
Persistent current generation by the spin-vortex

formation in the cuprate with the single-valuedness

constraint on the conduction electron wave functions
Division of Materials Science, University of Tsukuba,Tsukuba, Ibaraki 305-8573,

Japan

Hiroyasu Koizumi, Ryo Hidekata, Akira Okazaki

Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan

Masashi Tachiki

Abstract. The persistent current generation in the cuprate is theoretically

investigated based on the spin-vortex superconductivity theory. We present a way

to impose the single-valued condition on wave functions and clarify the appearance of

a vector potential and the persistent current generation by it when the spin-vortices

are created by the conduction electrons. We attribute the reason for the very high

superconducting transition temperature in the cuprate to the enhanced stability of the

spin-vortices by the strong hole-lattice interaction.

1. Introduction

It is now widely believed that the dual roles played by the conduction electrons, namely

charge carriers and spin-degree-of-freedom holders, lead the cuprate to a superconductor

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In this respect, it is noteworthy that a

number of works have shown that spin-vortices are created by the conduction electrons

in the antiferromagnetic background in the cuprate [7, 8, 9, 10, 11, 12, 13, 14]. A novel

superconductivity theory, spin-vortex superconductivity, is also proposed as a theory that

explains the superconductivity in the cuprate based on the spin-vortex formation[15, 16].

The spin-vortices are topological defects in the spin configuration. A number of

theoretical investigations have considered the spin-vortex formation with spins lying in

the CuO2 plane [9, 10, 11, 12, 13, 14, 15, 16]. When the conduction electrons make the

Hartree-Fock field with the spin-vortices lying in the CuO2 palne, the spin direction of

the self-consistent field is described by angular variable ξ with period 2π. This variable ξ

also describes the twisting of the spin of the conduction electron moving in the Hartree-

Fock field. The fluctuation of the spins that are not included in the Hartree-Fock

field will smear the spin vortices in the spin configuration; however, the topological

characters of the spin-vortices will remain intact since they cannot be altered in an

arbitrary manner. In the present work, we concern the topological characters of the
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spin-vortices and the twisting of the spin basis of the conduction electron wave function

caused by them.

It has been anticipated that the doped holes are the carriers of the persistent

current in the cuprate. However, at low temperatures, the mobility of the holes in the

bulk is significantly reduced by the small polaron formation by the strong hole-lattice

interaction [17, 18, 19]. The small polaron formation of the hole with changing the O-Cu

bond length has been detected by the XAFS experiments [20]; the observed value of the

O-Cu bond length change agrees with the ab initio molecular orbital cluster calculation

[21]. According to the latter, the stabilization of the hole with the lattice deformation

makes the hole essentially immobile. This indicates that doped holes cannot be the

charge carriers of the persistent current; in this respect, it is noteworthy that the Hall

coefficient measured below the superconducting transition temperature Tc by destroying

the superconducting state with a strong magnetic field is negative, although it is positive

at the room temperature [22]; this result may be interpreted that the mobility of the

holes is much reduced at low temperatures due to the small polaron formation. Note

that the small polaron formation is probably suppressed in the surface region since

such effects are minor in the ARPES measurements [23]; the surface electronic state is

probably somewhat different from the bulk electronic state.

The purpose of the present work is to clarify the recently proposed novel persistent

current generation mechanism that occurs when the doped holes form immobile small

polarons and become the cores of the spin-vortices. This mechanism attributes the

ultimate cause of the persistent current generation to the single-valuedness of wave

functions; ever since Schrödinger solved the Schrödinger equation for the hydrogen atom

[24], the single-valuedness of wave functions is one of the fundamental postulates of

quantum mechanics; he required this condition and obtained the correct discrete values

of the energy levels. One might think that the single-valued condition on wave functions

is trivially satisfied; however, it is not so when the wave functions are multi-component.

The conduction electrons have the spin-degree-of-freedom, thus, their wave functions are

two component. When the twisting of the spin basis of the conduction wave function

occurs, the sign-change is brought about by the twisting. This sign-change makes the

construction of the single-valued wave functions nontrivial.

Actually, a similar problem is encountered in the study of molecular systems

using the Born-Oppenheimer approximation. In this approximation, two-component

electronic wave functions appear around the conical intersection of the potential

energy surface. The conical intersection is a singularity of the Born-Oppenheimer

approximation, and the sign-change of electronic wave functions occurs when they are

transported around it [25, 26]. This sign change makes the construction of single-valued

total wave functions nontrivial. Mead showed that this problem can be handled by

introducing a U(1) phase factor that compensates the sign-change [27]; the added phase

factor induces a vector potential, and the induced vector potential brings about an

Aharonov-Bohm type effect [28], called the ‘molecular Aharonov-Bohm effect’.

We will put forward a method that handles the above mentioned sign-change,
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Figure 1. Two spin-vortices in the antiferromagnetic background. Spin-vortices in

the 16 × 16 lattice. ‘M ’and ‘A’ indicate cores of spin-vortices with winding numbers

+1 and −1 in Eq. (4), respectively. We may call the one with the winding number −1

the anti-vortex.

properly; namely, we present a way to impose the single-valuedness constraint on the

conduction electron wave function with the twisted spin basis. From the single-valued

constraint, the persistent current is generated.

