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Abstract. We show a necessary and sufficient condition that the
fixed point set of a holomorphic isometry and the intersection of
two real forms of a Hermitian symmetric space of compact type are
discrete and prove that they are antipodal sets in the cases. We
also consider some relations between the intersection of two real
forms and the fixed point set of a certain holomorphic isometry.

1. Introduction

In [15], [17] and [18] the second and third authors showed that the
intersection of two real forms in a Hermitian symmetric space of com-
pact type is an antipodal set if the intersection is discrete. The notion
of an antipodal set of a Riemannian symmetric space was introduced
by Chen-Nagano [3]. We showed the main results of this paper in a
special case in [8]. In this paper we show a necessary and sufficient
condition that the fixed point set of a holomorphic isometry of a Her-
mitian symmetric space of compact type is discrete and prove that the
discrete fixed point set is an antipodal set. We also show a necessary
and sufficient condition that the intersection of two real forms in a
Hermitian symmetric space of compact type is discrete and consider
some relations between the intersection of two real forms and the fixed
point set of a certain holomorphic isometry by the use of the symmetric
triads introduced by the first author in [6].

We roughly explain how to use symmetric triads in order to obtain a
necessary and sufficient condition that the intersection of two real forms
is discrete. In an irreducible Hermitian symmetric space M = G/K of
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compact type two real forms L1 and L2 are determined by two involu-
tive anti-holomorphic isometries τ1 and τ2. These involutive isometries
τ1 and τ2 determine two symmetric pairs (G,F1) and (G,F2). The
triad (G,F1, F2) defines a symmetric triad, by which we can describe
the intersection L1∩L2 and obtain a necessary and sufficient condition
that L1 ∩ L2 is discrete.

The organization of this paper is as follows. In Section 2 we briefly
review some fundamental results on Hermitian symmetric spaces of
compact type, their antipodal sets and real forms.

In Section 3 we describe the fixed point set of a holomorphic isom-
etry of a Hermitian symmetric space of compact type and obtain a
necessary and sufficient condition that the fixed point set is discrete.
If a holomorphic isometry is contained in the identity component of
the group of holomorphic isometries, we can describe its fixed point
set by the root system of the Lie algebra of the group of holomorphic
isometries. There are two sequences of irreducible Hermitian symmet-
ric spaces of compact type whose groups of holomorphic isometries are
not connected. In these cases we describe the fixed point set of a holo-
morphic isometry which is not contained in the identity component in
another way and obtain a necessary and sufficient condition that the
fixed point set is discrete. In the cases where the fixed point sets are
discrete, we describe them as orbits of certain Weyl groups.

In Section 4 we first describe a great antipodal set of each irreducible
Hermitian symmetric space M of compact type as an orbit of the Weyl
group. We second investigate two real forms inM and their intersection
from a viewpoint of symmetric triads.

In Section 5 we also investigate a relation between the intersection
of two real forms in M and the fixed point set of a certain holomorphic
isometry on M from a viewpoint of symmetric triads.

The authors would like to thank Katsuya Mashimo and Kurando
Baba for useful conversations. They are also indebted to the referee,
whose comments improved the manuscript.

2. Hermitian symmetric spaces of compact type

In this section we review some fundamental results on Hermitian
symmetric spaces of compact type. We also review their antipodal sets
and real forms which we need later.

We construct a Hermitian symmetric space of compact type as an
adjoint orbit in a compact semisimple Lie algebra. Let G be a con-
nected compact semisimple Lie group and g its Lie algebra, which is
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a compact semisimple Lie algebra. We take an Ad(G)-invariant in-
ner product ⟨ , ⟩ on g. We take a nonzero element J ∈ g satisfying
(adJ)3 = −adJ . The adjoint orbit M = Ad(G)J ⊂ g is a Hermitian
symmetric space of compact type with respect to the induced metric
from ⟨ , ⟩. Define a closed subgroup K of G by

K = {k ∈ G | Ad(k)J = J}.
Its Lie algebra k is given by

k = {X ∈ g | [J,X] = 0}.
The subspace

m = {[J,X] | X ∈ g}
is the orthogonal complement of k, thus we have an orthogonal direct
sum decomposition g = k + m. The automorphism eπadJ is involutive.
The subalgebra k is the (+1)-eigenspace and the subspace m is the
(−1)-eigenspace of eπadJ . The operator adJ defines an Ad(K)-invariant
complex structure on m which can be identified with the tangent space
of M at J , hence it defines an Ad(G)-invariant complex structure on
M . It is known that any Hermitian symmetric space of compact type
is constructed in this manner.

In a Riemannian symmetric space M we denote by sx the geodesic
symmetry at x ∈ M . A subset S of M is an antipodal set if sx(y) = y
for any x, y ∈ S. The 2-number #2M of M is the maximum of the
cardinality of antipodal sets of M . We call an antipodal set of M great
if it attains #2M . These were introduced by Chen-Nagano [3].

A great antipodal set of a Hermitian symmetric space of compact
type is described in the following way.

Theorem 2.1 ([16]). Let M = Ad(G)J ⊂ g be a Hermitian symmetric
space of compact type. A great antipodal set of M is represented as M∩t
for a maximal abelian subalgebra t of g containing J . In particular, a
great antipodal set of M is an orbit of the Weyl group of g with respect
to t.

After [16] was published we knew the following earlier results. Bott
[1] showed that M ∩ t is an orbit of the Weyl group of g and Takeuchi
[13] showed that the Weyl group acts transitively on the great antipodal
set of M .

Take a maximal abelian subalgebra t of k. Since the involution eπadJ

is of inner type, t is also a maximal abelian subalgebra of g. Since J
commutes any element of k, the maximality of t implies that J is in t.
We will use the following lemma, which was suggested by K. Mashimo,
in Subsection 4.1.
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Lemma 2.2. Denote by W (g) and W (k) the Weyl groups of g and k
with respect to t respectively. Then W (g)J = W (g)/W (k). In particu-
lar, #(W (g)J) = #(W (g))/#(W (k)).

Proof. The isotropy subgroup of W (g) at J is equal to

{s ∈ W (g) | sJ = J} = W (g) ∩ AdG(K) = W (k).

□

By definition, a real form is a fixed point set of an involutive anti-
holomorphic isometry of M . A real form of M is a connected totally
geodesic Lagrangian submanifold of M . Leung [9] and Takeuchi [12]
classified real forms L of irreducible Hermitian symmetric spaces M of
compact type. The list is as follows.

M L
Gk(Cn) Gk(Rn)
G2k(C2n) Gk(Hn)
Gn(C2n) U(n)
Qn(C) Sk,n−k

SO(4n)/U(2n) U(2n)/Sp(n)
SO(2n)/U(n) SO(n)
Sp(2n)/U(2n) Sp(n)
Sp(n)/U(n) U(n)/O(n)
E6/S

1 · Spin(10) G2(H4)/Z2

E6/S
1 · Spin(10) P2(Cay) = F4/Spin(9)

E7/S
1 · E6 (SU(8)/Sp(4))/Z2

E7/S
1 · E6 S1 · E6/F4

In this list above we denote by Gk(Kn) the Grassmann manifold con-
sisting of K-subspaces of K-dimension k in Kn for K = R,C,H and by
Qn(C) the complex hyperquadric of complex dimension n in the com-
plex projective space CP n+1, which is holomorphically isometric to the
real oriented Grassmann manifold G̃2(Rn+2). We regard G̃2(Rn+2) as

a submanifold in
2∧
Rn+2 in a natural way and define a real form Sp,q

of G̃2(Rn+2) for p, q with p+ q = n by

Sp,q = Sp(Re1 ⊕ · · · ⊕ Rep+1) ∧ Sq(Rep+2 ⊕ · · · ⊕ Ren+2),

where e1, . . . , en+2 is the standard orthonormal basis of Rn+2. The real
form Sp,q is diffeomorphic to (Sp × Sq)/Z2.
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3. The fixed point set of a holomorphic isometry

In this section we show a necessary and sufficient condition that the
fixed point set of a holomorphic isometry of a Hermitian symmetric
space of compact type is discrete and prove that the discrete fixed
point set is an antipodal set. We use the notation described in the last
section.

For a set X and a map ϕ : X → X we denote

F (ϕ,X) = {x ∈ X | ϕ(x) = x}.

We use this notation throughout the paper. For any element g in a
connected compact semisimple Lie group G with Lie algebra g we have
dimF (Ad(g), g) ≥ rank(G), because there exists a maximal torus of G
containing g. If dimF (Ad(g), g) = rank(G), we call g a regular element
of G. We can see that the set of all regular elements of G is open and
dense in G.

We denote by A(M) the group of all holomorphic isometries of a Her-
mitian symmetric space M of compact type and by A0(M) its identity
component. If M is equal to Ad(G)J ⊂ g for a connected compact
semisimple Lie group G with Lie algebra g, the identity component
A0(M) coincides with {Ad(g)|M | g ∈ G}. Without loss of generality
we can suppose that the action of each simple factor of G on M is not
trivial.

Theorem 3.1. Let M = Ad(G)J ⊂ g be a Hermitian symmetric space
of compact type. The fixed point set F (Ad(g),M) is discrete if and
only if g is a regular element of G. In the case F (Ad(g),M) is a great
antipodal set of M .

