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ABSTRACT. We show a necessary and sufficient condition that the
fixed point set of a holomorphic isometry and the intersection of
two real forms of a Hermitian symmetric space of compact type are
discrete and prove that they are antipodal sets in the cases. We
also consider some relations between the intersection of two real
forms and the fixed point set of a certain holomorphic isometry.

1. INTRODUCTION

In [15], [17] and [18] the second and third authors showed that the
intersection of two real forms in a Hermitian symmetric space of com-
pact type is an antipodal set if the intersection is discrete. The notion
of an antipodal set of a Riemannian symmetric space was introduced
by Chen-Nagano [3]. We showed the main results of this paper in a
special case in [8]. In this paper we show a necessary and sufficient
condition that the fixed point set of a holomorphic isometry of a Her-
mitian symmetric space of compact type is discrete and prove that the
discrete fixed point set is an antipodal set. We also show a necessary
and sufficient condition that the intersection of two real forms in a
Hermitian symmetric space of compact type is discrete and consider
some relations between the intersection of two real forms and the fixed
point set of a certain holomorphic isometry by the use of the symmetric
triads introduced by the first author in [6].

We roughly explain how to use symmetric triads in order to obtain a
necessary and sufficient condition that the intersection of two real forms
is discrete. In an irreducible Hermitian symmetric space M = G/K of
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compact type two real forms L; and L, are determined by two involu-
tive anti-holomorphic isometries 71 and 7. These involutive isometries
71 and T, determine two symmetric pairs (G, F1) and (G, Fy). The
triad (G, F, Fy) defines a symmetric triad, by which we can describe
the intersection L, N Ly and obtain a necessary and sufficient condition
that L; N Ly is discrete.

The organization of this paper is as follows. In Section 2 we briefly
review some fundamental results on Hermitian symmetric spaces of
compact type, their antipodal sets and real forms.

In Section 3 we describe the fixed point set of a holomorphic isom-
etry of a Hermitian symmetric space of compact type and obtain a
necessary and sufficient condition that the fixed point set is discrete.
If a holomorphic isometry is contained in the identity component of
the group of holomorphic isometries, we can describe its fixed point
set by the root system of the Lie algebra of the group of holomorphic
isometries. There are two sequences of irreducible Hermitian symmet-
ric spaces of compact type whose groups of holomorphic isometries are
not connected. In these cases we describe the fixed point set of a holo-
morphic isometry which is not contained in the identity component in
another way and obtain a necessary and sufficient condition that the
fixed point set is discrete. In the cases where the fixed point sets are
discrete, we describe them as orbits of certain Weyl groups.

In Section 4 we first describe a great antipodal set of each irreducible
Hermitian symmetric space M of compact type as an orbit of the Weyl
group. We second investigate two real forms in M and their intersection
from a viewpoint of symmetric triads.

In Section 5 we also investigate a relation between the intersection
of two real forms in M and the fixed point set of a certain holomorphic
isometry on M from a viewpoint of symmetric triads.

The authors would like to thank Katsuya Mashimo and Kurando
Baba for useful conversations. They are also indebted to the referee,
whose comments improved the manuscript.

2. HERMITIAN SYMMETRIC SPACES OF COMPACT TYPE

In this section we review some fundamental results on Hermitian
symmetric spaces of compact type. We also review their antipodal sets
and real forms which we need later.

We construct a Hermitian symmetric space of compact type as an
adjoint orbit in a compact semisimple Lie algebra. Let G be a con-
nected compact semisimple Lie group and g its Lie algebra, which is
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a compact semisimple Lie algebra. We take an Ad(G)-invariant in-
ner product (, ) on g. We take a nonzero element J € g satisfying
(adJ)?® = —adJ. The adjoint orbit M = Ad(G)J C g is a Hermitian
symmetric space of compact type with respect to the induced metric
from (, ). Define a closed subgroup K of G by

K={keG|AdKk)J=J}.
Its Lie algebra & is given by
t={Xeg|[JX]=0}

The subspace
m = {[J, X] [ X € g}

is the orthogonal complement of €, thus we have an orthogonal direct
sum decomposition g = £ + m. The automorphism €™ is involutive.
The subalgebra ¢ is the (+1)-eigenspace and the subspace m is the
(—1)-eigenspace of €™47. The operator adJ defines an Ad(K)-invariant
complex structure on m which can be identified with the tangent space
of M at J, hence it defines an Ad(G)-invariant complex structure on
M. Tt is known that any Hermitian symmetric space of compact type
is constructed in this manner.

In a Riemannian symmetric space M we denote by s, the geodesic
symmetry at € M. A subset S of M is an antipodal set if s,(y) =y
for any z,y € S. The 2-number #,M of M is the maximum of the
cardinality of antipodal sets of M. We call an antipodal set of M great
if it attains #,M. These were introduced by Chen-Nagano [3].

A great antipodal set of a Hermitian symmetric space of compact
type is described in the following way.

Theorem 2.1 ([16]). Let M = Ad(G)J C g be a Hermitian symmetric
space of compact type. A great antipodal set of M is represented as MMt
for a mazimal abelian subalgebra t of g containing J. In particular, a
great antipodal set of M is an orbit of the Weyl group of g with respect
to t.

After [16] was published we knew the following earlier results. Bott
[1] showed that M Nt is an orbit of the Weyl group of g and Takeuchi
[13] showed that the Weyl group acts transitively on the great antipodal
set of M.

Take a maximal abelian subalgebra t of £. Since the involution e
is of inner type, t is also a maximal abelian subalgebra of g. Since J
commutes any element of €, the maximality of t implies that J is in t.
We will use the following lemma, which was suggested by K. Mashimo,
in Subsection 4.1.

madJ
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Lemma 2.2. Denote by W(g) and W (¥) the Weyl groups of g and &
with respect to t respectively. Then W(g)J = W (g)/W (¢). In particu-

lar, #£(W () J) = (W (g))/# (W (¥)).
Proof. The isotropy subgroup of W(g) at .J is equal to
{s e W(g) | sJ = J} =W(g) NAdg(K) = W(t).
0

By definition, a real form is a fixed point set of an involutive anti-
holomorphic isometry of M. A real form of M is a connected totally
geodesic Lagrangian submanifold of M. Leung [9] and Takeuchi [12]
classified real forms L of irreducible Hermitian symmetric spaces M of
compact type. The list is as follows.

M L
GL(C") G(R")
G (C?") Gr(H™)
G (C™) U(n)
Qn(C) Skt

SO(4n)/U(2n) | U(2n)/Sp(n)
SO(2n)/U(n) SO(n)

Sp(2n)/U(2n) | Sp(n)

Sp(n)/U(n) U(n)/0(n)

Es/S* - Spin(10) | Py(Cay) = Fy/Spin(9)
E;/S" - Eg (SU(8)/Sp(4))/Zs
Er/ST E ST Eq/F)

In this list above we denote by G (K") the Grassmann manifold con-
sisting of K-subspaces of K-dimension &k in K" for K = R, C, H and by
@, (C) the complex hyperquadric of complex dimension n in the com-
plex projective space CP"*!, which is holomorphically isometric to the

real oriented Grassmann manifold G5(R"2). We regard Gy(R™?) as
2

a submanifold in /\ R™*? in a natural way and define a real form S4
of Go(R™2) for p,q with p + ¢ = n by

SP1=5P(Rey @ -+ D Repir) A S Repin @ -+ @ Rengo),

where ey, ..., e, is the standard orthonormal basis of R"*2. The real
form SP4 is diffeomorphic to (SP x S9)/Zs.
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3. THE FIXED POINT SET OF A HOLOMORPHIC ISOMETRY

In this section we show a necessary and sufficient condition that the
fixed point set of a holomorphic isometry of a Hermitian symmetric
space of compact type is discrete and prove that the discrete fixed
point set is an antipodal set. We use the notation described in the last
section.