Let us describe the organization of the present work. In Section 2, we clarify the

persistent current generation that arises from the single-valued constraint on the wave

functions. We impose the constraint by introducing a U(1) phase factor e−iχ/2, where

χ is a harmonic function of period 2π; the Lagrange multipliers are used to force the

phase χ to compensate the sign-change caused by the spin twisting. Consequently, the

variational construction of the wave functions are done by the energy minimization with

the constraint.

In Section 3, the energy functional that depends on the gradient of the U(1) phase

factor introduced above, i.e., ∇χ, is constructed. Using this energy functional, the

Lagrange multipliers and the optimized ∇χ are obtained from the stationary condition

of the functional that is the sum of the energy functional and the constraint. Using the

optimized ∇χ, the single-valued wave functions are constructed.

In Section 4, an example calculation is worked out. In Section 5, the relation

between the present theory and the London’s theory of superconductivity is examined.

Lastly, in Section 6, we will discuss the stabilization of the spin-vortices by the strong

hole-lattice interaction in the hole-doped cuprate, and conclude the present work.

2. Persistent current generation by the single-valued wave function

constraint

At low temperatures where the mobility of the holes is very small, the number of

the accessible sites and that of the conduction electrons are equal. The classical spin
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Hamiltonian for this situation is given by

E[ξ] =
J

4

∑
⟨i,j⟩1;i,j∈acc. sites

cos(ξi − ξj) (1)

where ‘acc. sites’ in the sum indicates a set of sites ‘accessible’ for electrons, and the hole

occupied sites are simply omitted as the inaccessible sites by assuming that the polaron

hopping is negligible; ξj is the value of the angle ξ at the jth site, J is the super-exchange

coupling constant between the spins, ⟨i, j⟩1 indicates the nearest neighbor pairs, and the

spins are assumed to lie in the CuO2 plane (the x-y plane) as is observed experimentally

in the parent compound [29].

The energy function in Eq. (1) has a lot of local minima that differ in the number,

positions, and winding numbers of spin-vortices. The spin-vortices are created with the

holes at their centers since in this way the core energy of the spin-vortex is reduced

[12]. An example for the local minimum spin configuration numerically calculated

using Eq. (1) is depicted in Fig. 1, in which two spin-vortices are embedded in the

antiferromagnetic background with holes at their centers.

The energy function in Eq. (1) is very similar to the 2D XY model, in which

vortex-antivortex pairs are frozen-in below the transition temperature TBKT [30, 31].

We consider the situation where the frozen-in spin-vortex and antivortex pairs exist

with the holes at their centers.

When the conduction electrons move in the self-consistent field with the frozen-in

spin-vortices, the conduction electron wave functions contain the following phase factors,

e±i
ξj
2 . (2)

The angular variable ξ may have the jump of value ξj → ξj + 2πn, where n is an

integer; then, the phase factor in Eq. (2) may make the wave functions multi-valued.

For example, if the jump of the ξj value is 2π times an odd number, the sign-change

occurs,

e±i
ξj
2 → −e±i

ξj
2 . (3)

Spin-vortices lying in the x-y plane are characterized by the topological index, the

winding number, defined by

w[ξ]ℓ =
1

2π

∮
Cℓ

∇ξ · dr, (4)

where Cℓ is a loop in the x-y plane.

Actually, since we are considering the discrete lattice system, the above integration

becomes the sum

w[ξ]ℓ =
1

2π

Nℓ∑
i=1

(ξCℓ(i+1) − ξCℓ(i)), (5)

where Nℓ is the total number of sites on the loop Cℓ, and Cℓ(i) is the ith site on it with

the periodic condition Cℓ(Nℓ + 1) = Cℓ(1).

If some of w[ξ]ℓ’s are odd, the phase factors in Eq. (2) may make the wave functions

multi-valued since the transportation of ξ along the loop Cℓ with the odd winding
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number w[ξ]ℓ will yield a phase shift of 2π times an odd number; in this case the sign

change of e±i
ξj
2 given in Eq. (3) occurs after the transportation.

This sign-change makes the construction of the single-valued wave functions

nontrivial. Mead showed that this sign-change can be handled by introducing a U(1)

phase factor [27]. We follow Mead and use a U(1) phase factor to obtain the single-

valued wave functions; i.e., we introduce an angular variable χ with period 2π, and

modify the phases in Eq. (2) as

e±i
ξj
2 e−i

χj
2 . (6)

The added phase factor is considered as a variational parameter that has to be optimized.

Actually, as will be shown later, the conduction electron wave function is obtained

in the following form∑
j

e−i
χj
2 (e−i

ξj
2 Cj↑c

†
j↑ + ei

ξj
2 Cj↑c

†
j↓)|vac⟩, (7)

where |vac⟩ is the vacuum and c†jσ is the creation operator of electron at the jth site

with the spin σ along the space-fixed quantization axis; the parameters Cjσ’s are usually

obtained by solving the eigenvalue problem numerically.