Proof. We take a maximal abelian subalgebra t of g containing J . Then
we have t ⊂ k by the definition of k. We denote by gC the complexifi-
cation of g. For α ∈ t we define the root space

gα = {X ∈ gC | [H,X] =
√
−1⟨α,H⟩X (H ∈ t)}

and the root system ∆ = {α ∈ t− {0} | gα ̸= {0}}. Then we have the
root space decomposition

gC = tC +
∑
α∈∆

gα.

We define a lexicographic order on t and write ∆+ = {α ∈ ∆ | α > 0}.
We obtain

g = t+
∑
α∈∆+

g ∩ (gα + g−α).
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We write T = exp t, which is a maximal torus of G, hence there exists
g1 ∈ G such that a = g1gg

−1
1 ∈ T . Since

Ad(g1)F (Ad(g),M) = F (Ad(a),M),

we consider the condition that F (Ad(a),M) is discrete for a ∈ T . From
the definition of gα we obtain the following lemma.

Lemma 3.2. For a = expH ∈ T with H ∈ t we have

F (Ad(a), g) = t+
∑
α∈∆,

⟨α,H⟩∈2πZ

g ∩ (gα + g−α).

Proof. By Lemma 3.1 of Chapter VI in Helgason [5] we can see that
for α ∈ ∆ there exists a basis Fα, Gα of g ∩ (gα + g−α) which satisfies

[H,Fα] = ⟨α,H⟩Gα, [H,Gα] = −⟨α,H⟩Fα.

These imply

Ad(expH)Fα = cos⟨α,H⟩Fα + sin⟨α,H⟩Gα,

Ad(expH)Gα = − sin⟨α,H⟩Fα + cos⟨α,H⟩Gα.

Therefore we obtain

F (Ad(a), g) = t+
∑
α∈∆,

⟨α,H⟩∈2πZ

g ∩ (gα + g−α).

□
Corollary 3.3. For H ∈ t the following three conditions are equivalent.

(1) The element expH is regular.
(2) F (Ad(expH), g) = t.
(3) ⟨α,H⟩ /∈ 2πZ, for any α ∈ ∆.

Using these preliminaries we prove the theorem. We consider the
case where g is a regular element of G. In this case a = g1gg

−1
1 ∈ T is

also regular. By Corollary 3.3 we have F (Ad(a), g) = t and hence

F (Ad(a),M) = M ∩ t,

which is discrete and a great antipodal set of M .
Next we consider the case where g is not a regular element. In this

case a = g1gg
−1
1 ∈ T is not regular. We write a = expH for H ∈ t. By

Corollary 3.3 there exists α ∈ ∆ which satisfies ⟨α,H⟩ ∈ 2πZ.
Let gi (1 ≤ i ≤ n) be simple ideals of g and g = g1 ⊕ · · · ⊕ gn is a

direct sum decomposition of g. There exists i such that α ∈ ti = t∩ gi.
We denote by Wi the Weyl group of gi with respect to ti and by Ji the
gi-component of J . Since the action of the Lie subgroup corresponding
to gi is not trivial, we have Ji ̸= 0. The Weyl group Wi acts transitively
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on the set of all long roots of gi and the set of all short roots, thus we
have

spanR{wα | w ∈ Wi} = ti.

Hence there exists w ∈ Wi which satisfies ⟨α,wJi⟩ ≠ 0. We can replace
J with wJ . Then we have ⟨α, J⟩ ̸= 0 and the decomposition

J =
⟨α, J⟩
⟨α, α⟩

α+

(
J − ⟨α, J⟩

⟨α, α⟩
α

)
We take Fα in the proof of Lemma 3.2 and consider

Ad(exp tFα)J = Ad(exp tFα)
⟨α, J⟩
⟨α, α⟩

α +Ad(exp tFα)

(
J − ⟨α, J⟩

⟨α, α⟩
α

)
= Ad(exp tFα)

⟨α, J⟩
⟨α, α⟩

α +

(
J − ⟨α, J⟩

⟨α, α⟩
α

)
.

Since [Fα, Gα] = ∥Fα∥2α = ∥Gα∥2α, the first term is

Ad(exp tFα)
⟨α, J⟩
⟨α, α⟩

α = cos (∥Fα∥∥α∥t)
⟨α, J⟩
⟨α, α⟩

α−sin (∥Fα∥∥α∥t)
⟨α, J⟩

∥Fα∥∥α∥
Gα

and it is a circle in spanR{α,Gα} ⊂ t+g∩(gα+g−α). The second term
is contained in t, hence we have Ad(exp tFα)J ∈ F (Ad(a),M), which
means that F (Ad(a),M) is not discrete. Therefore F (Ad(g),M) is not
discrete. This completes the proof of the theorem. □
Remark 3.4. We note that ⟨α, J⟩ = 0,±1 for any α ∈ ∆ since
(adJ)3 = −adJ . This fact will be used in Subsection 4.1.

We consider the fixed point set of an element of A(M)−A0(M). We
recall the results on A(M)/A0(M) obtained by Takeuchi [11].

Lemma 3.5 ([11]). Let M be an irreducible Hermitian symmetric space
of compact type. Then A(M)/A0(M) are as follows.

(A) If M = Q2m(C)(m ≥ 2) or M = Gm(C2m)(m ≥ 2), then
A(M)/A0(M) ∼= Z2.

(B) Otherwise, A(M) = A0(M).

In the case where M is irreducible, it is sufficient to consider the
cases where M = Q2m(C), Gm(C2m)(m ≥ 2).

In the case where M = Q2m(C)(m ≥ 2), we can suppose that G =
SO(2m + 2) and regard M = SO(2m + 2)/(SO(2) × SO(2m)) as a
submanifold in

∧2R2m+2 in a natural way. We take

ϕ =


1

. . .
1

−1

 ∈ O(2m+ 2).
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Then we have A(M) = A0(M) ∪ Ad(ϕ)A0(M) as we showed in the
proof of Proposition 2.2 in [17]. Hence

A(M)− A0(M) = Ad(ϕ)A0(M) = Ad({g ∈ O(2m+ 2) | det g = −1}).

For any g ∈ O(2m+ 2) there exists g1 ∈ O(2m+ 2) which satisfies

(3.1) g1gg
−1
1 =


R(θ1)

. . .
R(θm)

1
−1

 ,

where

R(θi) =

[
cos θi − sin θi
sin θi cos θi

]
(1 ≤ i ≤ m).

Let ei be the i-th column vector of g−1
1 . Then e1, . . . , e2m+2 is an

orthonormal basis of R2m+2 and

g[e2i−1 e2i] = [e2i−1 e2i]R(θi) (1 ≤ i ≤ m)(3.2)

g[e2m+1 e2m+2] = [e2m+1 e2m+2]

[
1 0
0 −1

]
.

Using these we can obtain the following theorem on the fixed point
set of an element of A(M)− A0(M).

Theorem 3.6. Let M = Q2m(C)(m ≥ 2). Any element of A(M) −
A0(M) is equal to Ad(g) for g ∈ O(2m+2) with det g = −1. F (Ad(g),M)
is discrete if and only if there exists g1 ∈ O(2m + 2) such that (3.1)
holds and that R(θ1), . . . , R(θm) are different from each other. In the
case

F (Ad(g),M) = W (SO(2m+ 1))J,

where SO(2m + 1) is the stabilizer of e2m+2. F (Ad(g),M) is an an-
tipodal set of M and

#F (Ad(g),M) = 2m < 2m+ 2 = #2M.

Proof. By (3.2) we have

{±e1 ∧ e2,±e3 ∧ e4, . . . ,±e2m−1 ∧ e2m} ⊂ F (Ad(g),M).

We suppose that there exist i, j (i < j) satisfying R(θi) = R(θj). For
ξ ∈ R we write

C(ξ) =

[
cos ξ 0
0 cos ξ

]
, S(ξ) =

[
sin ξ 0
0 sin ξ

]
.
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Then we have

g[e2i−1 e2i e2j−1 e2j]

[
C(ξ)
S(ξ)

]
= [e2i−1 e2i e2j−1 e2j]

[
C(ξ)
S(ξ)

]
R(θi),

hence g acts on the 2-dimensional subspace spanned by

[e2i−1 e2i e2j−1 e2j]

[
C(ξ)
S(ξ)

]
as the rotation with angle θi. Therefore

(cos ξe2i−1 + sin ξe2j−1) ∧ (cos ξe2i + sin ξe2j) ∈ F (Ad(g),M)

for any ξ ∈ R and F (Ad(g),M) is not discrete.
Next we suppose that R(θi) and R(θj) are different for any different

i, j. Let Vi be the 2-dimensional subspace spanned by e2i−1 and e2i.
Then we have an orthogonal direct sum decomposition

R2m+2 = V1 ⊕ · · · ⊕ Vm+1.

We take u ∧ v ∈ F (Ad(g),M) where u and v are orthonormal. We
decompose u and v as follows.

u = u1 + · · ·+ um+1 (ui ∈ Vi, 1 ≤ i ≤ m+ 1)

v = v1 + · · ·+ vm+1 (vi ∈ Vi 1 ≤ i ≤ m+ 1).