For a set X and a map ¢ : X — X we denote

F(¢, X) ={x € X [ ¢(x) = x}.

We use this notation throughout the paper. For any element ¢ in a
connected compact semisimple Lie group G with Lie algebra g we have
dim F'(Ad(g), g) > rank(G), because there exists a maximal torus of G
containing ¢. If dim F'(Ad(g), g) = rank(G), we call g a regular element
of G. We can see that the set of all regular elements of G is open and
dense in G.

We denote by A(M) the group of all holomorphic isometries of a Her-
mitian symmetric space M of compact type and by Ay(M) its identity
component. If M is equal to Ad(G)J C g for a connected compact
semisimple Lie group G with Lie algebra g, the identity component
Ao(M) coincides with {Ad(g)|n | ¢ € G}. Without loss of generality
we can suppose that the action of each simple factor of G on M is not
trivial.

Theorem 3.1. Let M = Ad(G)J C g be a Hermitian symmetric space
of compact type. The fized point set F(Ad(g), M) is discrete if and
only if g is a regular element of G. In the case F(Ad(g), M) is a great
antipodal set of M.

Proof. We take a maximal abelian subalgebra t of g containing J. Then
we have t C £ by the definition of £. We denote by g© the complexifi-
cation of g. For a € t we define the root space

go = {X €¢" | [H,X] = V-1{a, H)X (H € t)}

and the root system A = {a € t — {0} | go # {0}}. Then we have the
root space decomposition
g(C =t° + Z Ja-

aeA

We define a lexicographic order on t and write Ay = {a € A | a > 0}.
We obtain

g=t+ > 9N (0a+0a)

aEA L
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We write T' = exp t, which is a maximal torus of G, hence there exists
g1 € G such that a = ggg9;* € T. Since
Ad(g1)F(Ad(g), M) = F(Ad(a), M),

we consider the condition that F'(Ad(a), M) is discrete for a € T'. From
the definition of g, we obtain the following lemma.

Lemma 3.2. Fora =exp H € T with H € t we have
F(Ad(a),g) =t+ Y 9N (ga+9-a)-

aEA,
(o, HyE2WZ

Proof. By Lemma 3.1 of Chapter VI in Helgason [5] we can see that
for @ € A there exists a basis F,, G, of gN (ga + g_o) which satisfies

[H,F,]| = (o, H)G,, [H,G,] = —{a,H)F,.
These imply
Ad(exp H)F,, = cos{a, H)F,, + sin(a, H)G,,
Ad(exp H)G, = —sin{a, HYF,, + cos{a, H)G,,
Therefore we obtain
F(Ad(a),g) =t+ Y 9N (ga+g-a)-

a€EA,
(o, Hye2wZ

t

Corollary 3.3. For H € t the following three conditions are equivalent.

(1) The element exp H is regular.
(2) F(Ad(exp H),g) = t.
(3) (o, H) ¢ 27Z, for any o € A.

Using these preliminaries we prove the theorem. We consider the
case where ¢ is a regular element of G. In this case a = g1gg; ' € T is
also regular. By Corollary 3.3 we have F'(Ad(a),g) = t and hence

F(Ad(a), M) = M Nt

which is discrete and a great antipodal set of M.

Next we consider the case where g is not a regular element. In this
case a = g1gg; ' € T is not regular. We write a = exp H for H € t. By
Corollary 3.3 there exists o € A which satisfies («, H) € 27Z.

Let g; (1 <4 < n) be simple ideals of gand g =g, ®--- D g, is a
direct sum decomposition of g. There exists ¢ such that o € t;, = tNg;.
We denote by W; the Weyl group of g; with respect to t; and by J; the
g;-component of J. Since the action of the Lie subgroup corresponding
to g; is not trivial, we have J; # 0. The Weyl group W; acts transitively
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on the set of all long roots of g; and the set of all short roots, thus we
have

spang{wa | w € W;} = t,.
Hence there exists w € W, which satisfies (o, wJ;) # 0. We can replace
J with wJ. Then we have (a, J) # 0 and the decomposition

We take F,, in the proof of Lemma 3.2 and consider

Ad(exptF,)J = Ad(exptFy,) {a, J>a + Ad(exptF,) (J _ e J) a)

(o, @) (o, @)
(a, J) (a, J)
= Ad tEF,)—~ ——"La.
(exptF,) (a,a>a +(J (a,a>a
Since [Fy,, Go] = ||Fu|?a = ||Ga|?a, the first term is
(a, ) (a,J) . (a, J)
Ad(exptF, a = cos (|| Fy |||t a—sin (|| F,||||al|t) ———G,
e = cos (I Ealllal) 22 asin (1l all) it

and it is a circle in spang{a, G4} C t+9gN(go+9-a). The second term
is contained in t, hence we have Ad(exptF,)J € F(Ad(a), M), which
means that F'(Ad(a), M) is not discrete. Therefore F'(Ad(g), M) is not
discrete. This completes the proof of the theorem. O

Remark 3.4. We note that (a,J) = 0,£1 for any o € A since
(adJ)? = —adJ. This fact will be used in Subsection 4.1.

We consider the fixed point set of an element of A(M)— Ay(M). We
recall the results on A(M)/Aq(M) obtained by Takeuchi [11].
Lemma 3.5 ([11]). Let M be an irreducible Hermitian symmetric space
of compact type. Then A(M)/Ao(M) are as follows.

(A) If M = Qon(C)(m > 2) or M = G,,(C*™)(m > 2), then
A(M)/Ao(M) = Zs.
(B) Otherwise, A(M) = Ao(M).

In the case where M is irreducible, it is sufficient to consider the
cases where M = Qy,,(C), G,,(C*™)(m > 2).

In the case where M = Q,,,(C)(m > 2), we can suppose that G =
SO(2m + 2) and regard M = SO(2m + 2)/(SO(2) x SO(2m)) as a
submanifold in A\*R?™*2 in a natural way. We take

1
¢ = c 0(2m +2).
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Then we have A(M) = Ao(M) U Ad(¢)Ao(M) as we showed in the
proof of Proposition 2.2 in [17]. Hence

AM) — Ag(M) = Ad(¢)Ag(M) = Ad({g € O2m + 2) | det g = —1}).
For any g € O(2m + 2) there exists g; € O(2m + 2) which satisfies

R(61)
(3.1) 9997 = R(6,,) ,
1
—1
where
R(6;) = cost); —sinb; (1<i<m)
¢ sinf; cosb, - =
Let e; be the i-th column vector of gfl. Then eq,...,e9,.12 is an
orthonormal basis of R?"*2 and
(3.2) gleai1 eai] = [e2i—1 eai] R(0;) (1 <1< m)
1 0
gleam+1 €am2] = [€2mi1 Comy2] [ 0 —1 ] .

Using these we can obtain the following theorem on the fixed point
set of an element of A(M) — Ag(M).

Theorem 3.6. Let M = (Qs,,(C)(m > 2). Any element of A(M) —
Ao (M) is equal to Ad(g) for g € O(2m~+2) withdet g = —1. F(Ad(g), M)
is discrete if and only if there exists g1 € O(2m + 2) such that (3.1)
holds and that R(0,), ..., R(0,,) are different from each other. In the
case

F(Ad(g), M) = W(SO(2m + 1)),

where SO(2m + 1) is the stabilizer of espmio. F(Ad(g), M) is an an-
tipodal set of M and

#F(Ad(g), M) =2m < 2m + 2 = #5M.
Proof. By (3.2) we have
{:t61 N €9, :|:€3 A €4y, :|:€2m_1 N €2m} C F(Ad(g), M)

We suppose that there exist 4, j (i < j) satisfying R(6;) = R(6;). For
¢ € R we write

| cos§ O | sing 0
C<§)_{ 0 cosf}’ S(f)—{ 0 sinf]'
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Then we have

glezi1 eai ey €3] { g((g } = [e2i1 €2 €251 €3] { Sé; } R(6;),

hence g acts on the 2-dimensional subspace spanned by

[eai1 i €351 €3] { gég }

as the rotation with angle 6;. Therefore
(COS 5621'_1 + sin 562]'_1) A\ (COS §€2i + sin 562]‘) c F(Ad(g), M)

for any £ € R and F'(Ad(g), M) is not discrete.