When only the energy minimization is required in the optimization, the optimized

solution is the one with constant χ (for example, χ = 0). An important point to

remember is that, in the numerical calculation by computers, the multi-valued phase

factors in Eq. (2) are simply translated into numbers, and the possible sign change

in Eq. (3) is lost. Then, the obtained wave function in the form given in Eq. (7) is

mistakenly regarded as a single-valued function with e−i
ξj
2 Cj↑ and ei

ξj
2 Cj↑ as single-

valued parameters with a constant factor e−i
χj
2 (which is 1 for χ = 0). Actually, e±i

ξj
2

is multi-valued, thus, the obtained wave function does not satisfy the single-valued

condition.

In the following, we explain how to impose the single-valued condition: the

information about the multi-valuedness of ξ and χ is encoded in their winding numbers.

The phase shift of ξ and χ after the transportation along the loop Cℓ are 2πwℓ[ξ] and

2πwℓ[χ], respectively, where w[χ]ℓ is the winding number of χ along Cℓ given by

w[χ]ℓ =
1

2π

∮
Cℓ

∇χ · dr = 1

2π

Nℓ∑
i=1

(χCℓ(i+1) − χCℓ(i)). (8)

Then, if the condition

wℓ[ξ] + wℓ[χ] = even number, (9)

is satisfied for any loop Cℓ, the phase change of ±ξj − χj is a multiple of 4π after the

transportation. Then, ei
±ξj
2 e−i

χj
2 do not change sign; thus, the wave function in Eq. (7)

becomes single-valued. Thus, the single-valued condition is satisfied if we impose the

constrains in Eq. (9) in the evaluation of the wave functions.

The introduced variable χ has singularities within the loops where those of ξ exist.

It is a harmonic function that satisfies

∇2χ = 0. (10)
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If the added phase factor e−i
χj
2 in Eq. (6) is transferred from the wave function to

the Hamiltonian, the momentum operator p is replaced as

p → p− h̄

2
∇χ. (11)

This should be compared with the modification of the momentum operator in the

electromagnetic field with the vector potential Aem,

p → p− q

c
Aem, (12)

where the superscript ‘em’ stands for ‘electromagnetic’ and denotes that it is the

electromagnetic field origin.

The comparison of Eqs. (11) and (12) shows that the vector potential

Afic =
ch̄

2q
∇χ, (13)

is induced in the system, where the charge unit q is given by the electron charge q = −e,

c is the speed of light, and h̄ is Planck’s constant divided by 2π. Here, the superscript

‘fic’ in Afic stands for ‘fictitious’ and denotes that it is not the electromagnetic field

origin. Since the ‘magnetic field’ produced by Afic is zero, i.e. ∇×Afic = 0, the vector

potential is of an ‘Aharonov-Bohm effect’ type [28].

We consider the novel superconductivity that occurs when the ordinary electric

current generation by the single-particle excitations are suppressed by an energy gap

formation, but the novel current generation by the appearance of the non-trivial Afic

occurs. We call this superconductivity, spin-vortex superconductivity [15].

When bothAem andAfic exist, the modification of the momentum operator becomes

p → p− q

c
Aem − q

c
Afic. (14)

Actually, the vector potential Aem always exists including the case where it is a pure

gauge given by ∇f , where f is a single-valued function. When the nontrivial Afic

appears, the electric current appears; then, Aem is generated by the electric current.

External magnetic fields also give rise to Aem.

The persistent current density is given by the

j = −c
δE[Aeff ]

δAeff
, (15)

where E[Aeff ] is the total energy and Aeff is the effective vector potential given by

Aeff = Aem +Afic. (16)

Since we perform the energy minimization with the constraints given by Eq. (9),

we construct the following functional

F [Aeff ] = E[Aeff ] +
Nloop∑
ℓ=1

λℓ

(∮
Cℓ

∇χ · dr− 2πwℓ

)
, (17)

where the second term in the right-hand side is the term arising from the constrains; λℓ

is the Lagrange multiplier, wℓ is the winding number of χ along a loop Cℓ, and Nloop is
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the number of independent loops, i.e., any loops in the system can be constructed by

the addition and scalar multiplication of them.

The optimization with respect to ∇χ yields,

δF [Aeff ]

δ∇χ
= 0. (18)

From the above condition, the current density is obtained as

j(x) =
2q

h̄

Nloop∑
ℓ=1

λℓ
δ

δ∇χ(x)

∮
Cℓ

∇χ · dr. (19)

where Eq. (15) is used. This indicates that current carrying states arise due to the

constraint, and given as the sum of Nloop contributions. The current is a collection

of loop currents; each of them is a localized loop current around the core of the spin-

vortex which we call the spin-vortex-induced loop current (SVILC). In Fig. 2, examples

of the current patters produced by the current density in Eq. (19) are depicted. A

variety of current patters are possible since the constrains in Eq. (9) have flexibility in

the combination of wℓ’s. The details of the calculation for the current density given in

Eq. (19) will be given in the next section.

