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Abstract

In real networks, the resources that make up the nodes and edges are finite. This constraint
poses a serious problem for network modeling, namely, the compatibility between robust-
ness and efficiency. However, these concepts are generally in conflict with each other. In
this study, we propose a new fitness-driven network model for finite resources. In our
model, each individual has its own fitness, which it tries to increase. The main assumption
in fitness-driven networks is that incomplete estimation of fitness results in a dynamical
growing network. By taking into account these internal dynamics, nodes and edges emerge
as a result of exchanges between finite resources. We show that our network model exhibits
exponential distributions in the in- and out-degree distributions and a power law distribution
of edge weights. Furthermore, our network model resolves the trade-off relationship be-
tween robustness and efficiency. Our result suggests that growing and anti-growing net-
works are the result of resolving the trade-off problem itself.

Introduction

Many evolving network models are based on the well-known property of preferential attach-
ment [1, 2, 3]. We regard the main rule for preferential attachment in evolving network models
as being constructed from at least the following two working concepts. (i) A new node is added
to the network at every step, and (ii) a fixed number of edges are connected to existing nodes
that have more connections than others (i.e. the probability of connecting a new edge between
the new node and an existing node is proportional to the number of edges already connected to
the existing node). Rule (ii) in particular suggests that new edges from new nodes preferentially
attach to old nodes when these existing nodes have many links (the so-called rich-get-richer ef-
fect). For this reason, the set of rules (i) and (ii) is called preferential attachment. It has already
been found that the heterogeneous connectivity of the network emerges from this preferential
attachment. The scale-free network structure, in particular, is considered a ubiquitous property
of the structure of many real networks. Preferential attachment is a good tool for determining
the power laws in the structure of networks [2, 3].

The concept of preferential attachment has been criticized by many researchers [4, 5, 6, 7, 8,
9]. Mandelbrot, for example, criticized the mechanical aspect of preferential attachment (more
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specifically, the preferential attachment-like models proposed in the past) and pointed out the
lack of any underlying mechanism [4]. We thus analyze the method behind the concept of pref-
erential attachment. We point out that there are two hidden assumptions behind the two rules
that we listed. One is that a newly added node can make a quick overall observation of informa-
tion about the whole network because otherwise it would need to know the degree distribution
of a given network in advance in order to distinguish the more popular nodes from the others.
The other is the assumption that the number of nodes and edges in a given network always in-
creases because the preferential attachment algorithm always adds a new node and a fixed
number of edges to the network.

The first hidden assumption has been pointed out by many researchers [5, 6, 7, 8, 9]. Re-
searchers who have tried to resolve this problem have introduced internal dynamics to nodes
and added edges by many different processes. Although there are many approaches to this
problem, we consider that a common approach is to limit the selection of nodes when using
preferential attachment. In other words, the nodes selected from the population are restricted
by taking into account the activation of the node, aging, and locality selection, which is called a
“local world” [5, 6, 7]. This kind of restriction on the selection of nodes prevents us from pre-
suming global information about the degree distribution of nodes. All a new node needs to do
is to seek more popular nodes from this limited set of nodes. Of course, these approaches are
an extension of preferential attachment.

Unlike the first hidden assumption, the second one is seldom discussed. Real networks such
as the World Wide Web (WWW) [10, 11] and social networks [12, 13, 14], are indeed expected
to grow virtually without limit. However, if we look at other real networks, we discover that
cases of networks that grow forever are rare. For example, ecological networks have at most
two hundred nodes (species) and a thousand edges (such as the flow of carbon or energy) [15,
16, 17]. This fact also applies to airport transportation networks [18] and protein reaction net-
works [19]. In these cases, we cannot expect an ever-growing network like the WWW. With re-
spect to the WWW, the important point of the listed network is the temporal dynamics of the
networks, that is, the increases and decreases in the number of nodes and edges, since the
nodes and edges in ecological networks and other networks change with time due to the effect
of external perturbations such as extinction events.

However, we need to point out here the radical assumption of the evolving network model.
The radical assumption in preferential attachment is that most models admit an asynchronous
update rule in their algorithms [1, 2]. In other words, there is no change in the network dynam-
ics without the addition of new nodes and selected existing nodes. By using an asynchronous
updating rule, we are able to obtain perfect information about network structures, such as the
degree distribution, and to construct algorithms for preferential attachment. We feel that this
problem is critical because protein reaction networks and networks of energy flows between
species involve events on many timescales, with these multi-scale processes occurring at the
same time. Furthermore, the study of network theory is motivated by attempting to understand
these many possible processes as a whole system.