Next we suppose that R(6;) and R(6;,) are different for any different
1,7. Let V; be the 2-dimensional subspace spanned by eg; 1 and ey;.
Then we have an orthogonal direct sum decomposition

R™2 =V @ ® V1.

We take u A v € F(Ad(g), M) where u and v are orthonormal. We
decompose u and v as follows.

u=u+-+up (WeV, 1<i<m+1)
v=uv+ -+ vn (eV;1<i<m+1).
The element g acts on these as follows.
gu = R(01)uy + -+ + R(Op)tm + g1
gv = R(0)v1 + -+ R(0n)vm + gUma1-

On the other hand uw A v € F(Ad(g), M), hence g acts on the 2-
dimensional subspace spanned by u and v as a rotation. There exists
¢ € R which satisfies

ghdzhﬂ{w%'ﬂmg

siné  cosé
and we obtain
gu = cos {u + sin v
gu = —sinéu + cos &v.
Thus we get
R(0;)u; = coséu; +sinév; (1 <i < m),
JUpms1 = €OS EUpr1 + SINEV 1.

The action of g on V,,,; is not a rotation, we have u,, 1 = 0. Since

R(0;) # R(0;) for different ¢, j, there exists k such that
uk%oa u; =0 (Z?’ék)
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and we have u A v = Feqp_1 A eg,. Therefore
F(Ad(g), M) = {:|:61 VAN €2, :|:€3 A €4y .. 7:i:62m71 N €2m}

and F(Ad(g), M) is discrete. The above description of F(Ad(g), M)
shows that it is an orbit of W (SO(2m + 1)) through J = e; A e3 and
an antipodal set of M. O

In the case where M = G,,(C*™)(m > 2), we can suppose that
G = SU(2m). We take

in G, where 1,, denotes the m x m identity matrix. We regard M as
the submanifold Ad(G)J in g = su(2m), where

Lm
P P

We define an involutive automorphism ¢ of G by ¢(g) = J,,gJ,,' for
g € G. The fixed point set F(¢,G) is equal to Sp(m) and ¢ defines
a symmetric pair (SU(2m), Sp(m)). The differential map d¢ of ¢ is
represented by dé(X) = J,XJ-! for X € g. So we simply write
#(X) = J,XJ,! for X € g. The automorphism ¢ of G also induces a
holomorphic isometry of M defined by

Ad(g)J — Ad(6(g))] (g € G).
Since ¢(J) = J, we have
Ad(o(g))J = Ad((g))o(J) = ¢(Ad(g)]).

Thus the holomorphic isometry of M induced by ¢ is the restriction of
¢:g—gtoM Cg. Sowe also denote it by ¢.

The holomorphic isometry ¢ is contained in A(M) — Ag(M), which
is showed in [17]. We take a maximal torus 7" of Sp(m).

Lemma 3.7. For any h € A(M) — Ao(M) there existt € T and g € G
such that h = Ad(g)Ad(t)Ad(¢(g71))¢ and

F(h, M) = Ad(g) F(Ad()6, M).
Proof. We define two involutive automorphisms 61, 6, of G x G by
01(g,h) = (h,g), 0x(9,h) = (67" (h),6(9)) ((9,h) € G x G).

For a general automorphism ¢ of G, the automorphism 6, is involutive.
Since ¢ is involutive, #; and 6, are commutative. The fixed point sets
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of them are

K, =F(0,,GxG)=1{(g,9) | g € G},
Ky = F(0:,G x G) ={(g,0(9)) | g € G}

and we obtain two direct sum decompositions of g x g as follows
gxg=8tom =t S m,,
where
b ={(X,X)|Xeg}, m={X -X)|Xeg},
b ={(X,0(X)) | X g}, my={(X,-¢(X))| X €g}.
These imply
bNnt={(X,X)]| X €sp(m)},
my Nmy = {(X, —X) [ X € sp(m)}.
We denote by t the Lie algebra of T'. The subspace
a={(H,—H)| Het}

is a maximal abelian subspace of m; N'my. We identify (g, ¢(g)) € Ko
with ¢ € G and (g1, 92) K1 € (G x G)/K; with glgz_1 € (. Then the
action of Ky on (G x G)/K; is equivalent with the action of G on G
defined by

g-z=gxd(g”") (9,7 €Gq).
This action is a Hermann action and 6,6y are commutative. In par-

ticular the action is a hyperpolar action with section 7" by [4]. So we
have

G=JgTo(g™)

geG

Since A(M) = Ao(M) U Ag(M)¢, for any h € A(M) — Ao(M) there
exist g € G and t € T such that

h = Ad(g)Ad(t)Ad(¢(g7))¢.
Using this we get
F(h, M) ={X € M | Ad(g)Ad(t)Ad(¢(g™"))(X) = X}.
We put X = Ad(g)Y. Since ¢(Ad(g9)Y) = Ad(4(g))pY, we obtain
F(h, M) = Ad(g)F(Ad(t)p, M).
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The above lemma shows that it is sufficient to consider the fixed
point set F'(Ad(t)¢, M) for t € T. We take a maximal torus

- dfren]

of Sp(m) in order to calculate F(Ad(t)¢, M). The Lie algebra of T is
t={H(z1,...,2n) | z; € R},
where

€

We define e; € t by
(H(x1,...,Tm),€) = x;.

The canonical decomposition g = €@ m of the compact symmetric pair
(SU(2m), Sp(m)) is given by
X € u(m), }

t=sp(m) = {K/( )3/] 'Y =Y € gl(m,C)

e ([ 2 e )

In order to consider the action of Ad(t)¢ on g we first decompose ¢ into
a direct sum of root spaces with respect to t. We define

_ E;; — E; _ — |Ei; + Eji
Fij:{] ’ E—E..]’GU: _1[] ’

¥ 71

—(E; +Eji):|
for 1 <7< j <m and

E.:+ FE;
+ _ ij i + _ ./
F"j_{—(EiijEji) }’GU v 1[Eij+Eji
for 1 <i<j <m. We get

m)=t® Y (RF; ®RG;) &> (RF} &RGY)

1<J i<j

Ei; + Eji:|

and

[H, Fj] = (ei £ ¢, H)G3;

177

[H,Gf;] <eZ:|:e],H)FjE
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for any H € t. We second decompose m into a direct sum of weight
spaces with respect to t. We define

— _ | By — B _ _ = | By + By
Xig = [ —(Eij — Ejz):| Fig =Vl [ Eij+ Ej |’

E. _ E.. E. — E..
+_ ij ji +_ /T ij ji
Xij = |:Eij — Eji } Yy =Vl [_(Ez'j — Eji) }
for 1 <i<j <m and

V(m) = {X em|[X,{] = {0}}.
We get
m) &Y (RX; &RY;;)e > (RX} & RY)
1<J 1<J
and
[H,X] = (este;, )Y, [HY]=—(e;te;, H)X;;
for any H € t. Using the above decompositions we obtain
(3.3) F(Ad(exp H) 0 ¢, g)

=to Y (REjoRGHo >  (RF; dRG;)

(ei+ej,H)e2nZ (ei—ej,H)e2TZ
® >  RXfeRYH)e Y  (RX;@RY;)
(ei+ej,H)yen+2nZ (es—ej,Hyem+27Z

and the following theorem.