When the number of spin-vortices are large, a large variety of constraints that

satisfy Eq. (9) are possible; thus, the current density can flexibly fit various boundary

conditions. Even the solution with feeding current from outside can be obtained as will

be shown later.

The vector potential for the real electromagnetic field Aem has an arbitrariness

within the gauge transformation

Aem → Aem +∇f, (20)

where f is a single-valued function.

When we obtain the optimized Afic, however, this arbitrariness is negated. This is

due to the fact that the choice of the gauge in Aem is absorbed by the shift in Afic as

Afic → Afic −∇f. (21)

As a result, the sum of the two, the effective vector potential Aeff is invariant. This

means that the Aeff is gauge invariant.

3. Construction of E[Afic]

In this section, we construct E[Afic]. When E[Afic] is obtained, we can calculate the

persistent current from the stationary condition of the functional in Eq. (17). Although

the energy functional E[Afic] will be derived using a number of approximations below,

they are not essential for the appearance of Afic; the only requisite is the presence of

‘spin-vortices’ or the objects described by ξ with non-zero winding numbers. For the

persistent current generation, the nonzero Afic dependence of the total energy is also

necessary.
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Figure 2. Spin-vortex-induced loop currents in Eq. (19) for the spin configurations

in Fig. 1. In the actual calculation the procedure explained in Section 4 is employed.

‘m’ and ‘a’ indicate cores of spin-vortices with winding numbers +1 and −1 in Eq. (8),

respectively.

The minimal model for the parent antiferromagnetic insulator of the cuprate is a

half-filled 2D Hubbard model with the large on-site Coulomb repulsion. We use the

model in which hole-lattice interaction is added to the Hubbard model;

H= −
∑
i,j,σ

tijc
†
iσcjσ+U

∑
j

c†j↑cj↑c
†
j↓cj↓ +Hhole+lattice (22)

where tij is t when the sites i and j are nearest neighbors, and zero otherwise. The

strong correlation condition, 0 < t ≪ U , is assumed. The third term describes the

interaction between holes and underlying lattice, and also lattice vibrations.

The Hamiltonian H can be simplified if we utilize the following observations: 1)

the Hall coefficient measurement in the sample where the superconducting state is

destroyed by a strong magnetic field indicates that the charge carriers are electrons

[32]; 2) a molecular orbital cluster calculation indicates that the energy lowering by the

deformation of CuO unit is large enough to localize the hole [21].
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The above observations indicates that the holes become small polarons and

immobile at low temperatures in the bulk. Thus, we may remove the hole-occupied

sites as inaccessible sites for electrons; then, the system is in the ‘effectively-half-filled

situation’ (EHFS), where the number of accessible sites for conduction electrons and

that of the conduction electrons are equal.

In order to describe the wave function for the conduction electron in the self-

consistent field with the spin-vortices, the following new annihilation operators are

introduced; (
aj
bj

)
=

ei
χj
2

√
2

 ei
ξj
2 e−i

ξj
2

−ei
ξj
2 e−i

ξj
2

( cj↑
cj↓

)
. (23)

The spin-vortices are lying in the conduction plane (the CuO2 plane), and the angular

variable ξj is identified as the spin direction at site j in the conduction plane. The

variable χj is necessary for the single-valuedness of the above transformation matrix;

since ξ is an angular variable with ξj and ξj +2π physically equivalent, the sign-change

of e±
i
2
ξj by the phase shift ξj → ξj + 2π must be compensated by the sign-change of

e
i
2
χj . Actually, the phase factor ei

χj
2 in Eq. (23) gives rise to the phase factor in Eq. (6).

After the basis transformation, the Hamiltonian for the EHFS HEHFS is given by

HEHFS[A
fic] = −

∑
k,j∈acc. sites

tkje
i
2

∫ k

j
∇χ·dr[

cos
ξk−ξj

2
(a†kaj+b†kbj)−i sin

ξk−ξj
2

(a†kbj+b†kaj)
]

+ U
∑

j∈acc. sites
a†jajb

†
jbj, (24)

where Hhole+lattice is omitted by taking into account of its effect as the inaccessible sites

formation. A notable point in Eq. (24) is that the transfer integrals acquire phase

factor e
i
2

∫ k

j
∇χ·dr

. This factor is the one that will appear if the Peierls substitution for a

magnetic field with the vector potential Afic = ch̄
2q
∇χ is performed.

To obtain the ground state wave function, we employ a mean field approximation

since a single Slater determinant description is expected to be a good one due to a large

energy gap between the occupied levels and unoccupied levels in the EHFS. The mean

field approximation further simplifies the Hamiltonian as

H̄EHFS[A
fic] = −

∑
k,j∈acc. sites

tkje
i
2

∫ k

j
∇χ·dr[

cos
ξk−ξj

2
(a†kaj+b†kbj)−i sin

ξk−ξj
2

(a†kbj+b†kaj)
]

+ U
∑

j∈acc. sites

(
⟨a†jaj⟩b

†
jbj + ⟨b†jbj⟩a

†
jaj
)
. (25)

From the above Hamiltonian, the total energy E[Afic] is obtained.