This methodological problem is also relevant for relatively small networks. It is well-known
that flows of network have multiple time scales in relatively small networks (e.g. ecosystems)
[20]. In addition, it is known that the existence of a weak link in a network contributes to net-
work stability [21]. All these facts suggest that the assumption of asynchronous updating is not
appropriate, particularly for finite and small networks, because we cannot ignore these ob-
served facts in relatively small networks. If we take this problem seriously, we cannot expect
preferential attachment to function in a network model. Preferential attachment therefore
needs to be modified when constructing an evolving network model.
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We thus propose a new model for evolving networks. Our network model is constructed by
individuals who have their own fitness which is determined by their environment. Each indi-
vidual belongs to one state (this corresponds to being a node in the network). Each individual
tries to raise its own fitness and change its state. These state transitions of individuals create a
weighted state transition network which dynamically changes with time. Our network model
exhibits an asymmetrical relationship between the in-degree and out-degree distributions. Fur-
thermore, the dynamical aspect of our evolving network model leads us to consider a develop-
mental process in the network (growing and decaying) with time.

The paper consists of the following sections. In section 2, we explain the algorithm used in
the model and how the state transition network is constructed. Our model uses lattice theory,
which is often employed in computer science. The basic notion of lattice theory is detailed in
S1 Text. In Section 3, we analyze the evolving network in our model such as in terms of cluster-
ing coefficient, degree distribution, and the trade-off relation between the mean degree (MD;
diversity of states) and variance of edge weights (the overall gain in fitness). Finally, we discuss
a developmental cycle in the network of our model.

Methods
Construction of the Model

Before we construct the network, we describe the underlying dynamics of the transition net-
work. We assign each individual an n-bit binary string, and represent each individual by
$18283. . .S, and 5;€{0, 1} for all i€{1, 2, . . ., n}. For brevity, we denote s;s,s3. . .s, by (s),,. Each bit
string represents a state to which each individual belongs. If two individuals have the same bit
string, then these two individuals belong to the same state. In our model, each individual tries
to adapt to an environment, which is represented by the target bit strings (we denote (¢),,, i.e.
titots. . .t,), through its interactions. We assign the values of the target bit strings at random.
The adaptive process of each state in our model is the process by which each individual at-
tempts to change its state into the target bit string (£),,. Because of the existence of the target bit
strings, we can define the fitness of each individual. The fitness measures the degree of adapta-
tion of an individual to its environment. In other words, if the bit string of an individual
matches the target bit string well, then it has high fitness for the environment. The fitness of
each individual is therefore defined by the Hamming distance from the target. Mathematically,
we compute the fitness of each individual as follows.

Definition 1. (Fitness Bit String) Let (s), and (f),, be n-bit strings where (s),, is the state to
which an individual belongs and (t),, is the target. Let k be a hidden digit in the target bit string.

For 1<j<n,

0 (if s, =t and j# k)
b = 1 (if s;#¢ and j# k)

0 or 1 randomly (otherwise)

We call (b),, the fitness bit strings for the target.

We therefore have three distinct types of bit strings. The first type is bit strings representing
the state of an individual (denoted (s),,). The second type is bit strings representing the fitnesses
of individuals (denoted (b),,). The last type is bit strings representing a target (denoted (t),,).
The main difference among them is that the first two (state (s}, and fitness (b),,) types of bit
string change over time, whereas the target bit string (¢),, is fixed throughout each trial.

In particular, fitness bit strings can be compared with each other quantitatively. When the
number of 1s in the sequence (b),, is higher, the fitness represented by the string is higher (for
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instance, 100 < 111). The order relation between two binary bit strings is defined by (a),, <

(b)nifa; < b;foralli €{l,2,...,n}. Animportant of property of partial ordered sets is the pos-
sible existence of pairs of elements that are incomparable (for instance, 101 and 010 are incom-
parable because 101 is larger than 010 at the first digit but smaller than 010 at the second digit).