Theorem 3.8. Let M = G,,,(C*™)(m > 2). Any element h of A(M)—
Aog(M) is equal to Ad(g)Ad(exp H)Ad(p(g71))¢ for g € SU(2m), H €
t. Its fized point set F'(h, M) is discrete if and only if (e;te;, H) & w7
for any i # j and {(e;, H) & ©Z for any i. In the case

P(Ad(exp H) 0 6, M) = W(Sp(m) .

which 1s an antipodal set of M and
2
HF(h, M) = 2" < (;:) — #,M

Proof. Lemma 3.7 implies the description of h and it is sufficient to
consider F(Ad(exp H)¢, M). According to (3.3), F(Ad(exp H)¢, g) =
tif and only if (e; £ e;, H) & wZ for any i # j and (e;, H) ¢ 7Z for any
7. In this case we have

F(Ad(expH)o ¢, M)=MnNt=W(Sp(m))J
and #F(h, M) = 2™,



14 OSAMU IKAWA, MAKIKO SUMI TANAKA, AND HIROYUKI TASAKI

In order to prove the theorem we have to show that F'(Ad(exp H)¢p, M)
is not discrete if F'(Ad(exp H)¢, g) # t. We first consider the case where
there exist ¢, j such that (e; +e;, H) € 2nZ. Since W (Sp(m))J spans
t, there exists X € W(Sp(m))J satistying (e; + e;, X) # 0. Using
[FJ, G ;] = |Fi;*(e; + ¢;) obtained from their definitions, we get

+ e, X)

Ad tFNOYX = (X — <61—]’ i j

(eXp z]) < ||6i+6j||2 (6 +6]))
(ei +¢;,X)

lei + ¢l

e; +¢e; . G+
Cos e; + e;||t) —— —sin e; +e;illt
< UESN il UEZN il )||G ”)

for t € R. Therefore Ad(exptF;;)X € F(Ad(exp H) o ¢, M) for t € R
and F(Ad(exp H) o ¢, M) is not discrete. We second consider the case
where there exist i # j such that (e; —e;, H) € m + 2nZ. There
exists X € W(Sp(m))J satisfying (e; — e;, X) # 0. Using [X;;,Y;;] =
| X5, |I?(e; — ;) obtained from their definitions, we get

- <€i _6‘7X>
Ad(exthU)X = <X — M(el - €j)
i J
{ei —¢j, X)

lles — ¢l

e —e; , _ Y
cos([| X [llle: — e;llt) ——— — sin([|X;; [[[le — ;1)
le: — ¢ hoyl
for t € R. Therefore Ad(exptX;;)X € F(Ad(exp H) o ¢, M) for t € R
and F(Ad(exp H) o ¢, M) is not discrete. In the other cases we can
see that F'(Ad(exp H) o ¢, M) is not discrete in a similar way. This
completes the proof of the theorem. 0

Remark 3.9. When a Hermitian symmetric space M of compact type
is not irreducible, F'(h, M) for h € A(M) is obtained from the fixed
point sets of holomorphic isometries of irreducible Hermitian symmetric
spaces of compact type, which we have already known above. Let
M = M; x --- x M, be the decomposition of M to the product of
irreducible factors. We take ¢ € A(M). In order to investigate F'(¢, M)
it is sufficient to consider the case where M; = --- = M, and

¢(w1,. .. k) = (Ge(wr), 1(71), -, dr—1 (1)) (23 € M),
where ¢; : M; — My (1 <@ < k—1) and ¢ : My — M, are
holomorphically isometric maps. In this case we have
F(g, M)

= {(9517 ¢1(1‘1), ¢2¢1($1)7 ey Q1 ¢1($1)) | YANS F(¢k 91, Ml)}



THE INTERSECTION OF TWO REAL FORMS AND SYMMETRIC TRIADS 15

Hence F(¢, M) is discrete if and only if F'(¢y - - - ¢1, M7) is discrete. In
the case F'(¢, M) is an antipodal set of M and

#E (), M) = #F(dx - - - 1, M),

4. THE INTERSECTION OF TWO REAL FORMS

4.1. Characteristic elements associated with a root system. As
we mentioned in Remark 3.4 the complex structure J of a Hermitian
symmetric space of compact type satisfies (o, J) = 0,41 for any root
a. Based on the fact we define a characteristic element of a root system
as follows.

Let R be a root system of a finite dimensional vector space a with
an inner product (, ). Then J € a — {0} is a characteristic element
of the first kind or simply a characteristic element associated with R
if (\,J) =0,+1 for any A € R. We denote by W(R) the Weyl group
of R. If J is a characteristic element associated with R, then so are
—J and sJ for any s € W(R). In the sequel we assume that R is
irreducible. For a characteristic element J we can take a fundamental
system II = {ay,...,.} of R such that (a;,J) = 0,1 for any «;.
Denote by 6 = > m;aq; the highest root of R. When the type of R
is one of Fg, F; and G5, there does not exist a characteristic element
since m; > 2 for any . In order to describe W(R)J in detail we
give the definition of a two-point homogeneous space, which appears
in the following proposition. For a group A which isometrically acts
on a metric space (X, d) if for any two pairs z,y € X and 2,y € X
satisfying d(z,y) = d(2',y’) there exists a € A such that ax = 2/,
ay =y, then we call X a two-point homogeneous space by the action
of A. We prove the following proposition using the classification of an
irreducible root system.

Proposition 4.1. The orbit W(R)J of a characteristic element J as-
sociated with an irreducible root system R is a two-point homogeneous
space by the action of W(R).

Proof. Define a set {dy,...,d:} (0 <dy <---<d;) by

{di,....di} =A{l[sJ = J|[ | s e W(R)} — {0}

The condition for W(R).J to be two-point homogeneous is equivalent
to the condition that the isotropy subgroup {s € W(R) | sJ = J} acts
transitively on each {sJ | ||sJ—J| = d;, s € W(R)}. Denote by Ch(R)
the set of all characteristic elements associated with R. We examine

the condition above for each characteristic element J associated with
each R = A,, B,,C,, BC,, D,, Es and F; in Examples 4.2, 4.3, 4.4, 4.5,
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4.6, 4.8, 4.10. If R is the root system of g in Section 2, according to
Theorem 2.1 the orbit W (R).J is a great antipodal set of the Hermitian
symmetric space of compact type associated with J, so we also calculate
its cardinality # (W (R)J). We follow the same notations of the set of
positive roots in [2]. Denote by {ej,...,e.} the standard orthonormal
basis of R".

Example 4.2. In the case where R = B, = {*e;%e;, te;}, set J = e;.
Then we have

Ch(R) =W(R)J = {£es,...,Le, }.

Thus #(W(R)J) = 2r, t =2, d, = /2 and dy = 2. We can verify that
W(R)J is two-point homogeneous.

Example 4.3. In the case where R = C, = {+£e; £+ €, £2¢;}, set

1
J==(e1+ex+ - +e).

2

Thus #(W(R)J) =2", t =rand d; = Vi (1 <4 <r). We can verify
that W(R)J is two-point homogeneous.

Then we have

Ch(R) = W(R)J = { 3 > ee;

=1

Example 4.4. In the case where R = BC, = {+£e; £ ¢;, Le;, £2¢;},
Examples 4.2 and 4.3 imply that there does not exist a characteristic
element.

Example 4.5. In the case where R = D, = {+e; + ¢;}, we define
characteristic elements .J;, J, and .J3 by

r—1 T
1 1
J1:€1, JQZ§<'51€]'—€T>, ngé'glej.
J= J=

Then
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and Ch(R) = W(R)J; UW(R)Jy UW(R)J3. Thus #(W(R)J;) = 2r,
#(W(R)Jy) = #(W(R)J3) = 2"~1. We can verify that W (R)J; is
two-point homogeneous.