E[Aeff ] in the functional in Eq. (17) is obtained by replacing Afic by Aeff . In a

small system without an external field, however, the effect of Aem is negligibly small

compared with Afic, thus, it may be omitted.

The current obtained here flows without external fields in the situation where the

lower energy band is filled and the upper energy band is empty. Usually, the sum of

the current contributions from all electrons in the filled band is zero; thus, it is usually
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believed that the filled band does not contribute to the electric current. However, in

the present case, due to the existence of the internal field Afic, the sum of the current

contributions from all electrons in the filled band becomes nonzero; thus, the current is

not zero. The current produced by Afic gives rise to Aem, thus, the total gauge potential

is the sum of the two, Aeff = Afic +Aem. In other words, the appearance of Afic makes

the vector potential in the system Aeff instead of Aem.

Since we have obtained the electronic state of the filled lower band, its total wave

function is the Slater-determinant of the conduction electron wave functions of the

filled band. Actually, Slater-determinant states with many different current patters are

possible within the constraints in Eq. (9). Linear combinations of them also satisfy the

single-valued condition of the wave function. In the following, however, we only consider

the situation where the system is described by a single Slater determinant.

Now, let us summarize the flow of calculation procedures: first, we obtain ξk − ξj
using the classical spin Hamiltonian in Eq. (1). For this step, we introduce an angle

variable η give by

ξj = π(jx + jy) + ηj, (26)

where j = (jx, jy) is the jth site in the two-dimensional square lattice and the first term

describes the antiferromagnetic background. Then, η describes the spin-vortices; the

winding number for ξ is actually calculated with η; the difference of η between nearby

sites is in the range,

−π ≤ ηℓ − ηk < π. (27)

At this point, the multi-valuedness of ξ is not taken into account; we just calculate

ξk − ξj and solve the Hartree-Fock equations using Eq. (25) with χ = 0. The αth wave

function obtained is given by

|α̃⟩ =
∑
j

(Aα
j ã

†
j +Bα

j b̃
†
j)|vac⟩ (28)

where Aα
j and Bα

j are numerically obtained; ã†j and b̃†j are given through the relations,(
ãj
b̃j

)
=

1√
2

 ei
ξj
2 e−i

ξj
2

−ei
ξj
2 e−i

ξj
2

( cj↑
cj↓

)
. (29)

since we put χ = 0. At this point, the multi-valuedness of ξ, or jumps of its value by

2πn, where n is an integer, are neglected.

To impose single-valued condition with including the multi-valuedness of ξ, we

replace ã†j and b̃†j by a†j and b†j,

|α⟩ =
∑
j

(Aα
j a

†
j +Bα

j b
†
j)|vac⟩. (30)

Using {|α⟩}, E[Afic] is obtained from Eq. (25) . Then, ∇χ is obtained from the

stationary condition for F [Afic].

If |α⟩ is expressed with c†j↑ and c†j↓, it is given by

|α⟩ =
∑
j

(e−i
ξj+χj

2
Aα

j −Bα
j√

2
c†j↑ + ei

ξj−χj
2

Aα
j +Bα

j√
2

c†j↓)|vac⟩, (31)
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where the values of ξ and χ are obtained by taking into account their multi-valuedness.

From the optimization of the functional given in Eq. (17), values of (χℓ−χk) where

ℓ and k are connected by the transfer integral tℓk are obtained. The evaluation of ξj−χj

and ξj + χj must be done in a path integral manner; they are evaluated along a path

starting from an initial point with initial values. The path may have branches.

Then, (χℓ − χk) are obtained by the stationary condition of the functional given

in Eq. (17), where wℓ must be supplied to satisfy the condition in Eq. (9). Different

combinations of wℓ’s yield different current patterns. The difference of χ between nearby

sites is in the range,

−π ≤ χℓ − χk < π. (32)

Values of η and χ are rebuilt from the values ηℓ − ηk and χℓ −χk, respectively; the step

where values of ηℓ and χℓ are derived from the already evaluated values of ηk and χk is

given by

ηℓ = ηk + (ηℓ − ηk)

χℓ = χk + (χℓ − χk) (33)

where the sites ℓ and k are connected by a bond in the path. From ηj, the value of ξj
is obtained using the relation in Eq. (26). This process is continued until values at all

accessible sites are evaluated once and only once. Using ξj and χj obtained from the

above procedure, we obtain values of ξj − χj and ξj + χj.

Since the values of ξ and χ are path-dependent they have 2πn (n is an integer)

jumps between sites that are connected by bonds but not used during the evaluation

process described above. Due to the condition in Eq. (9), the phase jumps for ξ±χ are

4πn (n is an integer). Then, values of e−i
ξj+χj

2 and ei
ξj−χj

2 are path-independent because

the 4πn jumps are absorbed by ei2πn = 1. In this way, the single-valued wave functions

{|α⟩} are obtained.