The concept of hidden digits in Definition 1 represents imperfect knowledge about the envi-
ronment. In other words, each individual never has perfect knowledge about its environment.
Each individual can only observe n-1 bits of an n-bit target string. The fitness value of the hid-
den position is determined randomly (zero or one). The position of the hidden digit changes
randomly from the first digit to nth digit at every step. If the position of a hidden digit is k (i.e.
the k-th digit in a target bit string (¢),,) at time t, each individual can observe the target bit string
tity. . .ti1tge1. - -t,. Each individual tries to adapt to the uncertain environment by changing its
state. Since an individual tries to raise its own fitness, it leaves its states the same (sjHl = sjt) if it
has high fitness digits (b; = 1) and changes its states randomly (s;""' =0 or s /*' = 1) if it has
low fitness (b; = 0). The idea of using a fitness measure for each state in a network is not new
[22,23, 24, 25].

Unlike previous fitness models, we assume no particular distribution function for fitness
[22, 23]. In these models, the fitness information for each node is completely given. In contrast,
the positioning of fitness in our model is utterly different because each individual lacks com-
plete information (i.e. hidden digit) about its own fitness. Each individual tries to estimate its
own fitness from incomplete information [26]. Taking this into account, the main difference in
the attitude toward fitness is whether the fitness is given passively (fitness is given to a node as
perfect information) or actively (fitness is given to a node as imperfect information). We con-
struct this fitness during the development of the network as described in a later section.

Next we discuss the fitness dynamics in terms of the interactions between states. We repre-
sent the fitness dynamics by using a quotient lattice from lattice theory (details of the definition
of the quotient lattice are described in S1 Text). By using a quotient lattice, the fitness of each
individual is never only determined by a local estimate, but also by a global estimate. The con-
cept of quotient lattice is not difficult. The quotient lattice is a way of grouping a complete lat-
tice (S1 Text). In lattice theory, a lattice is defined as a partially ordered set which is closed
under the operations of join and meet. Roughly speaking, this implies the existence of bottom
and top elements in a partially ordered set. In terms of fitness, the top element means high fit-
ness overall. If an individual attains the highest fitness, there is thus no need to change state. Al-
though it is generally difficult for individuals to achieve the highest fitness, we found that our
algorithm made it possible for individuals to easily obtain the highest fitness despite the exis-
tence of individuals whose fitness is not the highest.

According to Theorem 1.11 (see S1 Text), we can obtain a unique quotient lattice if we take
one element from a lattice. This grouping result, that is, the quotient lattice, corresponds to the
global fitness. Generally, fitness cannot be determined only by local estimation (comparing
with only a target bit string), but requires taking the global context into consideration. In this
respect, a lattice for fitness corresponds to a global structure of fitness, and a quotient lattice for
fitness corresponds to a global estimation. Mathematically, we can represent the fitness of each
individual in a global context as follows.

Definition 2. (Fitness Being Induced by a Quotient Lattice) Let L be a lattice of n-bit
strings, ] be an ideal and 0 (J) be a congruence on lattice L. For 1<i<N,

(B, = V(0" € L|x)," € [{e)) Ty such that (), € [(¢), s}

We denote the substitution operation by «<— and join by v. N is the total number of individu-

als. [(b),]ap means an element in a quotient lattice being derived from an ideal J and its
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congruence 0 (J). Therefore, a binary bit string of fitness blocks is replaced by the largest ele-
ment in the congruence to which it belongs.

Details of the definition of an ideal, congruence, and join are listed in S1 Text. We only
point out here that each individual takes the largest element to which it belongs in a given quo-
tient lattice. Taking the largest element (i.e. fitness) against the original fitness estimated by
local incomplete information means that each individual overestimates its own fitness when
we take into account the global context for fitness estimation. However, this overestimation
never indicates that the fitness actually increased. The overestimation of fitness is a kind of
error induced by considering the global context. Each individual uses this overestimated fitness
to change its state. The main effect of fitness overestimation is to suppress the degree of change
in an individual state. For example, assuming we have a 3-bit string 100 (the state of an individ-
ual) and its fitness 001 (the fitness of an individual), this individual randomly flips the corre-
sponding digits, that is, the 10 of 100. There are thus four possible changes (from 100 to 100,
110, 010, or 000). If overestimation of the fitness of this individual occurs due to the global con-
text, such as if the fitness becomes 011, then there are only two patterns of change (from 110 to
010 or 110).

We briefly summarize the algorithm from our model.

1. Generate N = 2" n-bit strings (s),,"*,(s),,>*, .. .(s),,"** and a target n-bit string (t),, randomly.
The target is fixed through one trial. Note that these bit strings may be bitwise-identical (i.e.
(s),° = (s),° but be distinct as individuals i and ).

2. Randomly select a hidden digit of the target from the set {1, 2, . . ., n}. A fitness is formed
from a set of n-bit strings B = {(b),,", (b),,*, . . ., (b),,""'} using Definition 1.1.