Example 4.6. In the case where R = A, = {£(e; — ¢;)}, we define

characteristic elements Jy,..., J,. by
i r+1
Ji: (61+"'+6i)—r+1;6j.
Then
i r+1
W(R)JZ:{Jeerj_T’—i——ljgej AEPZ(T—Fl)},

where we put Pi(r +1) = {A C {1,2,...,7r+ 1} | #A = i}. Thus
Ch(R) = W(R)J; U---UW(R)J, and #(W(R)J;) = ("t'). We can
verify that W (R).J; is two-point homogeneous.

Remark 4.7. In the case of Ay, the orbit W(R)J; consists of three
vertices of an equilateral triangle whose center of mass is the origin.
Since W (R)J, = —W/(R)J;, the above statement holds for W(R)Js.
These will be used later.

Example 4.8. In the case where R = FEg, we define characteristic
elements J; and J, by

2 1
Ji = g(@g —er —eg) = §(4a1 + 3ag + bag + 6ay + das + 2a),
1 1
Jy = g(@g —er—eg) +e5 = 5(2041 + 3as + 4as + 6y + bas + dag).

Then

Ch(R) =W(R)JJUW(R)Jsy, W(R)(—J2) = W(R)J;.
Lemma 2.2 implies that
B #(W (eq)) B 27.34.5
#HWIR) = Zy o)+ ®) ~ 2051

We can verify that t = 2, dy = 2, dy = 4 and W(R)J; is two-point
homogeneous.

= 33

Remark 4.9. There exist exactly five subsets A; (1 < i < 5) of
W (R).J; such that each A; contains .J; and consists of three vertices of

an equilateral triangle whose center of mass is equal to the origin. If
we set al¥) = spang(4A;) (1 <i<5), then

A; = aD N W(R)J,.
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These will be used later.

Example 4.10. In the case where R = E7, we define a characteristic

element J by
(ag, J)y =1, (o, J) =0 #T).
Then Ch(R) = W(R)J. Lemma 2.2 implies that
#W(er)  29-3%.5.7
#(W(eg+R))  27-34.5

We can verify that t = 3, d; = V2, dy = 2, d3 = v/6 and W(R)J is
two-point homogeneous.

#(W(R)J) = =23.7.

Hence we complete the proof of Proposition 4.1. U
Theorem 2.1 and Proposition 4.1 imply the following theorem.

Theorem 4.11. A great antipodal set of an irreducible Hermitian sym-
metric space of compact type is a two-point homogeneous space.

4.2. Symmetric triads. In this subsection we review some results on
symmetric triads obtained in [6] and [7]. These results will be used in
Section 4.3 and Section 5.

Let a be a finite dimensional vector space over R with an inner
product (, ). A triple (3, %, W) is a symmetric triad of a, if it satisfies
the following six conditions:

(1) ¥ is an irreducible root system of a, and ¥ spans a

(2) ¥ is a root system of a.

(3) W is a nonempty subset of a, which is invariant under the
multiplication by —1, and ¥ = X U W.

(4) XN W is a nonempty subset. If we put | = max{||a| | « €
SAW}, then SNW ={aecX||a| <1}

A
(5) ForaeW,Aez—W,zﬁ
(8

W — 3, where we set s,A = A — 2

is odd if and only if s, A €
(a, \)
a2
(6) Fora €e W, A e W — X%, 2< ) is odd if and only if s\ €

levf?
> —W.
If (X,%, W) is a symmetric triad of a, then ¥ spans a. In fact, using
(4) we have

a D span(X) D span(X N W) D span{the shortest roots in X} = a.

For a symmetric triad (3,3, W) of a, take a fundamental system IT of
Y. Denote by $* the set of positive roots in ¥ with respect to II. If
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we put T =Y N ST and W = W NI, then ¥ = Xt U (—=X+) and
W =Wt U (—=WT). We define a nonempty subset a, in a by

a = {Hea’(A,H) ¢ 77, (a, H) §Zg—|—7rZ}.

rexn
acW

Then a, is an open dense subset of a. A point in a, is called a regular
point.

Let G be a connected compact simple Lie group and (G, Fi, Fy) a
compact symmetric triad: There exist two involutions #; and 6, on
G such that the closed subgroup F; of G lies between F(6;,G) and
its identity component F'(60;,G)y. We denote by g, f; and f» the Lie
algebras of G, F} and F5 respectively. We assume that 6,6, = 6,60, and
that #; cannot be transformed to #5 by an inner automorphism of G.
We denote the differential of #; by the same symbol 6;. We have two
canonical decompositions of g:

g="F1D®p1=F2©p2,
where p; = F'(—0;,9). Since 0105 = 6,6,, we have

g=(F1N0F2) & (p1Np2) & (F1 N Pp2) © (F2Np1).

Take a maximal abelian subspace a of p; N py. The isometric action of
F} on a Riemannian symmetric space G/ F, of compact type is called a
Hermann action. Since the action is a hyperpolar action whose section
is the orbit of A = expa through the origin, we have G = F1 AF;. For
each a € a define a subspace g(a, a) of g* by

gla,0) ={X eg"|[H,X]=V-1{a, H)X (H € a)}

and set ¥ = {a € a — {0} | g(a,a) # {0}}. For ¢ = +1 define a
subspace g(a, a, €) of g(a, ) by

g(a,cz,e) = {X S g(ﬂ, Ot) ‘ 0162X = GX}
Since g(a, ) is #109-invariant, we have
g(a,a) =g(a,a,1) @ gla,a, —1).

Set ¥ = {a € ¥ |g(a,a,1)# {0}}and W = {a € ¥ | g(a,a, —1) #
{0}}. Then the triple (X,%,W) is a symmetric triad of a. Define
closed subgroups G5 and Fiy by Gi1o = F(0105,G) and Fi5 = {g €
G12 | 01(g) = g}. Then the Lie algebras of G2 and Fjy are given by

gi2 = (F1 Nf2) ® (p1 Np2), iz = F1 N2,
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respectively. The restricted root system of the compact symmetric pair
(G12, F12) with respect to a coincides with ¥. For A € X, we define
subspaces p) in p; Npy and §y in f; N f2 as follows:

pa=A{X €piNps [ [H[H X]] = —(\ H)*X (H € a)},
Ih=A{X €fnfe | [H[HX]]=—(\H)?X (H€a)}.

Take a maximal abelian subalgebra t in g5 containing a. Denote by
R the root system of gjo with respect to t. Let t = a; H — H be
the orthogonal projection and set Ry = {a € R | & = 0} Define a
subalgebra fy in f; N fo by

fo={X€fnf:|aX]={0}}.
Take a compatible ordering of t. Then we have the following lemma.

Lemma 4.12. (1) We have orthogonal direct sum decompositions:
hNfa=fo® > F, PiNpa=ad Y pa
Aes+ Aes+

(2) For each a € R* — Ry there exist S, € f1 N fe and T, € p1 N Ps
such that

{So|lae R, a=)}, {T.|laeR" a=2\}
are respectively orthonormal bases of fn and py, and for H € a
[H,S.] = (a, H)T,,, [H,T,] =—(a,H)Ss, [Sa,Ta]=a
Ad(exp H)S,, = cos{a, H)S,, + sin(«o, H)T,,
Ad(exp H)T,, = —sin{a, H)S,, + cos(a, H)T,,.
Define subspaces of f; N ps and p; N fo by
V(finp2) ={X € finps|[a,X]={0}},
V(piNf) ={X €pinfs|[a,X]={0}},
VEfiNps) ={X €finps | X LV(inpa)},
VEpinf) ={X epinf | X LV (piNf)}.