4. An example

For definiteness, we work out persistent current calculations described in the previous

section using the model system of a 4× 3 lattice depicted in Fig. 3.

There are three independent loops C1, C2, and C3 as seen in Fig. 4; other loops

are constructed from them; thus, the constrains in Eq. (9) are imposed for those three

loops.

The functional F in Eq. (17) for this system is given by

FEHFS[τ1, · · · , τ7, τa, · · · , τf , λ1, λ2, λ3]

= EEHFS[
ch̄

2q
τ1, · · · ,

ch̄

2q
τf ] +

λ1

2π
(τ5 + τ6 + τe + τb − τ2 − τ1 − τa − τd − 2πw1)

+
λ2

2π
(τ4 + τc − τ3 − τb) +

λ3

2π
(τ7 + τf − τ4 − τe), (34)

where τj’s are differences of the phase χ and λk’s are the Lagrange multipliers introduced

to impose the constraints in Eq. (9); their definitions are given in Fig. 4.
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Figure 3. (a) spin configuration with one spin-vortex with winding number +1 in

the antiferromagnetic background; (b) loop current with winding number +1; (c) loop

current with winding number −1.

Currents Jk for bonds k can be calculated using the following formula,

Jk = −2q

h̄

∂EEHFS

∂τk
, (35)

which corresponds to Eq. (15). Then, stationary conditions of the function FEHFS with

respect to τ ’s yield relations corresponding to Eq. (19);

J1 =
2q

h̄
λ1, J2 =

2q

h̄
λ1, J3 =

2q

h̄
λ2

J4 =
2q

h̄
(λ3 − λ2), J5 = −2q

h̄
λ1, J6 = −2q

h̄
λ1

J7 = − 2q

h̄
λ3, Ja =

2q

h̄
λ1, Jb =

2q

h̄
(λ2 − λ1)

Jc = − 2q

h̄
λ2, Jd =

2q

h̄
λ1, Je =

2q

h̄
(λ3 − λ1)

Jf = − 2q

h̄
λ3 (36)

We approximate Jk to be linear in τk as

Jk = −2q

h̄

∂2EEHFS

∂τ 2k
τk, (37)

which is a good approximation if τk is so small that can be approximated as sin τk
2
≈ τk

2
.

Then, the constraints with respect to the winding numbers yield the following linear

equations for λ1, λ2, and λ3;
2πw1

2πw2

2πw3

 = M


λ1

λ2

λ3

 , (38)
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1 2 3

2

1

τ1 τ2 τ3

τ4

τ5 τ6 τ7

τa τb τc

τd τe τf
C1

C2

C3

0

0

Figure 4. A 4× 3 lattice with one hole-occupied site. The hole occupies (1, 1). There

are three independent loops: C1 is a loop that connects (0, 0) → (2, 0) → (2, 2) →
(0, 2) → (0, 0); C2 is a loop that connects (2, 1) → (3, 1) → (3, 2) → (2, 2) → (2, 1);

C3 is a loop that connects (2, 0) → (3, 0) → (3, 1) → (2, 1) → (2, 0). τ indicates a

difference of χ values at two sites; for example, τ1 = χ(1, 2)− χ(0, 2).

where the matrix M is given by

M =


1
D1

+ 1
D2

+ 1
Db

+ 1
De

+ 1
D6

+ 1
D5

+ 1
Dd

+ 1
Da

− 1
Db

− 1
De

− 1
Db

1
D3

+ 1
Dc

+ 1
D4

+ 1
Db

− 1
D4

− 1
De

− 1
D4

1
D4

+ 1
Df

+ 1
D7

+ 1
De

(39)

and

Dk =
∂2EEHFS

∂τ 2k
(40)

Then, from λ’s, we calculate the currents using Eq. (36). The results are depicted in

Fig. 3. A similar calculation yields the current in Fig. 2.

Note that the current obtained by optimizing τ ’s satisfies the conservation of charge

since it is made as a sum of loop currents.

Let us now consider the inclusion of real magnetic fields. It is taken into account

by replacing the phase factor in the hopping term as

e
iq
ch̄

∫ k

j
Afic·dr → e

iq
ch̄

∫ k

j
(Aem+Afic)·dr. (41)

This causes the replacement

E[Afic] → E[Afic +Aem] (42)

We approximate Jk to be linear in Aeff as

Jk = −2q

h̄

∂2EEHFS

∂τ 2k
(τk + αk), (43)

where, for example, α1 is defined as

α1 =
q

h̄c

∫ (1,2)

(0,2)
Aem · dr. (44)

Then, replacing Jk in Eq. (36) by that in Eq. (43) the equations for λ’s become
2πw1 + α1 + α2 − αb − αe − α6 − α5 + αd + αa

2πw2 + α3 − αc − α4 + αb

2πw3 + α4 − αf − α7 + αe

 = M


λ1

λ2

λ3

 . (45)
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1 2 3

2

1

τ1 τ2 τ3

τ4

τ5 τ6 τ7

τa τb τc

τd τe τf
C1

C2

C3

0

Jex

Jex

Figure 5. The same 3 × 4 lattice as in Fig. 4 but current Jex is fed to (0, 0) and

extracted from (3, 2).