3. Create a lattice L' from this B".

4. Select one element (b'),)" in the lattice L' and create an ideal | (¢'),".
5. Construct a quotient lattice from the ideal J = | (x),.

6. Substitute new binary bit strings of fitness blocks using Definition 2.

7. Change each n-bit string using fitness blocks. For 1<j<n,

et _ { s (if b = 1)
! 0 or 1 randomly (otherwise)
Construct a new set of binary bit strings for species B = {(s),, ", (s),,> ™", ..., (s),," "'},
The sequence of steps (2)-(7) forms one time step of a trial. Repeating steps (2)-(7), we can
observe the evolution of the state and the lattice. Details of the algorithm are listed in S1 Text.
The state in our model thus forms a lattice from local incomplete information, with fitness re-
estimated from the global estimate, which is derived from a quotient lattice. The important
point is that an individual never asynchronously updates its state. All individuals estimate their
fitness and change state at the same time.

Creating a Transition Network

In the previous section, we explained how each individual attempts to raise its fitness and
change its state, which corresponds to the nodes in this section. By using this algorithm, we can
construct a weighted transition network. In this network, nodes represent states (the states of
the individuals) and edges represent transitions between states. The weight of each edge is
given by the number of transitions in a certain interval. Fig 1 shows an example of the
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Fig 1. Example of the state transitions of all individuals. Constructing a network from the state transitions of all individuals. In this example, the network is
constructed in one step from the state transition shown on the left. Bit strings (colored black for 0 and white for 1) represent individuals and red circles
represent states (i.e. nodes). Individuals who have the same state are shown in the same circle. Arrows indicate transitions of individual induced fitness. The
figure on the right represents the state transition network. Numbers above edges indicate the weights of the edges. The network contains a self-loop. Note
the number of individuals (i.e. 2”) never change with time but only the number of states.

doi:10.1371/journal.pone.0127284.9001

construction of a state transition in a network. The edge is formed by actual transitions in a cer-
tain interval (one step in Fig 1). The number above each edge represents its weight. From this
example, it can be found that the sum of the weights of all edges is always fixed because all indi-
viduals change state every step. Therefore, if there are 32 individuals, then there are 32 state
transitions which correspond to the edges. This can be expressed mathematically as follows:

| <s>, =<5>,
fy
= Z [{<s >'—< s > occur at time f when < s>, =<s' > and <s/>, =<s >}
t=t,
where ||-||,, means the weight of the edge which corresponds to the state transition (s),,'— (s),,’
*Land t,-1, is a fixed interval of time. If we take enough time intervals (200 steps in this paper),
we can obtain a fully connected directed weighted network (in this case, the total weight of
edges is 200N. N is the total number of individuals).
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We note that the transition network never satisfies the transitive property (if A implies B
and B implies C, then A implies C) of edges. The possibility of transition exists in the network
where a triangle relationship exists. Because of the fixed sum of weights, the weighted network
suggests a trade-off relationship between the gain of all individuals (which corresponds to high
overall fitness) and the resource distribution (which corresponds to a high diversity of species).
This problem is discussed in a later section.

Results
Cluster Coefficient and Local Cluster Coefficient

Before we analyze the properties of the network of our model, we construct a control model
with behavior that can be controlled by tuning one parameter. Since the details of the algorithm
of the control model are listed in S1 Text, at this point we note that the concept of the model is
to have a way of measuring fitness which can be controlled by one parameter. This parameter
controls the error rate. The error rate is defined in terms of the probability y that a digit that is
the same in an individual as in the target bit string changes value. For example, we again con-
sider three-bit strings (with 100 for the state and 011 for the fitness). Each of the "1" digits in
this fitness (i.e. the last of two 1s) changes to 0 with probability 1- y. The error rate therefore in-
creases as ¢ increases. Therefore, by tuning this parameter y, we can control the behavior of the
species to mimic our evolving lattice (EL) model. Furthermore, because of this algorithm, high
fitness states tend to become linked with each other without using any global information (fit-
ness is determined by using only a target bit string). This model corresponds to a PA-like
model under a finite resource environment. Compared with this control, the effect of using a
lattice structure in our model becomes clearer.