For a € W define subspaces V.1 (f; Npy) in VL (f1 Nps) and VE(py N o)
in V*(p1 N fa) by

Va(finpe) ={X € V=(funpo) | [H,[H X]] = —(o, H)’X (H € )},
Valpin2) ={X € V:(pinfo) | [H, [H,X]] = —(o, H)*X (H € a)}.

Then we have the orthogonal direct sum decompositions:

T(fnp.) = ZV (Ffinpa), V(i) = ZV (p1 N f2).

acW+ aceW+



THE INTERSECTION OF TWO REAL FORMS AND SYMMETRIC TRIADS 21

For A € ¥ and a € W, set
m(A) = dime g(a, A\, 1), n(a) = dime g(a, o, —1).

Lemma 4.13. (1) For any a« € W,

{aﬂ Vaj_(fl N p2>] = von_(pl N f2)7
[Cl, Vaj_(pl N f2>] = Val(fl N p2)

(2) There exist orthonormal bases { X ;b 1<i<n(a) and {Yait1<i<n(a)
of V:2(F1 N pe) and VE(py N fa) respectively such that, for any
H € a,

[H, Xo:) = (o, H)Yos, [H,Ya:]=— (o, H) X,
[Xa,i,Ya,i] = @,

Ad(exp H) X, = cos{a, H) X, ; + sin(a, H)Y, ;.
Ad(exp H)Y,; = —sin(a, H) X, ; + cos(o, H)Y,, ;.

Lemmas 4.12 and 4.13 imply that
(4.4) W(E) C {Ad(g)la | g € G, Ad(g)a = a},

where W(i) denotes the Weyl group of ¥. See Corollary 4.17 and
Lemma 4.4 in [6] for the detail.

Take a maximal abelian subspace a; of p; containing a. The maxi-
mality of a implies that a = a; N ay. Denote by R; the restricted root
system of (G, F;) with respect to a;. If a = ay, then > = R;. We
list some (G, Fy, Fy)’s, their symmetric triad (3,3, W)’s, the restricted
root system (R;)’s, and the structure of fo’s as a compact Lie algebra,
which we will need in Subsection 4.3 and Section 5.

(G, 1, Fy) (3,5, W)
(1) | (SU(2n), S(U(n) x U(n)), SO(2n)) (I-Cy)
(2) | (Sp(2m), Sp(m) x Sp(m),U(2m)) (I11-C,,)
(3) | (SO(4m),U(2m), SO(2m) x SO(2m)) (I-Cy)
(4) | (B7,S"- B, SU(8)) (1-Cs)
(5) [ (SO(r+s+1t),S0(r) x SO(s +1), (I-B,.)

SO(r+s) x SO(t)) (s> 0,7 <t)
(6) | (Es, Fiy, Sp(4)) (I1I-A,)
(7) | (SU(2(m + q)), Sp(m + q), SO2(m + q))) | (1-Ap 1)
(8) | (SU(4m), Sp(2m), S(U(2m) x U(2m))) | (1I-Cy,)
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Ry Ry fo
(1> Cn Agn—1 {0}
)1 C [ Com R™
3)[Cr | Dam R
(4) 03 E7 5u(2)4
(5> B, Bmin{r-ﬁ-s,t} (1f T+ 7é t) 50(8) 2 50(t - T)
D (ifr+s=t)
(6) Ay Eg 5]3(].)4
(7) | Amig As(mtq)-1 R+
(8) | Ag1 | Comy sp(1)™

We explain the notations in the table above. In column of (3, %, W)’s
we used the following notations.

Y | X | W
LD [S [ |8
(I'-C,) | C, | Dy | Cy,
(1-Cr) [ Cm | Cu | Dy
(I_B’/‘) Br Br {iez}

In the table above, f, = R™ means that f; is an abelian Lie algebra of
dimension m. We used table 1 in Tamaru [14] and a table of Section 4
in Matsuki [10] to determine the structure of fop when G is of exceptional
type. Note that so(s) is abelian if and only if s < 2.

4.3. The intersection of two real forms. Let M = Ad(G)J C g
be an irreducible Hermitian symmetric space of compact type. In this
subsection we study a necessary and sufficient condition that the inter-
section of two real forms of M is discrete, and describe the intersection
when it is discrete. Any two real forms of M always intersect. Let
Ly = F(m, M) and Ly = F (19, M) be two real forms of M, where 7; is
an involutive anti-holomorphic isometry of M. Define an involution 6;
of G by 0i(g) = migr; ', If we set F; = F(0;,G), then (G, F}, F) is a
compact symmetric triad. In order to study L; N Ad(a)Lsy for a € G,
we may assume that 775 = 77 by the classification of real forms in
irreducible Hermitian symmetric spaces of compact type. We use the
same notation in Subsection 4.2. Take a maximal abelian subspace a
of p; N ps which contains J. We may assume that a is in exp a since
G = Fi(exp a)F,. By Theorem 4.3 in [16], we have

Li=Mn P, Ad(a)Lg =Mn Ad(a)pg,
LN Ad(a)Lg =Mn (pl N Ad(a)pQ)
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If L, is congruent to Lo, which means that there exists ¢ € GG such that
Ly = Ad(g)L,, then we may assume that L; = Ly. We divide into the
following two cases:

(1) Ll = LQ.

(2) L; is not congruent to Ls.

First we assume that Ly = Ly. Set T =7 =7, L = L; = Ly and so

on. Denote by R the restricted root system of (G, F') with respect to
a. Then we have root space decompositions of f and p:

f:f()@z:f)\a p:a@zpka
AeR; AeR,

where R, is the set of positive roots in R with respect to a lexico-
graphic ordering. The complex structure J is a characteristic element
associated with R. Since

m=[Jg] = Z (fA @ py),

ARy

(A, J)#0

we have

(4.5) dimM =2 > mp()),
NeRy
(A, J)#0

where we denote by mg(\) the multiplicity of A. If we set a = exp H
for H € a, then

pNAd(@p=a® >  pa

XER,
(\H)enZ

Theorem 4.14. The intersection LN Ad(a)L is discrete if and only if
(\,H) ¢ 7Z for any A € R. In this case,

(4.6) LNAd(a)L=MnNa=W(R)J,
where M M a is a great antipodal set of L.

Proof. If (\,H) ¢ wZ for any A\ € R, then we have (4.6), since p N
Ad(a)p = a. Here the second equality follows from Proposition 2.2 in
[5, Ch.VII].

If there exists A € R such that (A, H) € 7nZ, then there exists X €
W(R)J such that (A, X) # 0. There exist unit vectors S\ € f, and
T\ € py such that for any H' € a

[H',S)\| =\, HYT\, [H',T\] =—(\ H)S\, [S\,Ty] =\
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Then
A X A X
Ad(exptSy\)X = X + <”;‘H2> (cos(t||Al]) — DA — < H’)\H ) sin(t[|A]]) T
S L1 N Ad(a)L2
Hence L; N Ad(a)Ls is not discrete. O

Example 4.15. If (M, L) = (Sp(r)/U(r),U(r)/O(r)), then R = C,
and #(W(R)J) = 2.

Proof. The assertion immediately follows from the table in Subsection
4.2 and Example 4.3. U

Example 4.16. If (M,L) = (G(C"),Gx(R™)), then R = A,,_; and
#W(R)I) = ().

Proof. Since (G,F) = (SU(n),SO(n)), we have R = A,_; and the
multiplicity of any root in R is equal to 1. (4.5) implies that J = Jj or
J = J,_i, in Example 4.6. Thus #(W (R)J) = (}) by Example 4.6. O

Example 4.17. If (M, L) = (SO(2r)/U(r), SO(r)), then R = D, and
#(W(R)J) =21
Proof. Since (G, F) = (SO(2r), S(O(r) x O(r))), we have R = D, and

the multiplicity of any root in R is equal to 1. (4.5) implies that J = J,
in Example 4.5. Thus #(W(R)J) = 2"~! by Example 4.5. O

Next we assume that L; is not congruent to L,. Denote by (3,3, W)
the symmetric triad associated with (G, Fi, F,). By Lemmas 4.12 and
4.13 J is a characteristic element associated with . Lemmas 4.12 and
4.13 also imply that

pNAdl@p=a® Y @ Y Vi(pinf)

xexst acwt
NH)YETZ a,HYeT 477
2

Denote by R; the restricted root system of (G, F;) with respect to a;.

