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Abstract 
　Bicycle lanes are the most prominent travelling paths in 
many universities. Measurement of safety factors for these 
bicycle lanes is essential for university authorities in order 
to concern public safety and to implement an effective 
campus facility management tasks. Information of bicycle 
lane steepness is useful for daily bicycle lane users through 
Campus Web-GIS System, in order to prevent unnecessary 
accidents while they are riding, especially in the night. In 
this study, we used very fine scale Light Detection And 
Ranging (LIDAR) data to identify the bicycle lane steepness 
by integration with field investigation and deliver the 
information through Campus Web-GIS System. Based on 
our study, LIDAR data are much promising to detect bicycle 
lane steepness factor in open spaces. However, the accuracy 
was reduced in some areas where the lanes are covered 
with trees and bridges. Insensitive field investigations are 
required to correct them. We built a Web-based real-time 
geospatial data collection system for data validation 
purposes by utilizing high-resolution aerial imagery and 
mobile communicational devices to collect, store, modify 
and update the results.
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1. Introduction 
　Although LIDAR techniques have been available since 
the 1960s, they have only become commonly used in the 
past few years due to the lack of computational resources 
and sophisticated software to handle massive points cloud 
data (Lwin and Murayama, 2009). LIDAR data can now 
provide very accurate height information for land surface 
features such as buildings and trees. Digital Volume Model 
(DVM) derived from LIDAR data are also increasingly 
being used for population estimation at the urban scale and 
are being integrated with very high resolution imagery 
with good results (Ramesh, 2009; Qiu et. al., 2010; Lwin 
and Murayama, 2011; Weng, 2012). Although LIDAR 
technology measures the height of the surface known as 
Digital Surface Model (DSM) very accurately, the 
measurement of object height known as Digital Height 

Model (DHM) is fully dependent on the accuracy of the 
Digital Terrain Model (DTM) or bare Earth since DHM 
was made by differencing between DSM and DTM (Fig. 
1). Normally DTM was generated from LIDAR last re-
turns which are hitting from the ground and estimate to 
other hard objects areas such as buildings, dense trees, 
bridges, etc., since LIDAR cannot penetrate these hard ob-
jects. The terms, DSM, DTM and DHM, are mostly suit-
able to use in high resolution LIDAR data since building 
heights, tree heights can be distinguished. The term Digital 
Elevation Model (DEM) is commonly suitable for coarse 
spatial resolution elevation data (i.e. 30m, 90m, 1Km), 
representing the height information as raster cells.

　In our previous study, we used LIDAR data to estimate 
the building population (Lwin and Murayama, 2011) and 
identification of housing types such as single multiple unit, 
family multiple unit and family single unit based on 
building size, shape and smoothness of the roof in Tsukuba 
City (Lwin and Murayama, 2012). Moreover, at the urban 
or intra-urban scales, further research is needed to establish 
the best methods and procedures for population estimation, 
taking advantage of the very high spatial resolution satellite 
imagery and LIDAR data that are now widely available 
(Patino and Duque, 2013). Under the LIDAR data processing, 
the high resolution aerial photo (orthoimage) is also 
important to identify the actual landscape information. In 
this paper, we generate slope from LIDAR derived DTM 
to identify the bicycle lane steepness and combine with 
field investigation. 

2. Study area and methodology
2.1. Study area
　Study area is University of Tsukuba campus which is 
located in Tsukuba City, Ibaraki Prefecture in Japan (Fig. 
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Fig. 1 Illustration of DSM, DTM and DHM in LIDAR data pro-
cessing
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2). The University has 28 college clusters and schools 
with a total of around 15,000 students. The main Tsukuba 
campus covers an area of 258 hectares (636 acres), making 
it the largest single campus in Japan.