The element g acts on these as follows.

gu = R(θ1)u1 + · · ·+R(θm)um + gum+1

gv = R(θ1)v1 + · · ·+R(θm)vm + gvm+1.

On the other hand u ∧ v ∈ F (Ad(g),M), hence g acts on the 2-
dimensional subspace spanned by u and v as a rotation. There exists
ξ ∈ R which satisfies

g[u v] = [u v]

[
cos ξ − sin ξ
sin ξ cos ξ

]
and we obtain

gu = cos ξu+ sin ξv

gv = − sin ξu+ cos ξv.

Thus we get

R(θi)ui = cos ξui + sin ξvi (1 ≤ i ≤ m),

gum+1 = cos ξum+1 + sin ξvm+1.

The action of g on Vm+1 is not a rotation, we have um+1 = 0. Since
R(θi) ̸= R(θj) for different i, j, there exists k such that

uk ̸= 0, ui = 0 (i ̸= k)
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and we have u ∧ v = ±e2k−1 ∧ e2k. Therefore

F (Ad(g),M) = {±e1 ∧ e2,±e3 ∧ e4, . . . ,±e2m−1 ∧ e2m}

and F (Ad(g),M) is discrete. The above description of F (Ad(g),M)
shows that it is an orbit of W (SO(2m + 1)) through J = e1 ∧ e2 and
an antipodal set of M . □

In the case where M = Gm(C2m)(m ≥ 2), we can suppose that
G = SU(2m). We take

Jm =

[
1m

−1m

]
in G, where 1m denotes the m ×m identity matrix. We regard M as
the submanifold Ad(G)J in g = su(2m), where

J =

√
−1

2

[
1m

−1m

]
∈ g.

We define an involutive automorphism ϕ of G by ϕ(g) = JmḡJ
−1
m for

g ∈ G. The fixed point set F (ϕ,G) is equal to Sp(m) and ϕ defines
a symmetric pair (SU(2m), Sp(m)). The differential map dϕ of ϕ is
represented by dϕ(X) = JmX̄J−1

m for X ∈ g. So we simply write
ϕ(X) = JmX̄J−1

m for X ∈ g. The automorphism ϕ of G also induces a
holomorphic isometry of M defined by

Ad(g)J 7→ Ad(ϕ(g))J (g ∈ G).

Since ϕ(J) = J , we have

Ad(ϕ(g))J = Ad(ϕ(g))ϕ(J) = ϕ(Ad(g)J).

Thus the holomorphic isometry of M induced by ϕ is the restriction of
ϕ : g → g to M ⊂ g. So we also denote it by ϕ.

The holomorphic isometry ϕ is contained in A(M)− A0(M), which
is showed in [17]. We take a maximal torus T of Sp(m).

Lemma 3.7. For any h ∈ A(M)−A0(M) there exist t ∈ T and g ∈ G
such that h = Ad(g)Ad(t)Ad(ϕ(g−1))ϕ and

F (h,M) = Ad(g)F (Ad(t)ϕ,M).

Proof. We define two involutive automorphisms θ1, θ2 of G×G by

θ1(g, h) = (h, g), θ2(g, h) = (ϕ−1(h), ϕ(g)) ((g, h) ∈ G×G).

For a general automorphism ϕ of G, the automorphism θ2 is involutive.
Since ϕ is involutive, θ1 and θ2 are commutative. The fixed point sets
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of them are

K1 = F (θ1, G×G) = {(g, g) | g ∈ G},
K2 = F (θ2, G×G) = {(g, ϕ(g)) | g ∈ G}

and we obtain two direct sum decompositions of g× g as follows

g× g = k1 ⊕m1 = k2 ⊕m2,

where

k1 = {(X,X) | X ∈ g}, m1 = {(X,−X) | X ∈ g},
k2 = {(X,ϕ(X)) | X ∈ g}, m2 = {(X,−ϕ(X)) | X ∈ g}.

These imply

k1 ∩ k2 = {(X,X) | X ∈ sp(m)},
m1 ∩m2 = {(X,−X) | X ∈ sp(m)}.

We denote by t the Lie algebra of T . The subspace

a = {(H,−H) | H ∈ t}

is a maximal abelian subspace of m1 ∩ m2. We identify (g, ϕ(g)) ∈ K2

with g ∈ G and (g1, g2)K1 ∈ (G × G)/K1 with g1g
−1
2 ∈ G. Then the

action of K2 on (G × G)/K1 is equivalent with the action of G on G
defined by

g · x = gxϕ(g−1) (g, x ∈ G).

This action is a Hermann action and θ1, θ2 are commutative. In par-
ticular the action is a hyperpolar action with section T by [4]. So we
have

G =
∪
g∈G

gTϕ(g−1).

Since A(M) = A0(M) ∪ A0(M)ϕ, for any h ∈ A(M) − A0(M) there
exist g ∈ G and t ∈ T such that

h = Ad(g)Ad(t)Ad(ϕ(g−1))ϕ.

Using this we get

F (h,M) = {X ∈ M | Ad(g)Ad(t)Ad(ϕ(g−1))ϕ(X) = X}.

We put X = Ad(g)Y . Since ϕ(Ad(g)Y ) = Ad(ϕ(g))ϕY , we obtain

F (h,M) = Ad(g)F (Ad(t)ϕ,M).

□
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The above lemma shows that it is sufficient to consider the fixed
point set F (Ad(t)ϕ,M) for t ∈ T . We take a maximal torus

T =

{[
Z

Z̄

]∣∣∣∣Z ∈ U(1)m
}

of Sp(m) in order to calculate F (Ad(t)ϕ,M). The Lie algebra of T is

t = {H(x1, . . . , xm) | xj ∈ R},

where

H(x1, . . . , xm) =
√
−1



x1

. . .
xm

−x1

. . .
−xm


.

We define ei ∈ t by

⟨H(x1, . . . , xm), ei⟩ = xi.

The canonical decomposition g = k⊕m of the compact symmetric pair
(SU(2m), Sp(m)) is given by

k = sp(m) =

{[
X −Ȳ
Y X̄

]∣∣∣∣ X ∈ u(m),
tY = Y ∈ gl(m,C)

}
,

m =

{[
X Ȳ
Y tX

]∣∣∣∣ X ∈ u(m),
−tY = Y ∈ gl(m,C)

}
.

In order to consider the action of Ad(t)ϕ on g we first decompose k into
a direct sum of root spaces with respect to t. We define

F−
ij =

[
Eij − Eji

Eij − Eji

]
, G−

ij =
√
−1

[
Eij + Eji

−(Eij + Eji)

]
for 1 ≤ i < j ≤ m and

F+
ij =

[
Eij + Eji

−(Eij + Eji)

]
, G+

ij =
√
−1

[
Eij + Eji

Eij + Eji

]
for 1 ≤ i ≤ j ≤ m. We get

sp(m) = t⊕
∑
i<j

(RF−
ij ⊕ RG−

ij)⊕
∑
i≤j

(RF+
ij ⊕ RG+

ij)

and

[H,F±
ij ] = ⟨ei ± ej, H⟩G±

ij, [H,G±
ij] = −⟨ei ± ej, H⟩F±

ij



THE INTERSECTION OF TWO REAL FORMS AND SYMMETRIC TRIADS 13

for any H ∈ t. We second decompose m into a direct sum of weight
spaces with respect to t. We define

X−
ij =

[
Eij − Eji

−(Eij − Eji)

]
, Y −

ij =
√
−1

[
Eij + Eji

Eij + Eji

]
,

X+
ij =

[
Eij − Eji

Eij − Eji

]
, Y +

ij =
√
−1

[
Eij − Eji

−(Eij − Eji)

]
for 1 ≤ i < j ≤ m and

V (m) = {X ∈ m | [X, t] = {0}}.
We get

m = V (m)⊕
∑
i<j

(RX−
ij ⊕ RY −

ij )⊕
∑
i<j

(RX+
ij ⊕ RY +

ij )

and

[H,X±
ij ] = ⟨ei ± ej, H⟩Y ±

ij , [H, Y ±
ij ] = −⟨ei ± ej, H⟩X±

ij

for any H ∈ t. Using the above decompositions we obtain

F (Ad(expH) ◦ ϕ, g)(3.3)

= t⊕
∑

⟨ei+ej ,H⟩∈2πZ

(RF+
ij ⊕ RG+

ij)⊕
∑

⟨ei−ej ,H⟩∈2πZ

(RF−
ij ⊕ RG−

ij)

⊕
∑

⟨ei+ej ,H⟩∈π+2πZ

(RX+
ij ⊕ RY +

ij )⊕
∑

⟨ei−ej ,H⟩∈π+2πZ

(RX−
ij ⊕ RY −

ij )

and the following theorem.

Theorem 3.8. Let M = Gm(C2m)(m ≥ 2). Any element h of A(M)−
A0(M) is equal to Ad(g)Ad(expH)Ad(ϕ(g−1))ϕ for g ∈ SU(2m), H ∈
t. Its fixed point set F (h,M) is discrete if and only if ⟨ei±ej, H⟩ ̸∈ πZ
for any i ̸= j and ⟨ei, H⟩ ̸∈ πZ for any i. In the case

F (Ad(expH) ◦ ϕ,M) = W (Sp(m))J,

which is an antipodal set of M and

#F (h,M) = 2m <

(
2m

m

)
= #2M.