Fig 2A and 2B show two networks from our EL model and one example of the control
model (parameters are fixed at y = 0.005). All data in this paper are averages from over 100
times trials for the EL model and the control. As is shown in a later section, the state of the con-
trol model when the parameter p is 0.005 is near the EL model compared with other parameter
values (see S1 and S2 Figs). We point out here the difference can be observed as a network
structure (i.e. cluster coefficient). First, the global cluster coefficient of the control is four times
larger than that of our model (C = 0.133 + 0.020 for the EL model and C = 0.474 + 0.028 for the
control). In the same way, the mean degree of the control is two times larger than that of our
model (MD = 5.00 + 0.50 for the EL model and MD = 9.25 + 0.32 for the control). This fact
suggests the possibility that the state transition is restricted in the EL model. Compared with
the EL model, the state transitions of the control are only controlled by one parameter. There-
fore, the transition of species is determined statistically and never depends on the global con-
text of the whole process. However, state transitions in the EL network are determined not
only in a statistical way, but also from the lattice structure. Owing to the lattice structure (or re-
placing each fitness with the top element of the quotient lattice), the possibility of state transi-
tions never becomes free like in the control model.

While we have already mentioned the global cluster coefficient C, we also examine the detail
of the clustering structure around each node because the global cluster coefficient never refers
to the local clustering structure of the network. Fig 3A shows the distribution of the local clus-
ter coefficient of the EL network (binned 0.005). Although the EL network has a relatively
small cluster coefficient, it has a high local cluster coefficient of around 1.0. This high local clus-
ter coefficient is distributed around the target state. Around the target state, which has a highest
fitness, the EL network never only has a high local cluster coefficient, but also has high weight-
ed edges. In Fig 3B, the weight distribution of edges in the state as classified by Hamming
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Fig 2. Examples of a network structure for the EL model (a) and the control (b). (a) The network of the EL network. Node colors represent the Hamming
distance from the target bit string. Number in circles indicate the state. There are six colors, which are red (0), orange (1), yellow (2), green (3), light blue (4),
and blue (5). The color of the target is red because the Hamming distance is zero. The global cluster coefficient and mean degree of the control network are
much larger than those of our model. The number of nodes is always smaller than max possible nodes (i.e. 2”) because many low fitness states may not be
selected. In this figure, the total number of node is 142 (EL model) and 168 (Control). (b) The control network (u = 0.005). Colors are the same as Fig. 2A.

doi:10.1371/journal.pone.0127284.9002

distance from the target are concentrated in small Hamming distance nodes (about 70% of a
total weight of edge within 3 bits).

Weight and Degree Distribution of the Evolving Lattice Model

Next we examined two frequency distributions for in-degree and out-degree because it is given
that the network is directed. However, the shapes of the degree distributions are constructive
(Fig 3C). It seems that the slope of in-degree (A;,) is steeper than that of out-degree (A,,,), but
the statistical values are the same, with A;, = 0.226 + 0.026 and A, = 0.226 * 0.026 (the detail
of statistical test are listed on Table 1). However, the distribution of the tail position (i.e. the
highest degree in the EL network in a certain interval) of in-degree (max k;,) is much larger
than that of out-degree (max k) (See Table 1). In other words, there is an asymmetrical rela-
tionship between the in-degree and out-degree distributions. This difference comes from the
fitness algorithm of the EL network. Since each individual changes its state to increase its fit-
ness, there are some nodes (state) that attract more edges than others. This popularity of nodes
creates a ranking among all the nodes in the network. In contrast, the case of out-degree distri-
bution is not related to the fitness algorithm of our model like the case of in-degree distribu-
tion. The out-flow and in-flow in the network obey the different underlying mechanism when
the degree distribution is constructed. We note that low cluster coefficient and exponential
decay of degree distributions are observed in the WWW [10, 11].
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Fig 3. Details of data for the EL network. (a) Distribution of the local cluster coefficient in the EL network. The horizontal axis corresponds to the local
cluster coefficient (binned at 0.005) and the vertical axis corresponds to the proportion. (b) The proportion of edge weights for each Hamming distance. A
large proportion of edge weights are concentrated within 3 bits. This tendency is the same in all cases. (¢) The in-degree and out-degree degree distributions
for the EL network. Both graphs show an exponential decay and the same scaling parameter %;, = 0.226 + 0.026 and A, = 0.226 + 0.026. We use a
maximum likelihood estimation method with a discrete distribution [27, 28].

doi:10.1371/journal.pone.0127284.9003

Next we investigate the frequency distribution of weights. Most real networks are weighted
networks [18, 21, 27]. The examples of ecosystems and social communities, where weak links
play an important role in the stability of the network, are often cited [21]. However, despite the
importance of weighted networks, most studies focus on unweighted networks. Many research-
ers construct weighted networks by using a preferential attachment method, the same as un-
weighted networks [29, 30, 31, 32, 33]. As we discussed before, our model is not preferential
attachment because the update rule is synchronous. Despite the synchronous update rule, it is
not a given that time progress will occur at each individual because some individuals may
change at time t and some individuals may remain in the same state (digits) at time ¢. In this
network, the weight of an edge is measured by counting state transition events in a certain time
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Table 1. Statistical data for an in-degree and an out-degree distribution.