2.2. Data and sources
　Table 1 shows the list of data and purpose to be used in 
this study.
 
2.3. Methodology
　Fig. 3 shows the research flow of this study. We acquired 
original DTM from PASCO Corporation and collected some 
last return signals from DSM based on 8cm orthomage. 
Because we need more ground hitting signals for DTM 
generation. Orthoimage, 8cm spatial resolution helps us to 
identify actual land scape features such as trees, buildings, 
road surface, etc. (Fig. 4 A and B). After that, new DTM 
was generated at 50cm spatial resolution. This new DTM 
was used to calculate slope of the surface. We also digitized 
bicycle lanes based on 8cm orthoimage and segmented/
divided into 5m intervals. Later, this 5m segmented bicycle 
lanes were buffered by 2m each side of the lane and make 
polygons. Slope in degree was calculated for each polygon 
by applying zonal statistic as a table function between 
50cm modified DTM and 2m buffered polygons (Fig. 5). 
Additional field investigations were made for data validation 
and modification of the results.

Table 1: List of data and purpose to be used

Data and Source Description Purpose
Digital Surface Model (DSM)
(Source: PASCO Corp.)

Point feature in ESRI shape format
Average point spacing is 0.9 m

To collect some ground hitting points

Digital Terrain Model (DTM)
(Source: PASCO Corp.)

Point feature in ESRI shape format
Each point is 5 m regular spacing

To compute slope

Orthoimage (Source: PASCO 
Corp.)

GeoTIFF format
8 cm X 8 cm spatial resolution
RGB True Color
(along with LiDAR surveying)
A total of 45 scenes were used

Used as a base map and landscape visualization
Selection of LIDAR return signals
To digitize bicycle lanes on orthoimage

Digitized Bicycle Lanes ESRI Shape format
Onscreen digitizing based on
8cm orthoimage

To compute slope for each 5m bicycle lane within 2m 
buffered zone

Fig. 2 Study area (University of Tsukuba Campus)
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Fig. 3 Overview of data processing steps and methodology

Fig. 5 Identification of bicycle lane slope process (A: Bicycle lane 
onscreen digitizing, B: Bicycle lane segmentation by 5m 
intervals, C: Buffer 2m each side of the bicycle lanes, and 
D: Calculate slope for each 2m buffered polygon by using 
zonal statistic as a table function in ArcGIS)

Fig. 4 Manual collection of ground hitting points from DSM to 
modify original DTM (A & B: 2nd, 3rd and 4th returns are 
more prominent in edge of the trees whose signals are re-
turning from the ground, C: Shaded DSM, and D: Shaded 
DTM
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3. Results and Discussion
　Fig. 6 shows the slope in degree of bicycle lane inside 
the campus. We found out the results of open space areas 
are very satisfactory and even the slope of small hills (less 
than 10 degree) can be detected (Fig. 7 C, D and E, much 
of the steepness lanes inside the campus can be spotted by 
LIDAR data). However, the results of some parts were 
incorrectly identified due to lanes covered by massive 
trees and bridges (Fig. 7 B). Additional field investigations 
were carried out for those areas to correct them. 

4. Mobile field data collection and validation of the 
results
　We also conducted the field survey with smart phone. 
We used iPhone slope measurement program to measure 
and collect the various places inside the campus and 
validated the result (Fig. 8). According to the results, average 
1 to 1.5 degree varies between LIDAR result and field 
measurement. 
　The final validated data was uploaded into Campus GIS 
system to deliver the bicycle users inside the campus. The 
information can be reached at:

http://land.geo.tsukuba.ac.jp/campusgis

5. Conclusion
　Identification of bicycle lane steepness from LIDAR 
data is very promising in open-spaces, however, less accu-
racy in trees and bridges covered areas. Additional field 
investigation is required to correct and modify them. The 
information of bicycle lane steepness is important for 
bicycle riders inside the university campus especially at 
night-time and the campus administrators to identify the 
safety factor for campus management purposes.

Fig. 6 Bicycle lane slope map for university campus

Fig. 8 Field data collection and validation of the results with smart 
phone

Fig. 7 Results in various landscapes (A: results in open space area, 
B: results in massive trees and bridges covered area, C, D 
and E: very promising results places)
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