Proof. Lemma 3.7 implies the description of h and it is sufficient to
consider F (Ad(expH)ϕ,M). According to (3.3), F (Ad(expH)ϕ, g) =
t if and only if ⟨ei± ej, H⟩ ̸∈ πZ for any i ̸= j and ⟨ei, H⟩ ̸∈ πZ for any
i. In this case we have

F (Ad(expH) ◦ ϕ,M) = M ∩ t = W (Sp(m))J

and #F (h,M) = 2m.
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In order to prove the theorem we have to show that F (Ad(expH)ϕ,M)
is not discrete if F (Ad(expH)ϕ, g) ̸= t. We first consider the case where
there exist i, j such that ⟨ei + ej, H⟩ ∈ 2πZ. Since W (Sp(m))J spans
t, there exists X ∈ W (Sp(m))J satisfying ⟨ei + ej, X⟩ ≠ 0. Using
[F+

ij , G
+
ij] = |F+

ij |2(ei + ej) obtained from their definitions, we get

Ad(exp tF+
ij )X =

(
X − ⟨ei + ej, X⟩

∥ei + ej∥2
(ei + ej)

)
+

⟨ei + ej, X⟩
∥ei + ej∥

(
cos(∥F+

ij ∥∥ei + ej∥t)
ei + ej

∥ei + ej∥
− sin(∥F+

ij ∥∥ei + ej∥t)
G+

ij

∥G+
ij∥

)
for t ∈ R. Therefore Ad(exp tF+

ij )X ∈ F (Ad(expH) ◦ ϕ,M) for t ∈ R
and F (Ad(expH) ◦ ϕ,M) is not discrete. We second consider the case
where there exist i ̸= j such that ⟨ei − ej, H⟩ ∈ π + 2πZ. There
exists X ∈ W (Sp(m))J satisfying ⟨ei − ej, X⟩ ̸= 0. Using [X−

ij , Y
−
ij ] =

∥X−
ij∥2(ei − ej) obtained from their definitions, we get

Ad(exp tX−
ij )X =

(
X − ⟨ei − ej, X⟩

∥ei − ej∥2
(ei − ej)

)
+

⟨ei − ej, X⟩
∥ei − ej∥

(
cos(∥X−

ij∥∥ei − ej∥t)
ei − ej

∥ei − ej∥
− sin(∥X−

ij∥∥ei − ej∥t)
Y −
ij

∥Y −
ij ∥

)
for t ∈ R. Therefore Ad(exp tX−

ij )X ∈ F (Ad(expH) ◦ ϕ,M) for t ∈ R
and F (Ad(expH) ◦ ϕ,M) is not discrete. In the other cases we can
see that F (Ad(expH) ◦ ϕ,M) is not discrete in a similar way. This
completes the proof of the theorem. □

Remark 3.9. When a Hermitian symmetric space M of compact type
is not irreducible, F (h,M) for h ∈ A(M) is obtained from the fixed
point sets of holomorphic isometries of irreducible Hermitian symmetric
spaces of compact type, which we have already known above. Let
M = M1 × · · · × Mk be the decomposition of M to the product of
irreducible factors. We take ϕ ∈ A(M). In order to investigate F (ϕ,M)
it is sufficient to consider the case where M1 = · · · = Mk and

ϕ(x1, . . . , xk) = (ϕk(xk), ϕ1(x1), . . . , ϕk−1(xk−1)) (xi ∈ Mi),

where ϕi : Mi → Mi+1 (1 ≤ i ≤ k − 1) and ϕk : Mk → M1 are
holomorphically isometric maps. In this case we have

F (ϕ,M)

= {(x1, ϕ1(x1), ϕ2ϕ1(x1), . . . , ϕk−1 · · ·ϕ1(x1)) | x1 ∈ F (ϕk · · ·ϕ1,M1)}.
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Hence F (ϕ,M) is discrete if and only if F (ϕk · · ·ϕ1,M1) is discrete. In
the case F (ϕ,M) is an antipodal set of M and

#F (ϕ,M) = #F (ϕk · · ·ϕ1,M1).

4. The intersection of two real forms

4.1. Characteristic elements associated with a root system. As
we mentioned in Remark 3.4 the complex structure J of a Hermitian
symmetric space of compact type satisfies ⟨α, J⟩ = 0,±1 for any root
α. Based on the fact we define a characteristic element of a root system
as follows.

Let R be a root system of a finite dimensional vector space a with
an inner product ⟨ , ⟩. Then J ∈ a − {0} is a characteristic element
of the first kind or simply a characteristic element associated with R
if ⟨λ, J⟩ = 0,±1 for any λ ∈ R. We denote by W (R) the Weyl group
of R. If J is a characteristic element associated with R, then so are
−J and sJ for any s ∈ W (R). In the sequel we assume that R is
irreducible. For a characteristic element J we can take a fundamental
system Π = {α1, . . . , αr} of R such that ⟨αi, J⟩ = 0, 1 for any αi.
Denote by δ =

∑
miαi the highest root of R. When the type of R

is one of E8, F4 and G2, there does not exist a characteristic element
since mi ≥ 2 for any i. In order to describe W (R)J in detail we
give the definition of a two-point homogeneous space, which appears
in the following proposition. For a group A which isometrically acts
on a metric space (X, d) if for any two pairs x, y ∈ X and x′, y′ ∈ X
satisfying d(x, y) = d(x′, y′) there exists a ∈ A such that ax = x′,
ay = y′, then we call X a two-point homogeneous space by the action
of A. We prove the following proposition using the classification of an
irreducible root system.

Proposition 4.1. The orbit W (R)J of a characteristic element J as-
sociated with an irreducible root system R is a two-point homogeneous
space by the action of W (R).

Proof. Define a set {d1, . . . , dt} (0 < d1 < · · · < dt) by

{d1, . . . , dt} = {∥sJ − J∥ | s ∈ W (R)} − {0}.
The condition for W (R)J to be two-point homogeneous is equivalent
to the condition that the isotropy subgroup {s ∈ W (R) | sJ = J} acts
transitively on each {sJ | ∥sJ−J∥ = di, s ∈ W (R)}. Denote by Ch(R)
the set of all characteristic elements associated with R. We examine
the condition above for each characteristic element J associated with
each R = Ar, Br, Cr, BCr, Dr, E6 and E7 in Examples 4.2, 4.3, 4.4, 4.5,
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4.6, 4.8, 4.10. If R is the root system of g in Section 2, according to
Theorem 2.1 the orbit W (R)J is a great antipodal set of the Hermitian
symmetric space of compact type associated with J , so we also calculate
its cardinality #(W (R)J). We follow the same notations of the set of
positive roots in [2]. Denote by {e1, . . . , er} the standard orthonormal
basis of Rr.

Example 4.2. In the case where R = Br = {±ei±ej,±ei}, set J = e1.
Then we have

Ch(R) = W (R)J = {±e1, . . . ,±er}.

Thus #(W (R)J) = 2r, t = 2, d1 =
√
2 and d2 = 2. We can verify that

W (R)J is two-point homogeneous.

Example 4.3. In the case where R = Cr = {±ei ± ej,±2ei}, set

J =
1

2
(e1 + e2 + · · ·+ er).

Then we have

Ch(R) = W (R)J =

{
1

2

r∑
i=1

ϵiei

∣∣∣∣∣ ϵi = ±1

}
.

Thus #(W (R)J) = 2r, t = r and di =
√
i (1 ≤ i ≤ r). We can verify

that W (R)J is two-point homogeneous.

Example 4.4. In the case where R = BCr = {±ei ± ej,±ei,±2ei},
Examples 4.2 and 4.3 imply that there does not exist a characteristic
element.

Example 4.5. In the case where R = Dr = {±ei ± ej}, we define
characteristic elements J1, J2 and J3 by

J1 = e1, J2 =
1

2

(
r−1∑
j=1

ej − er

)
, J3 =

1

2

r∑
j=1

ej.

Then

W (R)J1 = {±e1, . . . ,±er},

W (R)J2 =

{
1

2

r∑
j=1

ϵjej

∣∣∣∣∣ ϵj = ±1, ϵ1 · · · ϵr = −1

}
,

W (R)J3 =

{
1

2

r∑
j=1

ϵjej

∣∣∣∣∣ ϵj = ±1, ϵ1 · · · ϵr = 1

}
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and Ch(R) = W (R)J1 ∪W (R)J2 ∪W (R)J3. Thus #(W (R)J1) = 2r,
#(W (R)J2) = #(W (R)J3) = 2r−1. We can verify that W (R)Ji is
two-point homogeneous.

Example 4.6. In the case where R = Ar = {±(ei − ej)}, we define
characteristic elements J1, . . . , Jr by

Ji = (e1 + · · ·+ ei)−
i

r + 1

r+1∑
j=1

ej.

Then

W (R)Ji =

{∑
j∈A

ej −
i

r + 1

r+1∑
j=1

ej

∣∣∣∣∣ A ∈ Pi(r + 1)

}
,

where we put Pi(r + 1) = {A ⊂ {1, 2, . . . , r + 1} | #A = i}. Thus
Ch(R) = W (R)J1 ∪ · · · ∪ W (R)Jr and #(W (R)Ji) =

(
r+1
i

)
. We can

verify that W (R)Ji is two-point homogeneous.