Ain (MeanzSD) Zout (MeanxSD) t-value p-value
7-bits 0.234+0.031 0.234+0.029 -0.1613 0.872
8-bits 0.226+0.026 0.226+0.026 0.1223 0.902
9-bits 0.223+0.025 0.223+0.025 -0.0486 0.961

max k;, (meanzSD) max Koyt (meantSD) t-value t-value
7-bits 25.0+3.75 13.5+1.75 22035 <1076
8-bits 24.9+3.76 13.541.76 22028 <1076
9-bits 31.7+4.81 15.1+1.84 22201 <107®

The above table means t-test for relation between an in-degree distribution e~%* and an out- degree
distribution e~%«*. The bellow one means Mann-Whitney U test for the highest degree for those degree
distributions, that is, max k, = max{k|e=** > 0}.

doi:10.1371/journal.pone.0127284.1001

interval (200 steps in this study). We examined the frequency distribution of edge weights in
Fig 4A. The graph exhibits a power law distribution with a scaling exponent of 1.5. This power
law behavior never depends on the number of bits (see Table 2). Additionally, the power law
distribution of our model never depends on the length of the time interval (Fig 4B). If we take a
20 step interval, the species transition network never becomes an all connected network but ex-
hibits the power law distribution for edge weights (see Table 2). This fact suggests that each
state is already balanced in terms of weight to create the power law behavior as a whole before
the all connected network is constructed. In this sense, we can also assume that the scale-free
weighted network emerges as a result of each state trying to balance the amount of flow. This
unconnected network in the middle of a process is natural because when we observe networks
in nature, these networks are the result of long-duration processes. In ecosystems, for example,
it is known that there are many time scales in each observed network (called slow channel and
fast channel [20]).

Trade-Off Relationship between Resource Distribution and Gain

In this section, we discuss the trade-off relationship between the resource distribution and gain
in fitness. We consider that two properties may be important when we consider the efficiency
and robustness of the weighted network. In network theory, the robustness of a network is
measured by some researchers as ultraresilience against attacks [20, 34]. They define ultraresili-
ence as the way in which the removal of nodes affects the global structure. However, ultraresili-
ence is valid in non-weighted networks. In weighted networks, we take into account both the
weight distribution and the edge distribution. The approach to this problem thus needs to be
modified for weighted networks.

In weighted networks, in order to measure the robustness of a network, we select a mean de-
gree and variance of edge weights in the network. The role of both quantities is clear. The role
of mean degree corresponds to network robustness which we observe in non-weighted net-
works, while the role of variance of edge weights corresponds to the efficiency of the network.

The concept of robustness originally meant the fault tolerance to the removal of any one
node from a given unweighted-network. In our model (a weighted network), taking away one
node from a given network results in an inhibition of any transitions to this removed node. Be-
cause there are no corresponding nodes for these transitions, individuals whose destination
state is this node will die (i.e. transition to an empty node). The removal of nodes from a net-
work thus corresponds to the “extinction” of individuals who attempt to change their state to
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that node. Therefore, the meaning of robustness, which we discuss in this study, is defined as
“the degree of removal rate that results in the removal of one node (i.e. state) from a given net-
work”. When we restrict to the case of finite resources, this robustness corresponds to the “av-
erage degree” of a network. If the state transitions in a network are not concentrated in certain
nodes, then other state transitions, which never go to these nodes, must occur in other states.
This tends to increase the degree of the network overall. Thus, a high average degree network
has a high robustness, whereas a low average degree network has a low robustness.

Next, the concept of efficiency in this study is defined as follows. “Efficiency” usually means
the largest gain for the least effort. The gain in a weighted network means the fitness in this
study. Therefore, the meaning of fitness in this paper is defined as “the degree of the total fit-
ness in a given network”. From this definition, each individual needs to change its state to
higher fitness state in order to increase the fitness and increase the efficiency of the network.