Theorem 4.18. The intersection LiNAd(a)Ly (a = exp H) is discrete
if and only if H is a regular point of (X,%, W).

Proof. If H is a regular point of (3,3, W), then p; N Ad(a)p; = a.
Thus

(47) L1 N Ad(a)L2 = (M N Cll) N (M N Clg) = W(Rl)J N W(RQ)J

We assume that H is not a regular point of (X, %, W). Then (i) there
exists A € ¥ such that (A, H) € 7Z, or, (ii) there exists &« € W such
that (o, H) € § + 7.
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In the case of (i) we can prove that L; N Ad(a)Ls is not discrete in a
similar manner of the proof of Theorem 4.14. In the case of (ii) there
exists X € W(X)J such that (a, X) # 0 since W (X)a spans a. Lemma
4.13 implies that

X X
Ad(exptX,:)X = X + %(cos(t“a”) —1a— % sin(t]|a||) Ya.i
a a
€ Ll N Ad(a)L2
Hence L; N Ad(a)L, is not discrete. O

Note that H is a regular point of (3, %, W) if and only if Fy-orbit
through aF; € G/F) is a regular orbit.

In the sequel we assume that L; N Ad(a)Ls is discrete. (4.4) and
(4.7) imply

W(E)JJcMna=LiNAd(a)Ly C W(R;)JNa.
Based on the fact, we prove the following theorem.

Theorem 4.19. Assume that Ly N Ad(a)Ly is discrete. Then
LiNAd(a)Ly = W(E)J =W (R)JNa=W(Ry)JNa.

Proof. 1t is sufficient to prove that W(R;)J Na C W(X)J. The type of
Y is A, B or C by the classification of (M, Ly, Ly). If 3 is of type B or C,
then W(X) = Ch(X) by Examples 4.2 and 4.3. Any X € W(R;)J Na
satisfies (adX)? = —adX. Hence X is in Ch(X). If ¥ is of type
A, then (M, L17 LQ) = (EG/Sl : Spm(l()), F4/Spm(9), GQ(H4)/ZQ) or
(Gog(C2m+0)) G (H™+9), Gy (RA™F9)). In these cases we will prove

W(X)J = W(R;)J N a below.
Example 4.20. If
(M, Ly, Ly) = (Eg/S" - Spin(10), Fi1/Spin(9), Go(H") /Z2),
then )
a =a, E:Rleg, R2:E6

and

W(X)J =W(Ry)J = W(Ry)J Na,

#W (D)) =3, #(W(Ry)J) =3

Proof. Since (G, Fy, Fy) = (Eg, Fy, Sp(4)) we have ¥ = Ry = Ay and
Ry = FEg by (6) of the table in Subsection 4.2. Hence W(X)J =
W(Ry)J Na=W(R;)J. From Example 4.6 we have #(W (X)J) = 3.

There exists i (1 <4 < 5) such that a; = a( by Remarks 4.7 and 4.9.
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Hence #(W(Ry)J Na) = 3 by Remark 4.9. From Example 4.8 we have
#(W (Ry)J) = 3. O
Example 4.21. If

(M, Ly, Ly) = (Gag(C*™H), G (H™1), Gog (R*™H7)),
then i

a=a, X=R = Am+q715 Ry = A2(m+q)71

and

W(E)J =W(Ry)J = W(Ry)J Na,

v = ("5, v - (1021

Proof. We have a; = a, & = Ry = Amtg-1, Ry = Asimiq—1 by (7)
of the table in Subsection 4.2. Hence W(X)J = W (R;).J. Since J is
a characteristic element associated with R;, there exists J; (1 < i <
m + ¢ — 1) in Example 4.6 such that J = J;. Since the multiplicity of
any root in R; is equal to 4, (4.5) implies that

8mg=dimM =2--4-i(m+q—1i).
Hence : = m or ¢ = ¢. In any case we have

#av = (")

q

by Example 4.6. Since J is also a characteristic element associated
with Ry, there exists J; (1 < k < 2m + 2¢ — 1) in Example 4.6 such
that J = Ji. Since the multiplicity of any root in R, is equal to 1,
(4.5) implies that

8mqg=dim M = 2 - k(2m + 2q — k).

Hence k = 2m or k = 2q. In any case we have
2m + 2
#W(Ro)J) = ( q)

2m
by Example 4.6. To show W (2).J = W(R,)J Na, we identify a, and a
with the following subspaces.

p+q
Ao = {Z(mzez + yi€i+p+q) S RQ(m+q)

i=1 =1

p+q
le = 0}

Z(ﬂﬂz + i) = 0} )

p+q
2(
a E zi(e; + €itpiq) €R (m+q)

=1
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Under the identification we have Ry = {e; —¢; | 1 <i < j < 2m+2q}.
Since J = Jy, of J = Jyg, set J = Jy,, for instance. In order to
describe W (R3)J we use the following notations. Denote by P,(m + q)
the set consisting of all subsets of cardinality a in {1,2,...,m + ¢}.
For A € P,(m+ q) denote by A the complement of A in {1,...,m+q}
and set A ={z+m+q |z € A}. For any X € W(R,)J there exist
A€ P,(m+q) and B € Py(m + q) such that a + b = 2m and that

X:Zekaek—mlﬂ Zej+Zej+Zek+Zek

jeA keB’ jEA jeA keB keB’
q m
= — E €; + E e | — — E € + E €L
m-—+q \“4 < m—+q \ — ~
JEA keB jEA keB’

Hence X is in a if and only if a = b =m, A = B. In this case

q q
X = miq Z(ej + €jimaq) — mtq Z(ej + €jtmeq)-
JEA jEA

Hence we have

(W (Ry)J Na) = (m N q) .

q
Thus W(X)J = W(Ry)J Na. When J = .Jy,, we get the same conclu-
sion. U
This completes the proof of Theorem 4.19. U

We give another example.
Example 4.22. If
(M, Ly, Ly) = (G (C™), G (H™), U (2m)),
then 3 = Cy,, Ry = Ay, Ry = Chyy, and

Proof. We have ¥ = C,,, Ri = Aoms1 and Ry = C,, by (8) of the table
in Subsection 4.2. Theorem 4.19 and Example 4.3 imply
#(Ly N Ad(a)Ly) = 2™, #(W(Ry)J) = 2™,

Since J is a characteristic element associated with R;, there exists
J; (1 <4 < 2m — 1) in Example 4.6 such that J = J;. Since the
multiplicity of any root is equal to 4, (4.5) implies that

8m? = dim M = 8 - i(m — i).
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. 2m
Hence ¢ = m. Thus #(W(Ry)J) = by Example 4.6. O
m

The following results immediately follows from Theorem 4.19.

Corollary 4.23. Assume that Ly VAd(a) Ly is discrete. If a = a; then
Y= R1 and L1 N Ad(a)L2 = W(Rl)J

The following examples satisfy the assumption a = a; of Corollary
4.23.

Example 4.24. If
(M, Ly, Lz) = (Sp(2m)/U(2m), Sp(m), U (2m)/O(2m)),
then ¥ = R, = C,,, Ry = Co,p, and
LiNAd(a)Ly = W(Ry)J = W(Ry)J Na,
#(LiNAd(a)Ly) = 2™, #(W(Ry)J) = 2*™.