Remark 4.7. In the case of A2, the orbit W (R)J1 consists of three
vertices of an equilateral triangle whose center of mass is the origin.
Since W (R)J2 = −W (R)J1, the above statement holds for W (R)J2.
These will be used later.

Example 4.8. In the case where R = E6, we define characteristic
elements J1 and J2 by

J1 =
2

3
(e8 − e7 − e6) =

1

3
(4α1 + 3α2 + 5α3 + 6α4 + 4α5 + 2α6),

J2 =
1

3
(e8 − e7 − e6) + e5 =

1

3
(2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6).

Then

Ch(R) = W (R)J1 ∪W (R)J2, W (R)(−J2) = W (R)J1.

Lemma 2.2 implies that

#(W (R)Ji) =
#(W (e6))

#(W (so(10) + R))
=

27 · 34 · 5
24 · 5!

= 33.

We can verify that t = 2, d1 = 2, d2 = 4 and W (R)Ji is two-point
homogeneous.

Remark 4.9. There exist exactly five subsets ∆i (1 ≤ i ≤ 5) of
W (R)J1 such that each ∆i contains J1 and consists of three vertices of
an equilateral triangle whose center of mass is equal to the origin. If
we set a(i) = spanR(∆i) (1 ≤ i ≤ 5), then

∆i = a(i) ∩W (R)J1.
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These will be used later.

Example 4.10. In the case where R = E7, we define a characteristic
element J by

⟨α7, J⟩ = 1, ⟨αi, J⟩ = 0 (i ̸= 7).

Then Ch(R) = W (R)J . Lemma 2.2 implies that

#(W (R)J) =
#(W (e7))

#(W (e6 + R))
=

210 · 34 · 5 · 7
27 · 34 · 5

= 23 · 7.

We can verify that t = 3, d1 =
√
2, d2 = 2, d3 =

√
6 and W (R)J is

two-point homogeneous.

Hence we complete the proof of Proposition 4.1. □
Theorem 2.1 and Proposition 4.1 imply the following theorem.

Theorem 4.11. A great antipodal set of an irreducible Hermitian sym-
metric space of compact type is a two-point homogeneous space.

4.2. Symmetric triads. In this subsection we review some results on
symmetric triads obtained in [6] and [7]. These results will be used in
Section 4.3 and Section 5.

Let a be a finite dimensional vector space over R with an inner
product ⟨ , ⟩. A triple (Σ̃,Σ,W ) is a symmetric triad of a, if it satisfies
the following six conditions:

(1) Σ̃ is an irreducible root system of a, and Σ̃ spans a.
(2) Σ is a root system of a.
(3) W is a nonempty subset of a, which is invariant under the

multiplication by −1, and Σ̃ = Σ ∪W .
(4) Σ ∩ W is a nonempty subset. If we put l = max{∥α∥ | α ∈

Σ ∩W}, then Σ ∩W = {α ∈ Σ̃ | ∥α∥ ≤ l}.

(5) For α ∈ W , λ ∈ Σ − W , 2
⟨α, λ⟩
∥α∥2

is odd if and only if sαλ ∈

W − Σ, where we set sαλ = λ− 2
⟨α, λ⟩
∥α∥2

α.

(6) For α ∈ W , λ ∈ W − Σ, 2
⟨α, λ⟩
∥α∥2

is odd if and only if sαλ ∈
Σ−W .

If (Σ̃,Σ,W ) is a symmetric triad of a, then Σ spans a. In fact, using
(4) we have

a ⊃ span(Σ) ⊃ span(Σ ∩W ) ⊃ span{the shortest roots in Σ̃} = a.

For a symmetric triad (Σ̃,Σ,W ) of a, take a fundamental system Π̃ of
Σ̃. Denote by Σ̃+ the set of positive roots in Σ̃ with respect to Π̃. If
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we put Σ+ = Σ ∩ Σ̃+ and W+ = W ∩ Σ̃+, then Σ = Σ+ ∪ (−Σ+) and
W = W+ ∪ (−W+). We define a nonempty subset ar in a by

ar =
∩
λ∈Σ
α∈W

{
H ∈ a

∣∣∣⟨λ,H⟩ /∈ πZ, ⟨α,H⟩ /∈ π

2
+ πZ

}
.

Then ar is an open dense subset of a. A point in ar is called a regular
point.

Let G be a connected compact simple Lie group and (G,F1, F2) a
compact symmetric triad: There exist two involutions θ1 and θ2 on
G such that the closed subgroup Fi of G lies between F (θi, G) and
its identity component F (θi, G)0. We denote by g, f1 and f2 the Lie
algebras of G, F1 and F2 respectively. We assume that θ1θ2 = θ2θ1 and
that θ1 cannot be transformed to θ2 by an inner automorphism of G.
We denote the differential of θi by the same symbol θi. We have two
canonical decompositions of g:

g = f1 ⊕ p1 = f2 ⊕ p2,

where pi = F (−θi, g). Since θ1θ2 = θ2θ1, we have

g = (f1 ∩ f2)⊕ (p1 ∩ p2)⊕ (f1 ∩ p2)⊕ (f2 ∩ p1).

Take a maximal abelian subspace a of p1 ∩ p2. The isometric action of
F1 on a Riemannian symmetric space G/F2 of compact type is called a
Hermann action. Since the action is a hyperpolar action whose section
is the orbit of A = exp a through the origin, we have G = F1AF2. For
each α ∈ a define a subspace g(a, α) of gC by

g(a, α) = {X ∈ gC | [H,X] =
√
−1⟨α,H⟩X (H ∈ a)}

and set Σ̃ = {α ∈ a − {0} | g(a, α) ̸= {0}}. For ϵ = ±1 define a
subspace g(a, α, ϵ) of g(a, α) by

g(a, α, ϵ) = {X ∈ g(a, α) | θ1θ2X = ϵX}.

Since g(a, α) is θ1θ2-invariant, we have

g(a, α) = g(a, α, 1)⊕ g(a, α,−1).

Set Σ = {α ∈ Σ̃ | g(a, α, 1) ̸= {0}} and W = {α ∈ Σ̃ | g(a, α,−1) ̸=
{0}}. Then the triple (Σ̃,Σ,W ) is a symmetric triad of a. Define
closed subgroups G12 and F12 by G12 = F (θ1θ2, G) and F12 = {g ∈
G12 | θ1(g) = g}. Then the Lie algebras of G12 and F12 are given by

g12 = (f1 ∩ f2)⊕ (p1 ∩ p2), f12 = f1 ∩ f2,
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respectively. The restricted root system of the compact symmetric pair
(G12, F12) with respect to a coincides with Σ. For λ ∈ Σ, we define
subspaces pλ in p1 ∩ p2 and fλ in f1 ∩ f2 as follows:

pλ = {X ∈ p1 ∩ p2 | [H, [H,X]] = −⟨λ,H⟩2X (H ∈ a)},
fλ = {X ∈ f1 ∩ f2 | [H, [H,X]] = −⟨λ,H⟩2X (H ∈ a)}.

Take a maximal abelian subalgebra t in g12 containing a. Denote by
R̃ the root system of g12 with respect to t. Let t → a ; H 7→ H̄ be
the orthogonal projection and set R̃0 = {α ∈ R̃ | ᾱ = 0}. Define a
subalgebra f0 in f1 ∩ f2 by

f0 = {X ∈ f1 ∩ f2 | [a, X] = {0}}.
Take a compatible ordering of t. Then we have the following lemma.

Lemma 4.12. (1) We have orthogonal direct sum decompositions:

f1 ∩ f2 = f0 ⊕
∑
λ∈Σ+

fλ, p1 ∩ p2 = a⊕
∑
λ∈Σ+

pλ.

(2) For each α ∈ R̃+ − R̃0 there exist Sα ∈ f1 ∩ f2 and Tα ∈ p1 ∩ p2
such that

{Sα | α ∈ R̃+, ᾱ = λ}, {Tα | α ∈ R̃+, ᾱ = λ}
are respectively orthonormal bases of fλ and pλ, and for H ∈ a

[H,Sα] = ⟨α,H⟩Tα, [H,Tα] = −⟨α,H⟩Sα, [Sα, Tα] = ᾱ,

Ad(expH)Sα = cos⟨α,H⟩Sα + sin⟨α,H⟩Tα,

Ad(expH)Tα = − sin⟨α,H⟩Sα + cos⟨α,H⟩Tα.

Define subspaces of f1 ∩ p2 and p1 ∩ f2 by

V (f1 ∩ p2) = {X ∈ f1 ∩ p2 | [a, X] = {0}},
V (p1 ∩ f2) = {X ∈ p1 ∩ f2 | [a, X] = {0}},

V ⊥(f1 ∩ p2) = {X ∈ f1 ∩ p2 | X ⊥ V (f1 ∩ p2)},
V ⊥(p1 ∩ f2) = {X ∈ p1 ∩ f2 | X ⊥ V (p1 ∩ f2)}.