Table 2. Data for a scaling parameter a of weight of power law with AIC test.

Scaling Parameter a AIC weights: w(p)
7-bits (200 steps interval) 1.55 (N = 25600) 1.00
8-bits (200 steps interval) 1.55 (N = 51200) 1.00
9-bits (200 steps interval) 1.65 (N = 102400) 1.00
8-bits (20 steps interval) 1.48 (N = 51200) 1.00

Scaling parameter a and Akaike information criterion (AIC) weights of power law for w™°. w mean an
edge’s weight.

doi:10.1371/journal.pone.0127284.t002
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This tendency results in a concentration on certain states that have high fitness. The weight dis-
tribution of heterogeneous edges thus increases (this tendency also means the average degree
of the network becomes low). We measured the degree of heterogeneity as the variance of edge
weights. We note here that the mean degree (i.e. robustness) and variance of edge weights (i.e.
efficiency) in a network are in conceptual conflict with each other. If the mean degree of a net-
work increases, the weights (in other words, the resources) of edges in the network distribute
uniformly to each edge. An increase in the number of edges means a decrease in the weights of
edges. In this case, the network gains robustness against external perturbations because the
elimination of a node does not collapse the whole structure. By contrast, a decrease in the
mean degree increases the heterogeneous weight distribution in the network. This results in in-
creasing the overall fitness of the whole network.

The trade-off relationship between these two factors (i.e. robustness and efficiency) was
confirmed by using the control model for parameter tuning. Increasing the value of y suggests
that the error increases for the fitness estimates of each individual. This tendency leads to the
creation of a highly connected network because the error of fitness estimation increases the
transitional possibility to many states. However, decreasing the value of y reduces the error es-
timation. Therefore, a low value of y suppresses false transitions due to errors. Instead, the
weights of edges connected to correct states (corresponding to transitions to nodes near the tar-
get) increase. This gives the network a high heterogeneous weight distribution. Fig 5A shows
the trade-off relationship between the degree of heterogeneity of the weights of the edges and
the mean degree of the network (the parameter values y are taken from 0.005 to 0.1 for every
0.005 interval). This graph shows that the distribution of the weight of edges becomes almost
uniform in high y areas, but not in low y areas.

Compared with the control model, our model weakens the trade-off relationship between
the edge weight distribution and mean degree. In Fig 5A, we take 200 samples from a certain
instant of the EL model (Fig 5B shows the trade-off relationship for 7, 8 and 9 bits. The same
tendency was observed). Both values are distributed around the mean values. The variance
from the mean values is much larger than the control model. This can be observed in the time
series variance of the weights in one trial (Fig 5C). In the control model, the variance of edge
weights is always much smaller than the EL model. This suggests that the network structure of
each parameter value remains the same through the process of one trial. Compared with the
control, the variance of the weights changes dynamically in the time series of the EL model.
Taking into account the correlation relationship between the mean degree and weight variance,
the network structure of the EL model is not stable but dynamic.

Next we examine the detail of the dynamics of the network structure of the EL model. Fig
6A shows an example of the circle trajectory of the mean degree and the weight variance (other
examples are listed in S3 Fig). We take each value at each interval such as 200-400, 201-401,
202-402, and so on. This graph indicates that the mean degree in this graph gradually increases
as the weight variance of the network decreases, and vice versa. In other words, the network of
the EL model tries to resolve the trade-off relationship itself by tuning the tensions between the
two values. This tendency reflects the recurrence time of mean value of both measurements.
Fig 5B shows that it takes a long time to get back to the mean values. In particular, the probabil-
ity distribution of the recurrence time for the mean degree obeys a power law distribution (see
Table 3; note that o is not the value for the cumulative distribution). Both long time durations
indicate that the EL network values have a long traveling trajectory, observed as an ellipse tra-
jectory in Fig 6A, before returning to the same state.
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doi:10.1371/journal.pone.0127284.g005

Discussion

The aim of this paper is to construct a non-ever-growing weighted network model by using fit-
ness estimation, deduced from incomplete information. The main point of difference of our
model from previous network studies is based on taking into account the internal dynamics of
the network. Because of the constraint on the number of individuals (2" individuals in total for
n bits), the distribution of individuals is finite. Each state of an individual, which corresponds
to a node, changes state in order to increase its own fitness but the number of nodes is always
under 2" because the maximum possibility of states is 2" in a given network. This state change
plays a role in the flow in this network. The network structure arises from exchanging this fi-
nite resource in a certain interval.