Proof. We have ¥ = Ry = C,,, and Ry = Cs,,, by (2) of the table in Sub-
section 4.2. Theorem 4.19 and Example 4.3 imply #(Ly; N Ad(a)Ly) =
2™ and #(W(Ry)J) = 2*™. O

Example 4.25. If
(M, Ly, Ly) = (Er/S" - Eg, S* - Eg/Fy, (SU(8)/Sp(4))/Z2),
then ¥ = By = Cs3, Ry = E7 and
LinAd(a)Ly = W(Ry)J = W(Ry)J Na,
#(LiNAd(a)Ly) =2, #(W(Ry)J) =2°-T7.

Proof. We can verify ., Ry and R, by (4) of the table in Subsection 4.2.
Theorem 4.19 and Example 4.3 imply #(L; NAd(a)Ly) = 23. Example
4.10 implies # (W (Ry)J) = 23 - T. O

Example 4.26. If
(M, Ly, Ly) = (Go(C™),U(n), Gn(R™)),
then Y = R, =C,, Ry = As,_1 and
LinAd(a)Ly = W(Ry)J =W (R2)J Na,

H(Ly N Ad(@)Ly) = 2%, #(W(R)T) = (2”)

n
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Proof. We can verify ¥, Ry and Ry by (1) of the table in Subsection
4.2. Theorem 4.19 and Example 4.3 imply #(L; N Ad(a)Ls) = 2"
Since J is a characteristic element associated with Ry, there exists .J;
(1 <i < 2n—1) in Example 4.6 such that J = J;. Since the multiplicity
of any root in Ry is equal to 1, (4.5) implies that

2n® = dim M = 2(2n — i)i.
2
Hence i = n. Thus #(W(Ry)J) = (:) by Example 4.6. O

Example 4.27. If
(M, Lt, Ls) = (Qryspro(C), S14L gl (550, 0 < 1),

then

- — _ Bmin{rJrs,t} (T+57ét)
X =1y =D, RQ_{Dt (r+s=t)

and

LinAd(a)Ly = W(Ry)J = W(R2)J Na,

#(LyNAd(a)Ly) =21, #(W(Ry)J) =2min{r + s,t}.
Proof. We can verify ¥, R; and Ry by (5) of the table in Subsection
4.2. Theorem 4.19 and Example 4.2 imply #(L; N Ad(a)Ly) = 27.
If 4+ s # t, then #(W(R3)J) = 2min{r + s,t} by Example 4.2. If

r+s =t, then J = J; in Example 4.5, since the multiplicity of any
root in Ry is equal to 1. Thus #(W (Ry)J) = 2t by Example 4.5. [

Example 4.28. If
(M, Ly, Ly) = (SO(4m) /U (2m),U(2m)/Sp(m), SO(2m)),

then ¥ = Ry = Cy,, Ry = D,, and

LinAd(a)Ly = W(Ry)J = W(Ry)J Na,

#(LiNAd(a)Ly) = 2™, #(W(Ry)J) = 2™+
Proof. We can verify 3, R; and R, by (3) of the table in Subsection
4.2. Theorem 4.19 and Example 4.3 imply #(L; N Ad(a)Ly) = 2™.
Since the multiplicity of any root in Rs is equal to 1, (4.5) implies that

J = J, in Example 4.5. Thus #(W(Rz)J) = 2°"! by Example 4.5.
U

Examples 4.20, ..., 4.28 exhaust all two real forms L; and Ly which
are not congruent to each other in an irreducible Hermitian symmetric
space M of compact type. For each real form L in M we can determine
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the cardinality of L N Ad(a)L described in Theorem 4.14 by the use of
Examples in this section. The result is as follows.

M L #(L N Ad(a)L) | Example
G(Cm) Gr(R™) ) 4.16
G (C™) G (H") () 4.21
G,(C™) U(n) 2" 4.26
Q,(C) Skn=k 2k +2 4.27
SO(4n)/U(2n) | U(2n)/Sp(n) 2" 4.28
SO(2n)/U(n) SO(n) 2n-1 4.17
Sp(2n)/U(2n) Sp(n) 2n 4.24
Sp(n)/U(n) U(n)/O(n) 2" 4.15
Eg/S' - Spin(10) | Fy/Spin(9) 3 4.20
E./ST- Eq (SU(8)/Sp()/Zs | 25 - 7 125
B,/ B, ST Eq/F, 23 125

We explain how to determine #(L N Ad(a)L) in one line in the above
list. We can similarly determine #(L N Ad(a)L) in the other lines. In
the case where M = Fg/S! - Spin(10) and L = Gy(H*)/Zs, this real
form is described as Ly in Example 4.20. Theorem 4.14 and Example
4.20 show that #(L N Ad(a)L) = #(W(Ry)J) = 33.

5. THE FIXED POINT SET AND THE INTERSECTION

Let Ly = F(m,M) and Ly = F(73, M) be two real forms in an
irreducible Hermitian symmetric space M = Ad(G)J of compact type.
Since Ad(a)Ly = F(ama™t, M) for a € G, we have

LiNAd(a)Ly C F(r; 'ama™, M).

In this section we study the relation between L;NAd(a)Ls and the fixed
point set F (7, 'ar,a™, M) of a holomorphic isometry 7, *ama~! when
Ly NAd(a)L, is discrete. We may assume that 775 = 757 and a is in
exp a. After some preparations we will prove the following theorem.

Theorem 5.1. When Ly N Ad(a)Ls is discrete, then
F(rtama™, M) = (a®fo)NM, F(7r 'ama™, M)Na = LiNAd(a)L,.
Further
(1) If fo is abelian, then
F(r tama™ , M) = W(g12)J.
(2) If fo = {0}, then
F(rtama™, M) = Ly N Ad(a) Ls.
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Lemma 5.2. Set a = exp H for some H € a.
(1) [f L1 = Lg, then

F(rilana ™', M) = | a®fo @ Z (frx@py) | N M.

AERT
(N\H)YeTZ

(2) If Ly is not congruent to Lo, then
F(rtama™, M)

= [acfhe Y (epe Y. Vihnp)eVi(hnp) |[nM

AERT aew Tt
(N HYETZ (a,HYE T +7L

Proof. We only give the proof of (2) since we can prove (1) in a similar
manner to the proof of (2).
Since 6; = —7; on M C g ([16]), we have

F(rtama™, M) = F(Ad(a"?)0,0y, M).
Since g = g12 @ (f1 Np2) @ (f2 Np1), we have
F(Ad(a"?)0,6y,9)
= F(Ad(a®), g12) ® F(=Ad(a®), (f N p2) © (F2 N p1)).
Lemma 4.12 implies that
F(Ad(a®),g12) =a@fo® Y _ (A @ p).

AERT
(N H)eTL

Lemma 4.13 implies that
F(=Ad(a®), (fi N p2) @ (f2 N p1))
= ) ViHRnp) @ Vi(anp).

acwt
(a,H)G%«P/rZ

Hence we get the assertion. U

Proof of Theorem 5.1. The first part follows from Theorems 4.14, 4.18
and Lemma 5.2. In order to prove (1) we assume that f, is abelian.
Then the maximality of a implies that a & fy is a maximal abelian
subalgebra of gi2. Thus (1) holds. (2) is clear from the first part of
this theorem. 0
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In the case where L; = Ly we know the structure of fy by Tamaru’s
table([14]). In the case where L; is not congruent to L, we know the
structure of f, by the table in Subsection 4.2.

Example 5.3. We consider a real form L = U(n) in M = G,(C*"). If
LN Ad(a)L is discrete, then

LNAd(a)L = W(C,)J, F(rtara™, M) = W(su(2n))J.

In particular,

#(LNAd(a)L) = 2", #F(rara™',M) = (2”>

n
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