For α ∈ W define subspaces V ⊥
α (f1 ∩ p2) in V ⊥(f1 ∩ p2) and V ⊥

α (p1 ∩ f2)
in V ⊥(p1 ∩ f2) by

V ⊥
α (f1 ∩ p2) = {X ∈ V ⊥(f1 ∩ p2) | [H, [H,X]] = −⟨α,H⟩2X (H ∈ a)},

V ⊥
α (p1 ∩ f2) = {X ∈ V ⊥(p1 ∩ f2) | [H, [H,X]] = −⟨α,H⟩2X (H ∈ a)}.

Then we have the orthogonal direct sum decompositions:

V ⊥(f1 ∩ p2) =
∑

α∈W+

V ⊥
α (f1 ∩ p2), V ⊥(p1 ∩ f2) =

∑
α∈W+

V ⊥
α (p1 ∩ f2).
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For λ ∈ Σ and α ∈ W , set

m(λ) = dimC g(a, λ, 1), n(α) = dimC g(a, α,−1).

Lemma 4.13. (1) For any α ∈ W+,

[a, V ⊥
α (f1 ∩ p2)] = V ⊥

α (p1 ∩ f2),

[a, V ⊥
α (p1 ∩ f2)] = V ⊥

α (f1 ∩ p2).

(2) There exist orthonormal bases {Xα,i}1≤i≤n(α) and {Yα,i}1≤i≤n(α)

of V ⊥
α (f1 ∩ p2) and V ⊥

α (p1 ∩ f2) respectively such that, for any
H ∈ a,

[H,Xα,i] = ⟨α,H⟩Yα,i, [H,Yα,i] = −⟨α,H⟩Xα,i,

[Xα,i, Yα,i] = α,

Ad(expH)Xα,i = cos⟨α,H⟩Xα,i + sin⟨α,H⟩Yα,i,

Ad(expH)Yα,i = − sin⟨α,H⟩Xα,i + cos⟨α,H⟩Yα,i.

Lemmas 4.12 and 4.13 imply that

(4.4) W (Σ̃) ⊂ {Ad(g)|a | g ∈ G, Ad(g)a = a},

where W (Σ̃) denotes the Weyl group of Σ̃. See Corollary 4.17 and
Lemma 4.4 in [6] for the detail.

Take a maximal abelian subspace ai of pi containing a. The maxi-
mality of a implies that a = a1 ∩ a2. Denote by Ri the restricted root
system of (G,Fi) with respect to ai. If a = a1, then Σ̃ = R1. We
list some (G,F1, F2)’s, their symmetric triad (Σ̃,Σ,W )’s, the restricted
root system (Ri)’s, and the structure of f0’s as a compact Lie algebra,
which we will need in Subsection 4.3 and Section 5.

(G,F1, F2) (Σ̃,Σ,W )
(1) (SU(2n), S(U(n)× U(n)), SO(2n)) (I’-Cn)
(2) (Sp(2m), Sp(m)× Sp(m), U(2m)) (III-Cm)
(3) (SO(4m), U(2m), SO(2m)× SO(2m)) (I-Cm)
(4) (E7, S

1 · E6, SU(8)) (I-C3)
(5) (SO(r + s+ t), SO(r)× SO(s+ t), (I-Br)

SO(r + s)× SO(t)) (s > 0, r < t)
(6) (E6, F4, Sp(4)) (III-A2)
(7) (SU(2(m+ q)), Sp(m+ q), SO(2(m+ q))) (III-Am+q−1)
(8) (SU(4m), Sp(2m), S(U(2m)× U(2m))) (III-Cm)
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R1 R2 f0
(1) Cn A2n−1 {0}
(2) Cm C2m Rm

(3) Cm D2m Rm

(4) C3 E7 su(2)4

(5) Br Bmin{r+s,t} (if r + s ̸= t) so(s)⊕ so(t− r)
Dt (if r + s = t)

(6) A2 E6 sp(1)4

(7) Am+q−1 A2(m+q)−1 Rm+q

(8) A2m−1 C2m sp(1)m

We explain the notations in the table above. In column of (Σ̃,Σ,W )’s
we used the following notations.

Σ̃ Σ W

(III-Σ̃) Σ̃ Σ̃ Σ̃
(I’-Cn) Cn Dn Cn

(I-Cm) Cm Cm Dm

(I-Br) Br Br {±ei}

In the table above, f0 = Rm means that f0 is an abelian Lie algebra of
dimension m. We used table 1 in Tamaru [14] and a table of Section 4
in Matsuki [10] to determine the structure of f0 when G is of exceptional
type. Note that so(s) is abelian if and only if s ≤ 2.

4.3. The intersection of two real forms. Let M = Ad(G)J ⊂ g
be an irreducible Hermitian symmetric space of compact type. In this
subsection we study a necessary and sufficient condition that the inter-
section of two real forms of M is discrete, and describe the intersection
when it is discrete. Any two real forms of M always intersect. Let
L1 = F (τ1,M) and L2 = F (τ2,M) be two real forms of M , where τi is
an involutive anti-holomorphic isometry of M . Define an involution θi
of G by θi(g) = τigτ

−1
i . If we set Fi = F (θi, G), then (G,F1, F2) is a

compact symmetric triad. In order to study L1 ∩ Ad(a)L2 for a ∈ G,
we may assume that τ1τ2 = τ2τ1 by the classification of real forms in
irreducible Hermitian symmetric spaces of compact type. We use the
same notation in Subsection 4.2. Take a maximal abelian subspace a
of p1 ∩ p2 which contains J . We may assume that a is in exp a since
G = F1(exp a)F2. By Theorem 4.3 in [16], we have

L1 = M ∩ p1, Ad(a)L2 = M ∩ Ad(a)p2,

L1 ∩ Ad(a)L2 = M ∩ (p1 ∩ Ad(a)p2).
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If L1 is congruent to L2, which means that there exists g ∈ G such that
L2 = Ad(g)L1, then we may assume that L1 = L2. We divide into the
following two cases:

(1) L1 = L2.
(2) L1 is not congruent to L2.

First we assume that L1 = L2. Set τ = τ1 = τ2, L = L1 = L2 and so
on. Denote by R the restricted root system of (G,F ) with respect to
a. Then we have root space decompositions of f and p:

f = f0 ⊕
∑
λ∈R+

fλ, p = a⊕
∑
λ∈R+

pλ,

where R+ is the set of positive roots in R with respect to a lexico-
graphic ordering. The complex structure J is a characteristic element
associated with R. Since

m = [J, g] =
∑
λ∈R+
⟨λ,J⟩̸=0

(fλ ⊕ pλ),

we have

(4.5) dimM = 2
∑
λ∈R+
⟨λ,J⟩≠0

mR(λ),

where we denote by mR(λ) the multiplicity of λ. If we set a = expH
for H ∈ a, then

p ∩ Ad(a)p = a⊕
∑
λ∈R+

⟨λ,H⟩∈πZ

pλ.

Theorem 4.14. The intersection L∩Ad(a)L is discrete if and only if
⟨λ,H⟩ /∈ πZ for any λ ∈ R. In this case,

(4.6) L ∩ Ad(a)L = M ∩ a = W (R)J,

where M ∩ a is a great antipodal set of L.

Proof. If ⟨λ,H⟩ /∈ πZ for any λ ∈ R, then we have (4.6), since p ∩
Ad(a)p = a. Here the second equality follows from Proposition 2.2 in
[5, Ch.VII].

If there exists λ ∈ R such that ⟨λ,H⟩ ∈ πZ, then there exists X ∈
W (R)J such that ⟨λ,X⟩ ≠ 0. There exist unit vectors Sλ ∈ fλ and
Tλ ∈ pλ such that for any H ′ ∈ a

[H ′, Sλ] = ⟨λ,H ′⟩Tλ, [H ′, Tλ] = −⟨λ,H ′⟩Sλ, [Sλ, Tλ] = λ.
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Then

Ad(exp tSλ)X = X +
⟨λ,X⟩
∥λ∥2

(cos(t∥λ∥)− 1)λ− ⟨λ,X⟩
∥λ∥

sin(t∥λ∥)Tλ

∈ L1 ∩ Ad(a)L2.

Hence L1 ∩ Ad(a)L2 is not discrete. □
Example 4.15. If (M,L) = (Sp(r)/U(r), U(r)/O(r)), then R = Cr

and #(W (R)J) = 2r.

Proof. The assertion immediately follows from the table in Subsection
4.2 and Example 4.3. □
Example 4.16. If (M,L) = (Gk(Cn), Gk(Rn)), then R = An−1 and
#(W (R)J) =

(
n
k

)
.

Proof. Since (G,F ) = (SU(n), SO(n)), we have R = An−1 and the
multiplicity of any root in R is equal to 1. (4.5) implies that J = Jk or
J = Jn−k in Example 4.6. Thus #(W (R)J) =

(
n
k

)
by Example 4.6. □

Example 4.17. If (M,L) = (SO(2r)/U(r), SO(r)), then R = Dr and
#(W (R)J) = 2r−1.