By taking internal dynamics in account, we are able to examine the emergence of weighted
networks from local interactions. First, we found that the structure of this network (i.e. the
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Table 3. Data for a scaling parameter a of the recurrent time of power law with AIC test.

Scaling Parameter a AIC weights: w(p)
7-bits 1.39 (N = 119900) 1.00
8-bits 1.40 (N = 119800) 1.00
9-bits 1.40 (N = 119859) 1.00

Scaling parameter a and Akaike information criterion (AIC) weights of power law for t™°. t means the
recurrence time for the mean degree of an EL net- work.

doi:10.1371/journal.pone.0127284.t003
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degree distribution) in the EL model exhibits an exponential distribution instead of a power
law, and we also found an asymmetrical relationship between the in-degree and out-degree dis-
tributions. These tendencies have been observed in real web networks [11]. Furthermore, we
also confirmed that the weight distribution of edges obeys a power law which never depends
on how the interval is taken. Although the slope of the power law is not stable, it is observed
that power law behavior remains the same. All these results are good matches to previous stud-
ies [11, 16, 18]. In this respect, our assumption of internal dynamics provides sufficient evi-
dence to say that we have a new network modeling.

Finally, we comment on the trade-off relationship between the mean degree and variance of
the weight distribution discussed in the last section. We note the practical meaning of the resolu-
tion of the trade-off relationship in our model. In contrast to the control model, the network
structure of the EL model dynamically changes with time. In particular, the mean degree and
variance of the edge weights change in a highly correlated way. As we discussed, the high mean
degree indicates the robustness of the network and the high variance of edge weights indicates
the efficiency of the network. By tuning the balance between these two quantities, the network of
the EL model always acts to resolve the trade-off relationship between efficiency and robustness.

We note structures that resemble ascendency theory in ecosystems. Ulanowicz measured
the degree of network development by using the concept of ascendency [16, 17]. Ascendency is
defined as the product of total system throughput and average mutual information. From this
definition, ascendency is high when the flows in a network are distributed heterogeneously. In
addition, he also noted that decreasing ascendency indicates that the number of redundant
pathways (more specifically, he consider other quantities such as dissipations, inputs, and out-
puts) is large. This trade-off relationship between ascendency and redundant pathways corre-
sponds to our discussion, that is, the trade-off relationship between the mean degree and
variance of edge weights. Furthermore, Ulanowicz discusses the development of the network
from the perspective of ascendency [17]. If the ascendency increases, then the degree of maturi-
ty of the ecosystems increases. If the ascendency of the system were to decrease, it would indi-
cate a reset (or death) of the system and a return to an initial state.

If we accept this argument, we can insist that the EL model exhibits growth and decline of
the system which resolves the trade-off relationship between robustness and efficiency because
the increasing ascendency corresponds to increasing variance of edge weights and decreasing
ascendency (i.e. increasing redundancy) corresponds to increasing mean degree of the network.
(We examined the relation between the mean degree and variance of edge weights for real eco-
systems, and found a negative correlation. Pearson’s correlation test: N = 15, r = -0.73,

p =0.0008. This value suggests that real networks also exhibit this trade-off relationship). Our
network model is not purely dynamical, and also exhibits developmental cycles in certain time
intervals. The network of the EL model gets old with time. After the network grows to a certain
degree of maturity (heterogeneous structure), the network gradually decays (homogeneous
structure) and prepares for the next cycle. The growing and decaying network in the EL model
is one answer to the trade-off problem under the finite distribution of resources in developing
systems.

Supporting Information

S1 Fig. Cumulative distribution of edge weights for a 200 step interval. Color correspond to
parameter values (4 = 0.5: blue, 4 = 0.05: red, y = 0.5: green). Power law like behavior is only
observed with high parameter values.

(EPS)
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$2 Fig. The relationship between R” value for the least squares method for a power law. The
relationship between R” value for the least squares method for a power law for cumulative dis-
tribution of edge weights and the parameter y. The region of high parameter values (4>>0.7)
and of low parameter values (< 0.4) are poor fits to the power law behavior.

(EPS)

S3 Fig. Other examples of the trajectory of the EL model. Other examples of the trajectory of
the EL model for 500 steps. All graphs show that the network of the EL model travels around
the space and finally back to the initial state.

(EPS)

S1 Text. Basic concept of lattice theory, the algorithm of the control model and thair analy-
sis.
(DOCX)
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