275–2288 (2009)

19. Q. Luo and T. M. Khoshgoftaar: Efficient image seg-
mentation by mean shift clustering and mdl-guided region
merging. International Conference on Tools with Artificial
Intelligence,pp. 337–343 (2004)

20. J. Stawiaski and E. Decenciere: Region merging via
graphcuts. Image Analysis and Stereology, vol. 27, no. 1,
pp. 39–45 (2008)

21. http://links.uwaterloo.ca/Repository.html