Proof. Since (G,F ) = (SO(2r), S(O(r)×O(r))), we have R = Dr and
the multiplicity of any root in R is equal to 1. (4.5) implies that J = J2
in Example 4.5. Thus #(W (R)J) = 2r−1 by Example 4.5. □

Next we assume that L1 is not congruent to L2. Denote by (Σ̃,Σ,W )
the symmetric triad associated with (G,F1, F2). By Lemmas 4.12 and
4.13 J is a characteristic element associated with Σ̃. Lemmas 4.12 and
4.13 also imply that

p1 ∩ Ad(a)p2 = a⊕
∑
λ∈Σ+

⟨λ,H⟩∈πZ

pλ ⊕
∑

α∈W+

⟨α,H⟩∈π
2 +πZ

V ⊥
α (p1 ∩ f2).

Denote by Ri the restricted root system of (G,Fi) with respect to ai.

Theorem 4.18. The intersection L1∩Ad(a)L2 (a = expH) is discrete
if and only if H is a regular point of (Σ̃,Σ,W ).

Proof. If H is a regular point of (Σ̃,Σ,W ), then p1 ∩ Ad(a)p2 = a.
Thus

(4.7) L1 ∩ Ad(a)L2 = (M ∩ a1) ∩ (M ∩ a2) = W (R1)J ∩W (R2)J.

We assume that H is not a regular point of (Σ̃,Σ,W ). Then (i) there
exists λ ∈ Σ such that ⟨λ,H⟩ ∈ πZ, or, (ii) there exists α ∈ W such
that ⟨α,H⟩ ∈ π

2
+ πZ.
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In the case of (i) we can prove that L1 ∩Ad(a)L2 is not discrete in a
similar manner of the proof of Theorem 4.14. In the case of (ii) there
exists X ∈ W (Σ)J such that ⟨α,X⟩ ≠ 0 since W (Σ)α spans a. Lemma
4.13 implies that

Ad(exp tXα,i)X = X +
⟨α,X⟩
∥α∥2

(cos(t∥α∥)− 1)α− ⟨α,X⟩
∥α∥

sin(t∥α∥)Yα,i

∈ L1 ∩ Ad(a)L2.

Hence L1 ∩ Ad(a)L2 is not discrete. □

Note that H is a regular point of (Σ̃,Σ,W ) if and only if F2-orbit
through aF1 ∈ G/F1 is a regular orbit.

In the sequel we assume that L1 ∩ Ad(a)L2 is discrete. (4.4) and
(4.7) imply

W (Σ̃)J ⊂ M ∩ a = L1 ∩ Ad(a)L2 ⊂ W (Ri)J ∩ a.

Based on the fact, we prove the following theorem.

Theorem 4.19. Assume that L1 ∩ Ad(a)L2 is discrete. Then

L1 ∩ Ad(a)L2 = W (Σ̃)J = W (R1)J ∩ a = W (R2)J ∩ a.

Proof. It is sufficient to prove that W (Ri)J ∩ a ⊂ W (Σ̃)J . The type of
Σ̃ is A, B or C by the classification of (M,L1, L2). If Σ̃ is of typeB or C,
then W (Σ̃) = Ch(Σ̃) by Examples 4.2 and 4.3. Any X ∈ W (Ri)J ∩ a

satisfies (adX)3 = −adX. Hence X is in Ch(Σ̃). If Σ̃ is of type
A, then (M,L1, L2) = (E6/S

1 · Spin(10), F4/Spin(9), G2(H4)/Z2) or
(G2q(C2(m+q)), Gq(Hm+q), G2q(R2(m+q))). In these cases we will prove

W (Σ̃)J = W (Ri)J ∩ a below.

Example 4.20. If

(M,L1, L2) = (E6/S
1 · Spin(10), F4/Spin(9), G2(H4)/Z2),

then
a1 = a, Σ̃ = R1 = A2, R2 = E6

and

W (Σ̃)J = W (R1)J = W (R2)J ∩ a,

#(W (Σ̃)J) = 3, #(W (R2)J) = 33.

Proof. Since (G,F1, F2) = (E6, F4, Sp(4)) we have Σ̃ = R1 = A2 and
R2 = E6 by (6) of the table in Subsection 4.2. Hence W (Σ̃)J =
W (R1)J ∩ a = W (R1)J . From Example 4.6 we have #(W (Σ̃)J) = 3.
There exists i (1 ≤ i ≤ 5) such that a2 = a(i) by Remarks 4.7 and 4.9.
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Hence #(W (R2)J ∩ a) = 3 by Remark 4.9. From Example 4.8 we have
#(W (R2)J) = 33. □
Example 4.21. If

(M,L1, L2) = (G2q(C2(m+q)), Gq(Hm+q), G2q(R2(m+q))),

then
a1 = a, Σ̃ = R1 = Am+q−1, R2 = A2(m+q)−1

and

W (Σ̃)J = W (R1)J = W (R2)J ∩ a,

#(W (Σ̃)J) =

(
m+ q

q

)
, #(W (R2)J) =

(
2m+ 2q

2m

)
.

Proof. We have a1 = a, Σ̃ = R1 = Am+q−1, R2 = A2(m+q)−1 by (7)

of the table in Subsection 4.2. Hence W (Σ̃)J = W (R1)J . Since J is
a characteristic element associated with R1, there exists Ji (1 ≤ i ≤
m+ q − 1) in Example 4.6 such that J = Ji. Since the multiplicity of
any root in R1 is equal to 4, (4.5) implies that

8mq = dimM = 2 · ·4 · i(m+ q − i).

Hence i = m or i = q. In any case we have

#(W (Σ̃)J) =

(
m+ q

q

)
by Example 4.6. Since J is also a characteristic element associated
with R2, there exists Jk (1 ≤ k ≤ 2m + 2q − 1) in Example 4.6 such
that J = Jk. Since the multiplicity of any root in R2 is equal to 1,
(4.5) implies that

8mq = dimM = 2 · k(2m+ 2q − k).

Hence k = 2m or k = 2q. In any case we have

#(W (R2)J) =

(
2m+ 2q

2m

)
by Example 4.6. To show W (Σ̃)J = W (R2)J ∩ a, we identify a2 and a
with the following subspaces.

a2 ∼=

{
p+q∑
i=1

(xiei + yiei+p+q) ∈ R2(m+q)

∣∣∣∣∣
p+q∑
i=1

(xi + yi) = 0

}
,

a ∼=

{
p+q∑
i=1

xi(ei + ei+p+q) ∈ R2(m+q)

∣∣∣∣∣
p+q∑
i=1

xi = 0

}
.
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Under the identification we have R+
2
∼= {ei−ej | 1 ≤ i < j ≤ 2m+2q}.

Since J = J2m of J = J2q, set J = J2m for instance. In order to
describe W (R2)J we use the following notations. Denote by Pa(m+ q)
the set consisting of all subsets of cardinality a in {1, 2, . . . ,m + q}.
For A ∈ Pa(m+ q) denote by Ā the complement of A in {1, . . . ,m+ q}
and set A′ = {x +m + q | x ∈ A}. For any X ∈ W (R2)J there exist
A ∈ Pa(m+ q) and B ∈ Pb(m+ q) such that a+ b = 2m and that

X =
∑
j∈A

ej +
∑
k∈B′

ek −
m

m+ q

∑
j∈A

ej +
∑
j∈Ā

ej +
∑
k∈B̄

ek +
∑
k∈B̄′

ek


=

q

m+ q

(∑
j∈A

ej +
∑
k∈B̄

ek

)
− m

m+ q

∑
j∈Ā

ej +
∑
k∈B̄′

ek

 .

Hence X is in a if and only if a = b = m, A = B. In this case

X =
q

m+ q

∑
j∈A

(ej + ej+m+q)−
q

m+ q

∑
j∈Ā

(ej + ej+m+q).

Hence we have

#(W (R2)J ∩ a) =

(
m+ q

q

)
.

Thus W (Σ̃)J = W (R2)J ∩ a. When J = J2q, we get the same conclu-
sion. □

This completes the proof of Theorem 4.19. □
We give another example.

Example 4.22. If

(M,L1, L2) = (G2m(C4m), Gm(H2m), U(2m)),

then Σ̃ = Cm, R1 = A2m−1, R2 = C2m and

#(L1∩Ad(a)L2) = 2m, #(W (R1)J) =

(
2m

m

)
, #(W (R2)J) = 22m.

Proof. We have Σ̃ = Cm, R1 = A2m+1 and R2 = Cm by (8) of the table
in Subsection 4.2. Theorem 4.19 and Example 4.3 imply

#(L1 ∩ Ad(a)L2) = 2m, #(W (R2)J) = 22m.

Since J is a characteristic element associated with R1, there exists
Ji (1 ≤ i ≤ 2m − 1) in Example 4.6 such that J = Ji. Since the
multiplicity of any root is equal to 4, (4.5) implies that

8m2 = dimM = 8 · i(m− i).
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Hence i = m. Thus #(W (R1)J) =

(
2m

m

)
by Example 4.6. □

The following results immediately follows from Theorem 4.19.

Corollary 4.23. Assume that L1∩Ad(a)L2 is discrete. If a = a1 then
Σ̃ = R1 and L1 ∩ Ad(a)L2 = W (R1)J .

The following examples satisfy the assumption a = a1 of Corollary
4.23.

Example 4.24. If

(M,L1, L2) = (Sp(2m)/U(2m), Sp(m), U(2m)/O(2m)),

then Σ̃ = R1 = Cm, R2 = C2m and

L1 ∩ Ad(a)L2 = W (R1)J = W (R2)J ∩ a,

#(L1 ∩ Ad(a)L2) = 2m, #(W (R2)J) = 22m.