The current in Eq. (43) indicates that the Meissner effect will occur if the system

is sufficiently large, since the diamagnetic current proportional to Aem flows.

Now let us consider the case where a current is fed from outside. The current feeding

is included in the following manner: let us examine the system depicted in Fig. 5. We

include the hopping term between (0, 0) and (3, 2) and introduce a loop C4 that connects

(0, 0) → (2, 0) → (3, 0) → (3, 1) → (3, 2) → (0, 0); the Lagrangian multiplier for this

loop is λ4

Then, the equations for λ1, λ2, and λ3 are obtained as
2πw1 +

(
1
D5

+ 1
D6

)
λ4

2πw2 +
1
Dc

λ4

2πw3 +
(

1
D7

+ 1
Df

)
λ4

 = M


λ1

λ2

λ3

 . (46)

The parameter λ4 is treated as a parameter for the external current; i.e., we relates

the external current Jex to λ4 as

Jex =
2q

h̄
λ4, (47)

where the contributions from Aem are omitted. We may choose other loop for C4 to

include Jex; however, the current distribution is unaffected by the choice of the added

loop.

5. Connection between Afic and London’s superpotential

Let us calculate single-particle wave functions from Eq. (31). We define ⟨r| as

⟨r| = ⟨vac|
∑
j

[cj↑wj↑(r) + cj↓wj↓(r)] . (48)

Then, the single-particle wave function is given by

⟨r|α⟩ =
∑
j

(
e−i

ξj+χj
2

Aα
j −Bα

j√
2

wj↑(r) + ei
ξj−χj

2
Aα

j +Bα
j√

2
wj↓(r)

)

≈
∑
j

(
e−i

ξj+χ(r)

2
Aα

j −Bα
j√

2
wj↑(r) + ei

ξj−χ(r)

2
Aα

j +Bα
j√

2
wj↓(r)

)
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= e−
i
2
χ(r)⟨r|ᾱ⟩, (49)

where wjσ(r) is the Wannier function at the jth site with spin σ, and

⟨r|ᾱ⟩ =
∑
j

(
e−i

ξj
2
Aα

j −Bα
j√

2
wj↑(r) + ei

ξj
2
Aα

j +Bα
j√

2
wj↓(r)

)
. (50)

In the process of the replacement of e−i
χj
2 wjσ(r) by e−i

χ(r)
2 wjσ(r) in Eq. (49), the

fact is used that wjσ(r) has significant amplitude only near the jth site.

Then, the total wave function is give by

Ψ(r1, · · · , rN ; ξ, χ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

⟨r1|1⟩ ⟨r2|1⟩ · · · ⟨rN |1⟩
⟨r1|2⟩ ⟨r2|2⟩ · · · ⟨rN |2⟩

· · · · · ·
· · · · · ·

⟨r1|N⟩ ⟨r2|N⟩ · · · ⟨rN |N⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣

≈ e−
i
2

∑
j
χ(rj)

√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

⟨r1|1̄⟩ ⟨r2|1̄⟩ · · · ⟨rN |1̄⟩
⟨r1|2̄⟩ ⟨r2|2̄⟩ · · · ⟨rN |2̄⟩

· · · · · ·
· · · · · ·

⟨r1|N̄⟩ ⟨r2|N̄⟩ · · · ⟨rN |N̄⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣
= e−

i
2

∑
j
χ(rj)Ψ(r1, · · · , rN ; ξ, 0). (51)

The above wave function has the form suggested by London for superconductors [33].

Actually, Landau also suggested the same wave function form [34].

London argued that the superconducting state is characterized by the long range

order of the momentum ps given by

ps = ∇χs (52)

and called, χs, the superpotential; the wave function is expressed as

ΨL(r1, · · · , rN) = e
i
h̄

∑
j
χs(rj)Ψ0(r1, · · · , rN), (53)

using χs [33].

The comparison of Eqs. (51) and (53) indicates that we can identify

χs = − h̄

2
χ. (54)

Thus, we have

ps = −q

c
Afic. (55)

This shows that Afic is essentially the long range momentum order envisaged by

London [33]. In the spin-vortex superconductivity theory, the existence of Afic is the

characteristic of superconductors. Thus, the London’s explanation of superconductivity

and the spin-vortex superconductivity coincide.

Let us calculate the current density; from Eq. (51), we have

E = ⟨Ψ[χ]|H[Aem]|Ψ[χ]⟩ = ⟨Ψ[0]|H[Aem +Afic]|Ψ[0]⟩, (56)
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thus, the current density is given by

j = −c⟨Ψ[0]|δH[Aem +Afic]

δAem
|Ψ[0]⟩. (57)

If the kinetic energy is expressed as

K =
∑
j

1

2m

(
pj −

q

c
Aem(rj)

)2

, (58)

where m is the effective mass of electron, the current density for Ψ(r1, · · · , rN ; ξ, χ) is

calculated as

j = −q2ρ

mc

(
Aem +Afic

)
= −q2ρ

mc
Aeff , (59)

where ρ is the electron density and Ψ(r1, · · · , rN ; ξ, 0) is assumed to be currentless. This

is the gauge invariant current sinceAeff is gauge invariant. The above current expression

is obtained by taking

Ψorder = ρ1/2e−i 1
2
χ (60)

as the order parameter.