Proof. We have Σ̃ = R1 = Cm and R2 = C2m by (2) of the table in Sub-
section 4.2. Theorem 4.19 and Example 4.3 imply #(L1 ∩Ad(a)L2) =
2m and #(W (R2)J) = 22m. □

Example 4.25. If

(M,L1, L2) = (E7/S
1 · E6, S

1 · E6/F4, (SU(8)/Sp(4))/Z2),

then Σ̃ = R1 = C3, R2 = E7 and

L1 ∩ Ad(a)L2 = W (R1)J = W (R2)J ∩ a,

#(L1 ∩ Ad(a)L2) = 23, #(W (R2)J) = 23 · 7.

Proof. We can verify Σ̃, R1 and R2 by (4) of the table in Subsection 4.2.
Theorem 4.19 and Example 4.3 imply #(L1∩Ad(a)L2) = 23. Example
4.10 implies #(W (R2)J) = 23 · 7. □

Example 4.26. If

(M,L1, L2) = (Gn(C2n), U(n), Gn(R2n)),

then Σ̃ = R1 = Cn, R2 = A2n−1 and

L1 ∩ Ad(a)L2 = W (R1)J = W (R2)J ∩ a,

#(L1 ∩ Ad(a)L2) = 2n, #(W (R2)J) =

(
2n

n

)
.
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Proof. We can verify Σ̃, R1 and R2 by (1) of the table in Subsection
4.2. Theorem 4.19 and Example 4.3 imply #(L1 ∩ Ad(a)L2) = 2n.
Since J is a characteristic element associated with R2, there exists Ji
(1 ≤ i ≤ 2n−1) in Example 4.6 such that J = Ji. Since the multiplicity
of any root in R2 is equal to 1, (4.5) implies that

2n2 = dimM = 2(2n− i)i.

Hence i = n. Thus #(W (R2)J) =

(
2n

n

)
by Example 4.6. □

Example 4.27. If

(M,L1, L2) = (Qr+s+t−2(C), Sr−1,s+t−1, Sr+s−1,t−1) (s > 0, r < t),

then

Σ̃ = R1 = B1, R2 =

{
Bmin{r+s,t} (r + s ̸= t)
Dt (r + s = t)

and

L1 ∩ Ad(a)L2 = W (R1)J = W (R2)J ∩ a,

#(L1 ∩ Ad(a)L2) = 2r, #(W (R2)J) = 2min{r + s, t}.

Proof. We can verify Σ̃, R1 and R2 by (5) of the table in Subsection
4.2. Theorem 4.19 and Example 4.2 imply #(L1 ∩ Ad(a)L2) = 2r.
If r + s ̸= t, then #(W (R2)J) = 2min{r + s, t} by Example 4.2. If
r + s = t, then J = J1 in Example 4.5, since the multiplicity of any
root in R2 is equal to 1. Thus #(W (R2)J) = 2t by Example 4.5. □
Example 4.28. If

(M,L1, L2) = (SO(4m)/U(2m), U(2m)/Sp(m), SO(2m)),

then Σ̃ = R1 = Cm, R2 = Dm and

L1 ∩ Ad(a)L2 = W (R1)J = W (R2)J ∩ a,

#(L1 ∩ Ad(a)L2) = 2m, #(W (R2)J) = 22m+1.

Proof. We can verify Σ̃, R1 and R2 by (3) of the table in Subsection
4.2. Theorem 4.19 and Example 4.3 imply #(L1 ∩ Ad(a)L2) = 2m.
Since the multiplicity of any root in R2 is equal to 1, (4.5) implies that
J = J2 in Example 4.5. Thus #(W (R2)J) = 22m+1 by Example 4.5.

□

Examples 4.20, . . . , 4.28 exhaust all two real forms L1 and L2 which
are not congruent to each other in an irreducible Hermitian symmetric
space M of compact type. For each real form L in M we can determine
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the cardinality of L∩Ad(a)L described in Theorem 4.14 by the use of
Examples in this section. The result is as follows.

M L #(L ∩ Ad(a)L) Example
Gk(Cn) Gk(Rn)

(
n
k

)
4.16

G2k(C2n) Gk(Hn)
(
n
k

)
4.21

Gn(C2n) U(n) 2n 4.26
Qn(C) Sk,n−k 2k + 2 4.27
SO(4n)/U(2n) U(2n)/Sp(n) 2n 4.28
SO(2n)/U(n) SO(n) 2n−1 4.17
Sp(2n)/U(2n) Sp(n) 2n 4.24
Sp(n)/U(n) U(n)/O(n) 2n 4.15
E6/S

1 · Spin(10) G2(H4)/Z2 33 4.20
E6/S

1 · Spin(10) F4/Spin(9) 3 4.20
E7/S

1 · E6 (SU(8)/Sp(4))/Z2 23 · 7 4.25
E7/S

1 · E6 S1 · E6/F4 23 4.25

We explain how to determine #(L ∩ Ad(a)L) in one line in the above
list. We can similarly determine #(L ∩ Ad(a)L) in the other lines. In
the case where M = E6/S

1 · Spin(10) and L = G2(H4)/Z2, this real
form is described as L2 in Example 4.20. Theorem 4.14 and Example
4.20 show that #(L ∩ Ad(a)L) = #(W (R2)J) = 33.

5. The fixed point set and the intersection

Let L1 = F (τ1,M) and L2 = F (τ2,M) be two real forms in an
irreducible Hermitian symmetric space M = Ad(G)J of compact type.
Since Ad(a)L2 = F (aτ2a

−1,M) for a ∈ G, we have

L1 ∩ Ad(a)L2 ⊂ F (τ−1
1 aτ2a

−1,M).

In this section we study the relation between L1∩Ad(a)L2 and the fixed
point set F (τ−1

1 aτ2a
−1,M) of a holomorphic isometry τ−1

1 aτ2a
−1 when

L1 ∩ Ad(a)L2 is discrete. We may assume that τ1τ2 = τ2τ1 and a is in
exp a. After some preparations we will prove the following theorem.

Theorem 5.1. When L1 ∩ Ad(a)L2 is discrete, then

F (τ−1
1 aτ2a

−1,M) = (a⊕f0)∩M, F (τ−1
1 aτ2a

−1,M)∩a = L1∩Ad(a)L2.

Further

(1) If f0 is abelian, then

F (τ−1
1 aτ2a

−1,M) = W (g12)J.

(2) If f0 = {0}, then
F (τ−1

1 aτ2a
−1,M) = L1 ∩ Ad(a)L2.
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Lemma 5.2. Set a = expH for some H ∈ a.

(1) If L1 = L2, then

F (τ−1
1 aτ2a

−1,M) =

a⊕ f0 ⊕
∑
λ∈R+

⟨λ,H⟩∈πZ

(fλ ⊕ pλ)

 ∩M.

(2) If L1 is not congruent to L2, then

F (τ−1
1 aτ2a

−1,M)

=

a⊕ f0 ⊕
∑
λ∈R+

⟨λ,H⟩∈πZ

(fλ ⊕ pλ)⊕
∑

α∈W+

⟨α,H⟩∈π
2 +πZ

V ⊥
α (f1 ∩ p2)⊕ V ⊥

α (f2 ∩ p1)

 ∩M.

Proof. We only give the proof of (2) since we can prove (1) in a similar
manner to the proof of (2).

Since θi = −τi on M ⊂ g ([16]), we have

F (τ−1
1 aτ2a

−1,M) = F (Ad(a−2)θ1θ2,M).

Since g = g12 ⊕ (f1 ∩ p2)⊕ (f2 ∩ p1), we have

F (Ad(a−2)θ1θ2, g)

= F (Ad(a2), g12)⊕ F (−Ad(a2), (f1 ∩ p2)⊕ (f2 ∩ p1)).

Lemma 4.12 implies that

F (Ad(a2), g12) = a⊕ f0 ⊕
∑
λ∈R+

⟨λ,H⟩∈πZ

(fλ ⊕ pλ).

Lemma 4.13 implies that

F (−Ad(a2), (f1 ∩ p2)⊕ (f2 ∩ p1))

=
∑

α∈W+

⟨α,H⟩∈π
2 +πZ

V ⊥
α (f1 ∩ p2)⊕ V ⊥

α (f2 ∩ p1).

Hence we get the assertion. □

Proof of Theorem 5.1. The first part follows from Theorems 4.14, 4.18
and Lemma 5.2. In order to prove (1) we assume that f0 is abelian.
Then the maximality of a implies that a ⊕ f0 is a maximal abelian
subalgebra of g12. Thus (1) holds. (2) is clear from the first part of
this theorem. □
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In the case where L1 = L2 we know the structure of f0 by Tamaru’s
table([14]). In the case where L1 is not congruent to L2 we know the
structure of f0 by the table in Subsection 4.2.

Example 5.3. We consider a real form L = U(n) in M = Gn(C2n). If
L ∩ Ad(a)L is discrete, then

L ∩ Ad(a)L = W (Cn)J, F (τ−1aτa−1,M) = W (su(2n))J.

In particular,

#(L ∩ Ad(a)L) = 2n, #F (τ−1aτa−1,M) =

(
2n

n

)
.
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