6. Discussion

The new criterion for the occurrence of superconductivity put forward by the spin-vortex

superconductivity is the appearance of the stable Afic, which is the gauge potential

induced by the single-valued wave function constraint in the presence of the spin-

vortices. The occurrence of the superconductivity in the cuprate may be judged by this

new criterion. The current element is the spin-vortex-induced loop current (SVILC).

Since a single SVILC is rather localized as is shown in Fig. 2, the generation of

a macroscopic persistent current requires a certain density of spin-vortices; this will

explain the existence of the lower limit for the doping concentration (about x = 0.05)

in the occurrence of superconductivity in the cuprate.

In the cuprate, the spin-vortices are expected to be particularly stable; one reason

is that the doped holes provide with their cores. In addition, the spin exchange between

spins across the hole occupied sites may stabilize the spin-vortices in the following way:

the classical spin Hamiltonian for the hole-doped cuprate with the spin exchange between

spins across the hole occupied sites is given by

E[ξ] =
J

4

∑
⟨i,j⟩1;i,j∈acc. sites

cos(ξi − ξj) +
J ′

4

∑
⟨i,j⟩h;i,j∈acc. sites

cos(ξi − ξj), (61)

where ⟨i, j⟩h indicates the paris across the hole occupied sites; it includes also pairs of

sites for which the sites i and j are in the right angle positions with respect to the hole

occupied site. Then, the quartet of the spin-vortices of the 4a× 4a size, where a is the

lattice constant in the CuO2 plane, depicted in Fig. 6 becomes energetically stable if

the condition J ′ > 0.24J is satisfied.

Actually, a large J ′ value is not unlikely in the cuprate due to the small polaron

formation: the molecular orbital cluster calculation result indicates that when the small
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Figure 6. (a) A spin configuration with four holes in the antiferromagnetic

background. ‘h’ indicates the hole occupied site. (b) A spin configuration with four

holes in the antiferromagnetic background but five spins are reversed. If J ′ > 0.25J ,

the spin configuration in (b) has less energy than that in (a). (c) The optimized

spin configuration with four spin-vortices with their centers at the hole occupied sites.

J = 1 and J ′ = 0.25 are used in Eq. (61). ‘M ’and ‘A’ indicate cores of spin-vortices

with winding numbers +1 and −1 in Eq. (4), respectively. The numerical calculation

indicates that the configuration with the quartet of spin-vortices like that in (c) has

less energy than the antiferromagnetic one down to J ′ = 0.24J . (d) The optimized spin

configuration obtained by the steepest-decent algorithm starting from the configuration

in (c) with J = 1 and J ′ = 0.

polaron is formed, dx2−y2 and the surrounding four pσ orbitals form a molecular orbital

[21]. Then, the exchange parameter J ′ across the hole occupied sites is calculated

by treating the hole molecular orbital as the intermediate level for the perturbation

calculation (Fig. 7) [35];

J ′ ≈ 4t4dh
(εh − εd)3

, (62)

where the parameter tdh is the transfer integral between the spin-reside copper dx2−y2

orbital and the hole orbital h at the hole-occupied site; εd and εh are the orbital energies

of dx2−y2 and h, respectively. If the hopping integral tdh is not so much different from

that between the copper dx2−y2 orbital and the nearby oxygen pσ orbital, and the energy

difference εh − εd is sufficiently small, the condition J ′ > 0.24J may be achieved.

The argument of the stability of spin-vortices based on the formation of the quartet

of the spin-vortices is in accordance with the fact that the superconducting phase
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d x  -y 22 h d x  -y 22

εd εd

εh

Figure 7. The energy level diagram for the calculation of J ′ in Eq. (61). dx2−y2

is atomic orbital for Cu. h denotes a molecular orbital made of one dx2−y2 and

surrounding four pσ orbitals. It is formed when the O-Cu bond length is shortened by

the hole doping. See Ref. [21], Fig. 4(d) for its shape.

disappears at x = 0.25 since beyond this hole concentration, the destruction of the

quartets is inevitable. Then, the observed isotope effect of Tc may be explained as the

isotope effect on the stability of the quartet of the spin-vortcies [19, 18].

In conclusion, by using the functional that is the sum of the energy functional and

the single-valued constraint, we have clarified that the single-valued condition on the

conduction electron wave functions induces a vector potential Afic and generates the

persistent current if the conduction electrons form the spin-vortices. The appearance

of the non-trivial Afic makes the effective vector potential in the system the sum

Aeff = Afic+Aem. The effective vector potentialAeff is gauge invariant and the persistent

current is generated by it. The present theory suggests that the reason for the very high

superconducting transition temperature in the cuprate is due to an enhanced stability

of spin-vortices by the strong hole-lattice interaction.
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